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Abstract: In response to the problem of low efficiency and weak obstacle avoidance ability in finding the 
optimal or suboptimal path for 3D path planning of drones in complex dynamic environments, this paper 
uses Q-learning algorithm to complete the 3D path planning of drones, aiming to improve their path 
planning and obstacle avoidance capabilities. Firstly, by constructing a three-dimensional gridded 
environment model, the system calculates the reward for each state under the influence of natural 
environment and obstacles, and then guides the drone to avoid obstacles and find the optimal path. The 
system uses the ε - greedy strategy for exploration and learning, optimizing decisions by continuously 
updating the Q-table value table. The experimental results show that the drone has a success rate of 93.3% 
in obstacle avoidance in complex and multi obstacle scenes. Moreover, in terms of average path length, 
the Q-learning algorithm has shortened it by approximately 20.00%, 11.45%, and 40.39% compared to 
ant colony algorithm, A* algorithm, and RRT algorithm, respectively. In dynamic wind speed 
environments, the Q-learning algorithm reduces the path length by about 4% to 11% compared to other 
algorithms, further demonstrating its effectiveness and advantages in complex environments. 
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1. Introduction 

In recent years, with the rapid development of drone technology, its application in military and 
civilian fields has become increasingly widespread. Due to their small size, flexible maneuverability, and 
multi-sensor integration, drones have become an ideal platform for executing complex tasks. However, 
when performing autonomous flight and mission planning in dynamic and complex 3D environments, 
drones face many challenges, especially in terms of flight constraints, obstacle avoidance capabilities, 
and energy consumption. Traditional path planning algorithms such as ant colony algorithm, A* 
algorithm, and RTT algorithm can solve some problems in static scenarios, but their adaptability and 
efficiency are limited when facing complex environments.  

Traditional path planning algorithms such as ant colony algorithm, A* algorithm, and RRT algorithm 
perform well in ordinary static environments, but their adaptability and efficiency are limited when 
dealing with a large number of obstacles [1-2]. In contrast, Q-learning algorithm is adept at handling 
complex, adaptive, and multi-step optimization problems, particularly suitable for complex dynamic 
obstacle avoidance and path planning tasks. By continuously exploring and learning the values of states 
and actions in the environment, Q-learning can autonomously find the optimal path and dynamically 
adjust obstacle avoidance strategies. This demonstrates significant advantages in its application in 
autonomous drone flight. 

The organizational structure of the paper is as follows: Firstly, the introduction elaborates on the 
research background and limitations of traditional methods in the field of unmanned aerial vehicle path 
planning; the second part introduces relevant research in the field of drone path planning, providing a 
theoretical basis for the method proposed in this paper; the third part elaborates on the design and 
implementation of a 3D path planning system based on Q-learning, including system architecture design, 
construction of a 3D grid environment model, and design of a reward mechanism; the fourth part verifies 
the effectiveness of the proposed method through experiments and compares its performance with ant 
colony algorithm, A* algorithm, and RRT algorithm; finally, the conclusion section summarizes the 
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research findings, explores the potential of Q-learning in drone path planning, and proposes future 
research directions. 

2. Related Work 

Various methods have been proposed for three-dimensional path planning of unmanned aerial 
vehicles (UAV), with a focus on optimization based techniques, uncertainty modeling, and the application 
of reinforcement learning algorithms. For example, Kiani et al. proposed a multi UAV 3D path planning 
method based on the Grey Wolf Algorithm, which addresses path planning problems through the 
Incremental Grey Wolf Optimization (I-GWO) Algorithm and Extended Grey Wolf Optimization (Ex-
GWO) Algorithm, significantly improving path cost and convergence speed, with a 36.11% increase in 
path cost compared to other algorithms [3]. Lv et al. proposed a hybrid algorithm (HGEOGWO) 
combining the Golden Eagle optimizer and the Grey Wolf optimizer, which was applied to multi UAV 
3D path planning in power inspection and showed significant optimization performance in different test 
cases [4]. This type of path planning method based on heuristic algorithms shows good efficiency, but 
has weak adaptability in dynamic environments.  

On the other hand, A* and its variant algorithms also demonstrate good performance in three-
dimensional environments, especially in obstacle avoidance and path length optimization. Mandloi et al. 
conducted a detailed study on 3D path planning using the A* algorithm and its extensions such as Theta 
and Lazy Theta, demonstrating that these algorithms can provide relatively optimal paths in different 
dimensions and obstacle complexities, but have limitations in real-time response capabilities [5]. Zammit 
and van Kampen studied real-time path planning in dynamic uncertain environments. By comparing A* 
and RRT algorithms, they found that A* performed better than RRT in complex scenarios and had a 
higher success rate in path safety and real-time performance [6].  

Reinforcement learning algorithms have shown great potential in path planning in dynamic 
environments, especially in drone path optimization and obstacle avoidance. The improved Q-learning 
algorithm proposed by Wang et al. has made significant progress in dynamic obstacle avoidance. The 
algorithm improves convergence speed and path accuracy by introducing priority weights, and can more 
effectively handle complex multi constraint environments [7]. Shang et al. combined RRT algorithm and 
Q-learning to achieve dynamic step size adjustment in path planning algorithm, improving the speed of 
initial path generation, and achieving path smoothing through bidirectional pruning and B-spline curves 
[8]. Bonny et al. combined Q-learning with the bee algorithm and validated the robustness and 
effectiveness of the method through experiments in both static and dynamic environments [9].  

In addition, some studies have further improved the adaptability and efficiency of Q-learning in 
different applications. The mild conservative Q-learning (MCQ) proposed by Lyu et al. performed well 
in offline reinforcement learning, particularly in balancing value function generalization and 
overestimation problems. The algorithm demonstrates good transfer performance from offline to online 
[10]. Tran et al. applied Q-learning in cloud computing virtual machine migration, effectively balancing 
cost and service quality [11]. These studies provide methodological support for the application of 
reinforcement learning based path planning in the three-dimensional environment of unmanned aerial 
vehicles.  

Overall, although traditional heuristic algorithms and A* algorithms have advantages in path 
optimization, reinforcement learning algorithms, especially Q-learning and its improved methods, 
demonstrate superior adaptability and flexibility in complex dynamic environments, helping to improve 
the obstacle avoidance ability and path efficiency of drones. Based on this, this paper utilizes the 
advantages of Q-learning algorithm in UAV 3D path planning, aiming to enhance the path planning and 
obstacle avoidance capabilities of UAV 3D path planning system in complex dynamic environments.  

3. Method 

3.1 System Architecture 

The overall architecture of the unmanned aerial vehicle 3D path planning system is shown in Figure 
1: 
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Figure 1: Overall system architecture 

From Figure 1, it can be seen that the three-dimensional path planning system architecture of the 
drone consists of multiple modules, and path optimization is performed through reinforcement learning 
algorithms. The system obtains environmental data through external sensor input modules. After 
receiving sensor data, the information enters the obstacle avoidance module and the positioning module 
respectively. The obstacle avoidance module processes obstacle information to ensure that the drone can 
recognize and avoid obstacles during flight; the positioning module determines the location of the drone. 
The information from both is transmitted to the control module, which is responsible for integrating 
obstacle avoidance and positioning data to control the path selection of the drone, ensuring that the drone 
can move along a safe and efficient path. At the same time, the system generates a three-dimensional 
array model of the drone flight environment based on sensor data through a three-dimensional model 
creation module, and uses this information for path planning and obstacle handling. Based on the 3D 
model, the system further processes obstacle information and hands it over to the obstacle processing 
module to optimize obstacle avoidance decisions. The training and testing module is the reinforcement 
learning core of the system, which continuously trains and tests the drone to optimize its decision-making 
ability in complex dynamic environments. Based on the above modules, the 3D path planning module 
generates the optimal path and makes real-time adjustments according to changes in the environment. 
All data of the system, including sensor information, 3D models of the environment, and parameters 
generated during the learning process, will be stored in the data storage module for subsequent use and 
analysis. The entire system achieves autonomous obstacle avoidance and path planning for drones in 
three-dimensional space through the collaboration of multiple modules.  

3.2 3D Model Creation 

To achieve Q-learning based 3D path planning for drones, the system first needs to construct a 3D 
gridded environment model to represent the feasible space and obstacle positions during drone flight. 
Specifically, the entire flight environment is discretized into a three-dimensional grid of M * M * M, 
where each grid represents a spatial unit. This gridded model can effectively simulate the three-
dimensional environment in reality, transforming complex continuous spaces into discrete state spaces, 
which facilitates path planning using reinforcement learning algorithms [12].  

In each grid, the system assigns a value to the spatial unit through an environmental reward function. 
This return function takes into account the flight targets, obstacle distribution, and environmental factors 
during the flight of the drone. The return value of the grid reflects the passability and flight cost of the 
spatial unit, for example, paths that avoid obstacles may have higher positive returns, while paths that 
approach obstacles or pose risks may have negative returns [13]. In this way, the system can provide 
reward feedback for drones in different states, helping them find the optimal flight path through learning. 
When creating a 3D model, the system needs to update environmental information in real-time. The 
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dynamic environmental data input from external sensors will continuously adjust the gridded model to 
ensure that the drone can still effectively avoid obstacles and plan paths when facing complex and 
changing environments.  

3.3 Implementation of 3D Path Planning for Drones 

In order to effectively plan the path of the drone in a three-dimensional environment, key parameters 
as shown in Table 1 have been set:  

Table 1: Training parameter settings 

Parameter Value Unit 
Movement Direction i 1-26 - 
Greedy Coefficient G 0.2 - 
Reward Coefficient R 0.8 - 
Training Iterations 3000 times 
Maximum Movement Steps 80 steps 
Map Side Length M 5 (8) grid 
Number of Maps 4 (10) - 

Q-table is a table used during the training process to store expected rewards for executing different 
actions in various states. For each fixed map, the state of the drone can be represented by a three-
dimensional vector (x, y, z) to indicate its position. In a three-dimensional environment, there are 26 
selectable actions for each state, so Q-table is a four-dimensional array represented as Q [x] [y] [z] [i], 
where i represents the action selected at a certain moment. Through learning, the values in the Q-table 
will continuously update, enabling the drone to gradually optimize its path selection. The core of path 
optimization for drones is to update the Q-table using the Q-learning algorithm. The updated formula is:  

Q[x][y][z][i] = Q[x][y][z][i] + α(r[x1][y1][z1] + γmax(Q[x1][y1][z1][i]) − Q[x][y][z][i])  (1) 

In this formula, after executing action i in the current state (x, y, z), the new state obtained is 
(𝑥𝑥1,𝑦𝑦1, z1). At this point, the reward for the drone is updated as: the reward obtained in the current state 
plus the expected return of the best future action. The α in the formula is the learning rate used to adjust 
the pace of learning, where α=0.8. In addition, to prevent the drone from falling into local optima during 
training, the greedy coefficient G is set to 0.2. Under the greedy strategy, the drone has an 80% probability 
of choosing the current optimal behavior, but also retains a 20% probability of exploring and trying new 
paths. This balance ensures that the drone can quickly converge to the optimal solution while avoiding 
local optima. The goal of path planning is to find the optimal path that satisfies the flight constraints. The 
construction of the return function takes into account various influencing factors in the environment, 
such as wind force, terrain, temperature, lighting, etc. The expression form of the return function is:  

Reward=w1 × f1 + w2 × f2 + w3 × f3                      (2) 

Among them, w1 to w3 are weighting coefficients, and the sum is 0.5, used to balance the impact 
of different environmental factors on returns. The environmental parameters 𝑓𝑓1  to 𝑓𝑓3  are used to 
quantify the quality of each environmental parameter, with values ranging from 1 (indicating good 
environment) to -1 (indicating poor environment). During the training process, whenever the drone 
passes through a grid, the system calculates a score based on the environmental factors and reward 
function of the grid as a reward for that location. The drone accumulates these rewards, continuously 
adjusts its path, and ultimately finds the optimal path from the starting point to the endpoint. After 3000 
rounds of training, an accurate Q-table was finally formed, enabling the drone to find the optimal route 
in actual testing.  

4. Results and Discussion 

4.1 Comparison of the Effectiveness of Multi Obstacle Path Planning 

The experiment tested the path planning effect of Q-learning algorithm on unmanned aerial vehicles 
in multi obstacle maps. After 3000 training sessions, the drone is able to autonomously plan obstacle 
avoidance paths in complex environments, effectively avoid obstacles, and find the optimal route. Figure 
2 shows the Matlab simulation results of path planning for a drone in a multi obstacle map, where the 
drone can reach the target position in a short number of steps.  
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Figure 2: Path planning results of unmanned aerial vehicles in complex and multi obstacle 

environments 

4.2 Efficiency of 3D Path Planning 

Table 2 shows the average efficiency comparison of ant colony optimization algorithm (ACO), A* 
algorithm, fast extended random tree (RRT), and Q-learning in three-dimensional path planning in 
complex multi obstacle environments.  

Table 2: Comparison of efficiency in 3D path planning 

Metric ACO A* RRT Q-learning 

Search Time (s) 28.5576 1.1181 0.0541 0.0434 

Search Return Rate 0.6373 0.7791 0.7826 0.7231 

Maximum Turning Angle 
(degrees) 109.4712 180 96.7966 90.1241 

Number of Turns Exceeding 
45 Degrees 57.2452 346.1241 11.1414 5.6546 

In terms of search time, Q-learning performs the best, with an average search time of 0.0434 seconds, 
slightly better than RRT's 0.0541 seconds. ACO has the longest search time, reaching 28.5576 seconds, 
significantly lagging behind other algorithms. The search time of the A * algorithm is 1.1181 seconds, 
which is moderate and reflects the balance of its efficiency. In terms of search return rates, the A* 
algorithm and RRT perform the most reliably, with values of 0.7791 and 0.7826, respectively. Although 
Q-learning has high efficiency, its return rate is slightly lower at 0.7231, while ACO has the lowest return 
rate at only 0.6373. In terms of path smoothness, the maximum turning angle of Q-learning is only 
90.1241°, and the number of turns exceeding 45° is the least, only 5.6546 times, indicating that its path 
is smoother and more efficient. RRT also performs well, with a maximum turning angle of 96.7966° and 
11.1414 turns exceeding 45 degrees. The path generated by the A* algorithm has a large turning angle, 
with a maximum turning angle of 180 °, and the number of turns exceeding 45 degrees is as high as 
346.1241 times, indicating its limitations in generating smooth paths.  ACO also performs poorly, with 
a maximum turning angle of 109.4712 ° and 57.2452 turns exceeding 45 degrees. 

4.3 Comparison of Path Length 

The experimental results also compared the path length performance of ant colony algorithm, A* 
algorithm, RRT algorithm, and Q-learning algorithm in multi obstacle environments and dynamic wind 
speed environments, and calculated the path optimization percentage of Q-learning algorithm relative to 
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other algorithms. The specific data is shown in Figure 3.  

 
Figure 3: Comparison of algorithm path length in different testing environments 

In a multi obstacle environment, the Q-learning algorithm achieves the shortest path length (531.4562 
meters), which is about 20.00% shorter than the ant colony algorithm (664.2807 meters); compared to 
the A* algorithm (600.2351 meters), it has shortened by about 11.45%; compared to the RTT algorithm 
(892.0390 meters), it has shortened by about 40.39%. These data indicate that the Q-learning algorithm 
has significant path optimization capabilities in complex obstacle environments.  

In a dynamic wind speed environment, the Q-learning algorithm has a path length of 527.5467 meters, 
which is approximately 11.95% shorter than the ant colony algorithm (599.1645 meters); compared to 
the A* algorithm (549.8595 meters), it has shortened by about 4.06%; compared to the RTT algorithm 
(564.5649 meters), it has shortened by about 6.56%. This further indicates that the Q-learning algorithm 
not only performs well in complex environments, significantly reducing path length and improving the 
flight efficiency of drones.  

5. Conclusion  

This paper presents a three-dimensional path planning system for unmanned aerial vehicles based on 
Q-learning reinforcement learning algorithm. By constructing a three-dimensional environment model 
and using Q-learning algorithm, the system can continuously optimize path decisions by maximizing 
cumulative rewards. Under extensive training, drones can effectively avoid obstacles and find the optimal 
path. The system uses a greedy strategy to balance exploration and utilization, avoiding the problem of 
local optimal solutions. The experimental results show that after about 2000 training sessions, the 
system's path planning tends to be stable and can achieve autonomous flight in complex environments. 
Through the evaluation of path smoothness and obstacle avoidance ability, the optimized path reduces 
unnecessary turns and redundant nodes, significantly improving flight efficiency. Compared with 
traditional algorithms, Q-learning performs significantly in path optimization. In multi obstacle 
environments, the path length is reduced by 20.00% compared to ant colony algorithm, 11.45% compared 
to A* algorithm, and 40.39% compared to RRT algorithm. In addition, under dynamic wind speed 
conditions, Q-learning reduces the path length by 4% to 12% compared to other algorithms. These results 
indicate that the Q-learning algorithm has significant advantages in handling complex tasks and multiple 
times, and is particularly suitable for path planning and obstacle avoidance systems of unmanned aerial 
vehicles. Overall, the Q-learning algorithm has demonstrated strong potential in 3D path planning for 
drones, providing an effective solution for their autonomy in unknown and complex environments. 
Future research can further integrate deep reinforcement learning techniques to address more complex 
and unpredictable environments and enhance the real-time decision-making capabilities of drones.  
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