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Abstract: In recent years, the emission problems associated with freight transportation in urban areas 
have become increasingly severe, significantly affecting residents' health and the environment. To 
address this, this study focuses on the Chengdu-Chongqing urban cluster as a typical example and 
proposes a pollutant measurement and prediction method based on forecasting highway freight 
transportation volume in the region. The study utilizes OD (Origin-Destination) data of road freight from 
the online freight exchange platform (OFEP) in the Chengdu-Chongqing area, collected between 
November 1, 2017, and March 7, 2018. Taking into account the time and spatial characteristics of freight 
data, a spatiotemporal prediction model of OD freight volume is developed using ConvLSTM. For 
comparison, an LSTM model is also established. The results indicate that the ConvLSTM model, which 
incorporates spatial characteristics, achieves higher prediction accuracy. Using the predicted freight 
demand data, carbon emissions are calculated using a top-down approach, revealing the distribution of 
carbon emissions across each OD pair in the Chengdu-Chongqing urban cluster. The analysis of short-
term emission trends provides valuable insights into the precise regulation of carbon emissions from 
road freight. 
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1. Introduction 

Urban freight systems are increasingly strained by growing logistics demand and worsening 
congestion, driven by urbanization and e-commerce. Freight vehicles contribute nearly 30% to urban 
traffic congestion, which incurs global economic losses of $1 trillion annually[1]. Enhancing freight 
efficiency and reducing carbon emissions have become urgent under China’s “dual carbon” goals. This 
study proposes a novel approach to freight flow prediction and carbon emission management, focusing 
on the spatiotemporal dynamics of road freight in urban clusters. 

Urban road freight forecasting has advanced significantly. Traditional methods like the grey model, 
regression analysis, and time series approaches [3-4] handle stable freight demand well but struggle with 
dynamic urban systems. With the rise of big data and AI, methods like BP neural networks [5] and LSTM 
models [6-8] have improved short-term freight predictions. However, many models overlook freight 
demand's intrinsic spatial patterns, focusing instead on external features like economic indicators and 
weather. To address this, this study employs a ConvLSTM model, which captures spatiotemporal 
variations more effectively than LSTM. This approach enhances freight demand predictions, identifies 
carbon emission hotspots, and supports targeted mitigation strategies. 

Despite advances in carbon emission measurement, freight transportation lacks a standardized 
approach. Current methods include top-down macro-level accounting, which relies on historical data but 
offers limited real-time insights, and bottom-up micro-level accounting, which provides precision but 
faces data collection challenges. This study addresses these issues by utilizing road freight volume 
predictions to generate timely, reliable data for carbon emission measurement, mitigating the latency of 
top-down methods. 

We utilized freight OD data from the online freight exchange platform (OFEP), focusing on the freight 
volume between 16 cities in the Chengdu-Chongqing urban cluster from November 2017 to March 2018. 
Based on this dataset, we developed a ConvLSTM model to forecast intercity freight demand for the 
upcoming week and calculated the carbon emissions for the entire region during the same period. In total, 
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over 800,000 records were processed. The ConvLSTM model demonstrated a 9% improvement in 
accuracy compared to traditional LSTM models, underscoring the critical role of spatial features in 
freight flow forecasting. This research bridges the gap in short-term freight demand and carbon emission 
predictions within urban clusters, effectively addressing the growing challenges of freight-related carbon 
emissions. This integrated framework lays the foundation for more precise and effective carbon emission 
management in the freight sector, aligning with broader sustainability goals and the urgent need for 
climate action. 

2. Literature Review 

2.1. Literature review about road freight volume forecasting 

In terms of the selection of research objects, current road freight forecasting models mainly focus on 
predicting long-term time series of road freight volume, often considering only economic factors and 
temporal trends [4-6]. However, limited attention has been paid to the spatial characteristics of freight 
demand. Reference [10] emphasized that regional freight volume involves multiple origins and 
destinations, making it necessary to forecast freight volumes for multiple OD pairs simultaneously. This 
approach not only expands the scope of freight forecasting research but also better aligns with practical 
production and operational needs. Time series forecasting methods focus on analyzing temporal trends 
to make predictions. For example, ARMA has been used to quantitatively predict road freight volume, 
supporting market management decisions [4]. However, these methods face limitations in addressing 
nonlinear problems and environments characterized by significant changes or fluctuations. 

Regarding research methods, prediction models based on statistical theory are relatively simple. For 
example, the gray model prediction method effectively handles situations with uncertain data systems 
and limited data availability [2]. Reference [3] analyzed the correlation between influencing factors and 
road freight volume using scatter plots. After eliminating weakly correlated factors, a multiple linear 
regression model was employed to predict road freight volume in 2018. However, such methods are 
constrained by their reliance on approximating each factor as a linear function. Machine learning methods 
have demonstrated strong potential in overcoming these limitations. Many studies have utilized LSTM 
and its variants to build models for forecasting freight volume, with substantial success in short-term 
predictions [6-9]. For instance, Reference [9] combined CNN and LSTM to simultaneously extract the 
temporal and spatial features of urban rail passenger flow, demonstrating CNN's potential for capturing 
the spatial characteristics of transportation volume. Similarly, Reference [11] utilized Markov and 
GM(1,1) models for predictions, showcasing the versatility of combining traditional statistical models 
with machine learning techniques. 

2.2. Literature review about transportation carbon emission measurement 

The transportation sector is the second-largest source of global carbon emissions, according to the 
IEA. Carbon emission measurement methods for freight lack a unified standard, with two main 
approaches used internationally: top-down and bottom-up. The top-down method calculates emissions 
by multiplying sector-wide fuel consumption data with emission coefficients, suitable for industry-level 
estimates. For example, Reference [12] analyzed direct and indirect transportation emissions, while 
Reference [13] applied the method to Gansu Province's emissions from 2000–2003 using IPCC 
guidelines. The bottom-up method uses detailed data, such as mileage, vehicle types, and fuel-specific 
emission factors, for higher precision[14]. Reference [15] applied this method to measure emissions in 
China’s urban clusters, incorporating travel activity, mode share, fuel intensity, and emission factors. 
While top-down is limited by delayed accuracy, bottom-up offers precision but requires extensive data, 
posing significant challenges. 

3. Methodology 

3.1. Multidimensional spatiotemporal freight flow data construction 

The prediction and allocation of urban OD freight volume is a complex process that involves 
multidimensional spatiotemporal data. For this purpose, this study represents freight flow data, 
incorporating weather and distance information, as multidimensional spatiotemporal images. Freight OD 
data for a single day is typically recorded in an OD matrix. Assuming the dataset consists of M origin 
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cities and N destination cities over a period of T days, the freight volumes for each city on a given day 
are treated as "pixel values." The daily OD matrix M N

dX ×∈ represents the freight volume from each 
origin city to each destination city. 
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Each element X [ , ]d i j  in the matrix denotes the freight volume from origin city i to destination city 
j. If data is missing, it is filled with 0. 

Similar to freight data, weather data also exhibits both spatial and temporal dimensions. Constructing 
a weather matrix allows for an effective representation of the impact of weather conditions on freight 
transportation. As a significant factor influencing the prediction of city group OD freight volume, weather 
conditions must be incorporated into the model for feature learning. Therefore, the daily weather data 
collected for each city requires further processing. By creating a matrix that includes multiple weather 
indicators, the potential impact of weather factors on freight transportation can be quantified, providing 
a solid foundation for subsequent analysis or model input. 

Since drivers typically rely on the weather conditions of the departure city as the primary reference 
for their daily freight plans, this study focuses on the weather data of the departure city. Based on the 
collected weather data, a weather OD matrix N K

dW ×∈ is generated, as follows: 
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3.2. ConvLSTM Model 

The road freight volume is influenced by factors such as the policy environment, regional industrial 
output, freight index, transportation capacity, and other indicators. It generally follows a two-dimensional 
spatiotemporal pattern, exhibiting nonlinearity and short-term random fluctuations. Therefore, 
forecasting regional road freight demand requires considering both temporal and spatial characteristics. 
Temporally, this is reflected in the historical demand patterns of regional road freight and the time 
evolution of external factors. Spatially, it manifests in the spatial distribution of freight volumes within 
the OD matrix and the varying distribution of regional economic indicators. Given the nonlinear 
relationships inherent in these characteristics, this study adopts a neural network approach for freight 
volume forecasting. 

The Convolutional Long Short-Term Memory (ConvLSTM) network, proposed in 2015 [16], is a 
deep learning model variant that combines the spatial feature extraction capabilities of CNN with the 
time-series processing strength of LSTM. Its architecture is shown in Figure 1. 

 
Figure 1: The structure of ConvLSTM. 
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Considering the impact of the historical freight volume of the first d days immediately adjacent to 
date t, we took the OD data of the freight volume of the first d days as the input of the main network 
model, and the processed spatiotemporal information flow would be further screened and updated 
through the three gate units of ConvLSTM. The state information 1dh −  of the previous period, the 
comprehensive state of the cell 1dC −  and the current input variable dX  are fed to the "input gate" and 
"forgetting gate", the information passes through the "forgetting gate", resulting in the proportion df  
that 1dC −  is retained, the "input gate" produces the remaining proportion di  of the candidate state dC , 
the "output gate" judges the state feature do  of the current freight volume based on the state information 

1dh −  of the previous period and dX , and generates the current state information dh  based on the above 
information. This process is repeated many times according to the set size of d and the number of samples, 
and finally we get the spatiotemporal state information of freight volume extracted by ConvLSTM. The 
specific calculation process is as follows:(j=1,2,…, d) 

Forget gate:  

1 1( [ , ] )d f d d f d ff W h X W C bσ − −= ∗ + +                       (3) 

Input gate:  

1 1( [ , ] )d i d d i d ii W h X W C bσ − −= ∗ + +                         (4) 

Candidate Cell State:  

1tanh( [ , ] )d c d d cC W h X b−= ∗ +                            (5) 

Comprehensive state:  

1,d d d d dC f C i C−= + 
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Output gate:  

1 1( [ , ] )d o d d o d oo W h X W C bσ − −= ∗ + +                         (7) 

Hidden State:  

tanh( )d d dh o C=                                  (8) 

Here, * means convolution operation,   means Hadamard product, W represents the convolution 
kernel weight coefficient matrix (for example, fW  is the weight coefficient matrix of the "forget gate" 
convolution kernel, iW  is the weight coefficient matrix of the "input gate" convolution kernel, and so 
on); b represents the bias vector (for example, fb  is the bias vector of the "forgetting gate", ib  is the 
bias vector of the "input gate", and so on); ( )σ ⋅  represents that the activation function of ConvLSTM 
is sigmoid function; ( )g ⋅  represents that the activation function of ConvLSTM is tanh function; C is 
the storage state of spatiotemporal characteristic information of freight volume in nerve cells. 

 
Figure 2: The overall structure of the model. 

Finally, we used a Conv2D layer to filter and reduce the dimensionality of the spatiotemporal patterns 
output by the ConvLSTM layer. The spatiotemporal features were input into the convolutional layer with 
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a stride of 1 for the convolution kernel and zero-padding applied. Through the Conv2D layer, the 
previously extracted feature information was fused, reducing the input data from multiple dimensions to 
a one-dimensional channel dimension. To enhance the model's generalization ability and running speed 
while preventing changes in data distribution across intermediate network layers, we added a Batch 
Normalization (BN) layer after each ConvLSTM laye. To avoid overfitting, we incorporated a dropout 
layer into the model. The Dropout layer reduces model complexity by randomly dropping some neurons 
during each training batch. The overall structure of the model is shown in Figure 2. 

3.3. Calculation of Regional Future Carbon Emissions 

Based on the forecasted road freight volume, the corresponding carbon dioxide emissions are then 
measured. This provides a reference for the freight platform to regulate freight activities in a timely 
manner according to carbon emission warnings, helping to prevent excessive concentration of carbon 
emissions in certain areas. Given the availability of data, this study used a top-down method to estimate 
the carbon emissions of the Chengdu-Chongqing urban cluster for the following week. 

According to the methodology outlined in the IPCC (2023) [17], the carbon emissions of road freight 
are calculated using the Formula (9). 

j j j
j

E T EF C= ⋅ ⋅∑
                               (9) 

Here, j represents the type of fuel, E represents the energy consumption of road freight, jT  
represents the turnover of road freight with fuel j (100 million ton-kilometers), jEF  represents the 
energy consumption per unit turnover of road freight with fuel j, jC represents j fuel carbon emission 
factor. 

4. Experimental Design 

4.1. Research Object and Data source 

The freight OD data used in this study is sourced from a domestic online freight trading platform, 
This study specifically focuses on the departure and destination cities within the Chengdu-Chongqing 
urban agglomeration, in line with the Chengdu-Chongqing Twin-City Urban Cluster Development Plan. 
Sixteen cities were selected for analysis, including Chengdu, Zigong, Luzhou, Deyang, Mianyang, 
Suining, Neijiang, Leshan, Nanchong, Meishan, Yibin, Guang'an, Dazhou, Ya'an, Ziyang, and 
Chongqing. The study area is depicted in Figure 3. 

 
Figure 3: The study area and cities involved in the Chengdu-Chongqing urban agglomeration. 

The data spans the period from November 1, 2017, to March 7, 2018. The total number of data entries 
is 85,766. The format of some data fields is shown in Table 1: 
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Table 1: Freight OD Data Set Fields and Descriptions. 

Field Name Description 
Date The data type is datetime64[ns], and the calculation unit is days 

Departure City The scope of the cities covers 16 cities in the Chengdu-Chongqing region 
Arrival City The scope of the cities covers 16 cities in the Chengdu-Chongqing region 

Total Distance The total highway trunk mileage for cargo transportation, in kilometers 
Cargo Weight The data type is float64, and the unit is tons 

4.2. Parameters 

Considering the influence of freight volume history over the 𝑞𝑞 days immediately preceding date 𝑡𝑡, 
this study incorporates the OD freight volume data from the previous 𝑞𝑞 days along with other influencing 
factors as inputs to the model. Given the periodic nature of freight activities and the importance of 
prediction accuracy, we set 𝑞𝑞=7. 

After normalizing the data, the dataset is split into a training set and a validation set with a ratio of 
70%:30%. The training set is used for learning and optimizing model parameters, while the validation 
set is used to evaluate the model's performance on unseen data, ensuring that it demonstrates good 
generalization ability. The Adam optimization algorithm is employed for model training, replacing the 
traditional stochastic gradient descent method. 

We chose Mean Squared Error (MSE) as the loss function for the prediction model. The formula for 
calculating the MSE of a two-dimensional matrix is as follows: 

2
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i i
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m n
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= −
∗ ∑                         (10) 

Here, m and n denote the length and width of the input matrix, respectively. ˆiy represents the predicted 
value, while iy refers to the actual value. 

Given the limited data volume, the 2D DWT-ConvLSTM model begins with a 2D convolutional layer 
featuring a 3×3 kernel, 64 filters, a stride of 1, and zero padding. This Conv2D layer is responsible for 
extracting fused high-frequency feature information. Subsequently, the data stream passes through two 
2D DWT-ConvLSTM layers to capture the integrated feature flow of both high-frequency and low-
frequency components, each consisting of 64 units. The first ConvLSTM layer utilizes a convolutional 
kernel of 5×5, while the second layer employs a 3×3 kernel. Both layers apply the ReLU activation 
function and use 'same' padding to maintain the dimensionality across the layers. To mitigate potential 
shifts in data distribution between network layers, a Batch Normalization (BN) layer is incorporated after 
each ConvLSTM layer. Moreover, to prevent overfitting during training, Dropout layers are integrated 
into the model, with a random dropout rate set to 0.3, thereby enhancing the model's generalization 
capabilities. 

The model's performance is evaluated using two metrics: Root Mean Square Error (RMSE) and Mean 
Absolute Error (MAE). The formulas for calculating these two metrics are provided below: 
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Here, n denote the length of the input matrix, ˆiy represents the predicted value, while iy refers to the 
actual value. 
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5. Result and Discussion 

5.1. The prediction results and carbon emissions calculation. 

We input the historical freight volume data for each OD pair in the Chengdu-Chongqing urban cluster 
from March 8 to March 14, 2018, into the model. Using ConvLSTM prediction, the forecasted freight 
volume for the main OD pairs in the Chengdu-Chongqing urban cluster for the following week is shown 
in Figure 4. 

 
Figure 4: Total cargo volumes for major OD pairs in the coming week. 

For the calculation of carbon emissions, this study assumes that all road freight vehicles 
in the Chengdu-Chongqing urban cluster use diesel as fuel. According to data from the "China 
Transportation Yearbook 2006-2016" and the "China Logistics Yearbook," the energy 
consumption per unit turnover of diesel is 8.6L/100 ton-kilometers. Based on the "Guidelines 
for the Calculation of Greenhouse Gas Emissions from Energy Consumption, Tool Version 2.1" 
by the World Resources Institute, the CO2 emission coefficient of diesel is 3.0959 kgCO2/kg. 
By substituting the predicted freight turnover data into Equation (9), the corresponding carbon 
emissions are calculated. The predicted total daily carbon emissions in the Chengdu-Chongqing 
urban cluster for the next 7 days are presented in Table 2. 

Table 2: Predicting freight turnover and measuring carbon emissions. 

Date Freight turnover (100 ton-kilometers) Carbon emissions (tons) 
2018.03.08 38715707.87 164518.58 
2018.03.09 27689184.37 117662.46 
2018.03.10 42963534.95 182569.30 
2018.03.11 35441614.87 150605.65 
2018.03.12 55116330.74 234211.41 
2018.03.13 65774783.94 279503.46 
2018.03.14 39145837.96 166346.38 

5.2. Effect of parameters on freight Demand Prediction Performance 

To assess the effect of hidden layer size on the model's predictive performance, we fixed the learning 
rate at 0.008, set the convolutional kernel size to 3×3, and used a batch size of 16. The hidden layer size 
was varied across several iterations of training. Table 3 presents the influence of different hidden layer 
unit configurations on the model's prediction accuracy. 

Table 3: Effect of hidden size on LSTM and ConvLSTM prediction. 

Hidden layer 
Size 

LSTM ConvLSTM 
RMSE MAE R2 RMSE MAE R2 

2 14.821 11.534 0.136 11.463 3.212 0.143 
4 13.235 10.144 0.142 11.454 3.737 0.144 
8 11.2 8.132 0.288 4.749 2.620 0.312 
16 7.546 5.468 0.459 3.708 2.021 0.581 
32 5.632 3.445 0.543 3.170 1.685 0.633 
64 3.221 2.137 0.782 2.215 1.158 0.850 

128 4.573 3.288 0.633 2.972 1.534 0.730 
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The experimental results show that predictive performance improves with hidden layer size, though 
LSTM and ConvLSTM differ significantly. LSTM performs best with a hidden layer size of 64 (RMSE: 
3.2, MAE: 2.1, R²: 0.782) but degrades at 128 due to overfitting. ConvLSTM consistently outperforms 
LSTM, achieving optimal results at 64 (RMSE: 2.215, MAE: 1.158, R²: 0.850) and maintaining greater 
robustness even at 128. These findings highlight ConvLSTM's superior ability to capture complex 
spatiotemporal features, offering higher accuracy and stability with well-tuned hidden layer sizes. 

Similarly, to evaluate the effect of input length on the model's predictive performance, we maintained 
a learning rate of 0.008, a convolutional kernel size of 3×3, and a batch size of 16. The input length 
underwent multiple modifications, and the model was trained accordingly. The impact of varying input 
lengths on the model's prediction performance is summarized in Table 4 

Table 4: Effect of input length on LSTM and ConvLSTM prediction. 

Input 
length 

LSTM ConvLSTM 
RMSE MAE R2 RMSE MAE R2 

1 15.221 11.531 0.201 14.920 6.357 0.214 
3 10.462 7.345 0.266 10.004 3.058 0.275 
5 5.385 4.323 0.626 3.340 1.979 0.676 
7 2.437 1.890 0.779 2.437 1.390 0.848 
9 6.782 5.432 0.528 3.863 2.702 0.545 

The experimental results emphasize the importance of input sequence length in LSTM and 
ConvLSTM models. For LSTM, shorter sequences (1 and 3) lack sufficient temporal context, leading to 
higher errors and lower R². Performance peaks at a length of 7, capturing longer-term dependencies, but 
degrades at 9 due to redundant information. ConvLSTM follows a similar trend, with optimal 
performance at 7, achieving lower RMSE and MAE and higher R² than LSTM across all lengths. 
ConvLSTM also shows greater stability with longer sequences, making it a more robust and accurate 
choice for capturing spatiotemporal dynamics. 

6. Conclusion 

This study developed a ConvLSTM-based spatiotemporal freight volume prediction model for 
highway transportation in the Chengdu-Chongqing urban cluster, achieving promising results. Compared 
to LSTM, ConvLSTM, which incorporates spatial features, showed significantly better performance. The 
predicted freight volumes for key OD pairs were used to calculate carbon emissions via a top-down 
method, analyzing short-term trends and pinpointing emission peaks. These findings support precise 
regulation of road freight emissions and promote green, low-carbon transportation. The key findings of 
this study are as follows: 

(1) This study applies ConvLSTM to the freight domain, fully considering both spatiotemporal 
information of freight flows. In terms of accuracy, the ConvLSTM model achieves a prediction accuracy 
of 85%, significantly outperforming common classical models, and improving by approximately 9% 
compared to the basic LSTM model. 

(2) The hidden layer size influences the prediction of OD freight flow. As the number of hidden layer 
units increases from 2 to 128, the model's predictive performance first improves, then declines. Under 
similar conditions, setting the number of hidden layer units to 64 yields the best predictive performance 
for both LSTM and ConvLSTM models, with the ConvLSTM model consistently showing higher 
predictive accuracy than the LSTM model. 

(3) The input length affects the prediction of OD freight flow. As the input length varies from 1 to 9, 
the model's performance initially increases, then decreases. Under similar conditions, setting the input 
length to 7 yields the best predictive performance for both LSTM and ConvLSTM models, with the 
ConvLSTM model consistently outperforming the LSTM model in predictive accuracy. 
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