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Abstract: In recent years, the emission problems associated with freight transportation in urban areas
have become increasingly severe, significantly affecting residents' health and the environment. To
address this, this study focuses on the Chengdu-Chongqing urban cluster as a typical example and
proposes a pollutant measurement and prediction method based on forecasting highway freight
transportation volume in the region. The study utilizes OD (Origin-Destination) data of road freight from
the online freight exchange platform (OFEP) in the Chengdu-Chongqing area, collected between
November 1, 2017, and March 7, 2018. Taking into account the time and spatial characteristics of freight
data, a spatiotemporal prediction model of OD freight volume is developed using ConvLSTM. For
comparison, an LSTM model is also established. The results indicate that the ConvLSTM model, which
incorporates spatial characteristics, achieves higher prediction accuracy. Using the predicted freight
demand data, carbon emissions are calculated using a top-down approach, revealing the distribution of
carbon emissions across each OD pair in the Chengdu-Chongqing urban cluster. The analysis of short-
term emission trends provides valuable insights into the precise regulation of carbon emissions from
road freight.
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1. Introduction

Urban freight systems are increasingly strained by growing logistics demand and worsening
congestion, driven by urbanization and e-commerce. Freight vehicles contribute nearly 30% to urban
traffic congestion, which incurs global economic losses of $1 trillion annually[1]. Enhancing freight
efficiency and reducing carbon emissions have become urgent under China’s “dual carbon” goals. This
study proposes a novel approach to freight flow prediction and carbon emission management, focusing
on the spatiotemporal dynamics of road freight in urban clusters.

Urban road freight forecasting has advanced significantly. Traditional methods like the grey model,
regression analysis, and time series approaches [3-4] handle stable freight demand well but struggle with
dynamic urban systems. With the rise of big data and Al, methods like BP neural networks [5] and LSTM
models [6-8] have improved short-term freight predictions. However, many models overlook freight
demand's intrinsic spatial patterns, focusing instead on external features like economic indicators and
weather. To address this, this study employs a ConvLSTM model, which captures spatiotemporal
variations more effectively than LSTM. This approach enhances freight demand predictions, identifies
carbon emission hotspots, and supports targeted mitigation strategies.

Despite advances in carbon emission measurement, freight transportation lacks a standardized
approach. Current methods include top-down macro-level accounting, which relies on historical data but
offers limited real-time insights, and bottom-up micro-level accounting, which provides precision but
faces data collection challenges. This study addresses these issues by utilizing road freight volume
predictions to generate timely, reliable data for carbon emission measurement, mitigating the latency of
top-down methods.

We utilized freight OD data from the online freight exchange platform (OFEP), focusing on the freight
volume between 16 cities in the Chengdu-Chongqing urban cluster from November 2017 to March 2018.
Based on this dataset, we developed a ConvLSTM model to forecast intercity freight demand for the
upcoming week and calculated the carbon emissions for the entire region during the same period. In total,
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over 800,000 records were processed. The ConvLSTM model demonstrated a 9% improvement in
accuracy compared to traditional LSTM models, underscoring the critical role of spatial features in
freight flow forecasting. This research bridges the gap in short-term freight demand and carbon emission
predictions within urban clusters, effectively addressing the growing challenges of freight-related carbon
emissions. This integrated framework lays the foundation for more precise and effective carbon emission
management in the freight sector, aligning with broader sustainability goals and the urgent need for
climate action.

2. Literature Review
2.1. Literature review about road freight volume forecasting

In terms of the selection of research objects, current road freight forecasting models mainly focus on
predicting long-term time series of road freight volume, often considering only economic factors and
temporal trends [4-6]. However, limited attention has been paid to the spatial characteristics of freight
demand. Reference [10] emphasized that regional freight volume involves multiple origins and
destinations, making it necessary to forecast freight volumes for multiple OD pairs simultaneously. This
approach not only expands the scope of freight forecasting research but also better aligns with practical
production and operational needs. Time series forecasting methods focus on analyzing temporal trends
to make predictions. For example, ARMA has been used to quantitatively predict road freight volume,
supporting market management decisions [4]. However, these methods face limitations in addressing
nonlinear problems and environments characterized by significant changes or fluctuations.

Regarding research methods, prediction models based on statistical theory are relatively simple. For
example, the gray model prediction method effectively handles situations with uncertain data systems
and limited data availability [2]. Reference [3] analyzed the correlation between influencing factors and
road freight volume using scatter plots. After eliminating weakly correlated factors, a multiple linear
regression model was employed to predict road freight volume in 2018. However, such methods are
constrained by their reliance on approximating each factor as a linear function. Machine learning methods
have demonstrated strong potential in overcoming these limitations. Many studies have utilized LSTM
and its variants to build models for forecasting freight volume, with substantial success in short-term
predictions [6-9]. For instance, Reference [9] combined CNN and LSTM to simultaneously extract the
temporal and spatial features of urban rail passenger flow, demonstrating CNN's potential for capturing
the spatial characteristics of transportation volume. Similarly, Reference [11] utilized Markov and
GM(1,1) models for predictions, showcasing the versatility of combining traditional statistical models
with machine learning techniques.

2.2. Literature review about transportation carbon emission measurement

The transportation sector is the second-largest source of global carbon emissions, according to the
IEA. Carbon emission measurement methods for freight lack a unified standard, with two main
approaches used internationally: top-down and bottom-up. The top-down method calculates emissions
by multiplying sector-wide fuel consumption data with emission coefficients, suitable for industry-level
estimates. For example, Reference [12] analyzed direct and indirect transportation emissions, while
Reference [13] applied the method to Gansu Province's emissions from 2000-2003 using IPCC
guidelines. The bottom-up method uses detailed data, such as mileage, vehicle types, and fuel-specific
emission factors, for higher precision[14]. Reference [15] applied this method to measure emissions in
China’s urban clusters, incorporating travel activity, mode share, fuel intensity, and emission factors.
While top-down is limited by delayed accuracy, bottom-up offers precision but requires extensive data,
posing significant challenges.

3. Methodology
3.1. Multidimensional spatiotemporal freight flow data construction

The prediction and allocation of urban OD freight volume is a complex process that involves
multidimensional spatiotemporal data. For this purpose, this study represents freight flow data,
incorporating weather and distance information, as multidimensional spatiotemporal images. Freight OD
data for a single day is typically recorded in an OD matrix. Assuming the dataset consists of M origin
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cities and N destination cities over a period of T days, the freight volumes for each city on a given day
are treated as "pixel values." The daily OD matrix X, € R"*" represents the freight volume from each
origin city to each destination city.

x, (L1 x,[1,2] o x,[LN] ]
X, =| x;[a,1] x;[a,b] -+ x;[a,N] )
|x, [M1] x,[M,2] - e x,[M,N]]

Each element X,[7, j] in the matrix denotes the freight volume from origin city i to destination city
j- If data is missing, it is filled with 0.

Similar to freight data, weather data also exhibits both spatial and temporal dimensions. Constructing
a weather matrix allows for an effective representation of the impact of weather conditions on freight
transportation. As a significant factor influencing the prediction of city group OD freight volume, weather
conditions must be incorporated into the model for feature learning. Therefore, the daily weather data
collected for each city requires further processing. By creating a matrix that includes multiple weather
indicators, the potential impact of weather factors on freight transportation can be quantified, providing
a solid foundation for subsequent analysis or model input.

Since drivers typically rely on the weather conditions of the departure city as the primary reference
for their daily freight plans, this study focuses on the weather data of the departure city. Based on the

collected weather data, a weather OD matrix ¥, € R"*" is generated, as follows:

w,[L1] - w,[LK]
_ w,[2,1] - w,[2,K] )
w,[M,1] - w,[M,K]

3.2. ConvLSTM Model

The road freight volume is influenced by factors such as the policy environment, regional industrial
output, freight index, transportation capacity, and other indicators. It generally follows a two-dimensional
spatiotemporal pattern, exhibiting nonlinearity and short-term random fluctuations. Therefore,
forecasting regional road freight demand requires considering both temporal and spatial characteristics.
Temporally, this is reflected in the historical demand patterns of regional road freight and the time
evolution of external factors. Spatially, it manifests in the spatial distribution of freight volumes within
the OD matrix and the varying distribution of regional economic indicators. Given the nonlinear
relationships inherent in these characteristics, this study adopts a neural network approach for freight
volume forecasting.

The Convolutional Long Short-Term Memory (ConvLSTM) network, proposed in 2015 [16], is a
deep learning model variant that combines the spatial feature extraction capabilities of CNN with the
time-series processing strength of LSTM. Its architecture is shown in Figure 1.

ConvLSTM

Figure 1: The structure of ConvLSTM.
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Considering the impact of the historical freight volume of the first d days immediately adjacent to
date t, we took the OD data of the freight volume of the first d days as the input of the main network
model, and the processed spatiotemporal information flow would be further screened and updated
through the three gate units of ConvLSTM. The state information /, , of the previous period, the

comprehensive state of the cell C, , and the current input variable X, are fed to the "input gate" and
"forgetting gate", the information passes through the "forgetting gate", resulting in the proportion f;

that C, , is retained, the "input gate" produces the remaining proportion i, of the candidate state C s
the "output gate" judges the state feature o, ofthe current freight volume based on the state information
h, , ofthe previous period and X, , and generates the current state information /%, based on the above

information. This process is repeated many times according to the set size of d and the number of samples,
and finally we get the spatiotemporal state information of freight volume extracted by ConvLSTM. The
specific calculation process is as follows:(j=1,2,..., d)

Forget gate:
Ja=oW, x[hy , X, 1+ W, oC, +b)) 3
Input gate:
i, =cW *[h, , X, ]+W,oC, ,+b) @)
Candidate Cell State:
C, = tanh(W, x[h, ,, X,]+b,) (5)
Comprehensive state:
C,=f,°C,, +i,oC, (©)
Output gate:
o, =cW, *[h, ,X,]+W oC, +b) 7
Hidden State:
h, =0, otanh(C,) ®)

Here, * means convolution operation, o means Hadamard product, W represents the convolution
kernel weight coefficient matrix (for example, W, is the weight coefficient matrix of the "forget gate"

convolution kernel, W, is the weight coefficient matrix of the "input gate" convolution kernel, and so
on); b represents the bias vector (for example, b, is the bias vector of the "forgetting gate", b, is the
bias vector of the "input gate", and so on); o(-) represents that the activation function of ConvLSTM
is sigmoid function; g(-) represents that the activation function of ConvLSTM is tanh function; C is
the storage state of spatiotemporal characteristic information of freight volume in nerve cells.
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Figure 2: The overall structure of the model.

Finally, we used a Conv2D layer to filter and reduce the dimensionality of the spatiotemporal patterns
output by the ConvLSTM layer. The spatiotemporal features were input into the convolutional layer with
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a stride of 1 for the convolution kernel and zero-padding applied. Through the Conv2D layer, the
previously extracted feature information was fused, reducing the input data from multiple dimensions to
a one-dimensional channel dimension. To enhance the model's generalization ability and running speed
while preventing changes in data distribution across intermediate network layers, we added a Batch
Normalization (BN) layer after each ConvLSTM laye. To avoid overfitting, we incorporated a dropout
layer into the model. The Dropout layer reduces model complexity by randomly dropping some neurons
during each training batch. The overall structure of the model is shown in Figure 2.

3.3. Calculation of Regional Future Carbon Emissions

Based on the forecasted road freight volume, the corresponding carbon dioxide emissions are then
measured. This provides a reference for the freight platform to regulate freight activities in a timely
manner according to carbon emission warnings, helping to prevent excessive concentration of carbon
emissions in certain areas. Given the availability of data, this study used a top-down method to estimate
the carbon emissions of the Chengdu-Chonggqing urban cluster for the following week.

According to the methodology outlined in the IPCC (2023) [17], the carbon emissions of road freight
are calculated using the Formula (9).

E=XT,-EF, C,

! ©)

Here, j represents the type of fuel, E represents the energy consumption of road freight, 7,

represents the turnover of road freight with fuel j (100 million ton-kilometers), EF, represents the

energy consumption per unit turnover of road freight with fuel j, C,represents j fuel carbon emission

factor.

4. Experimental Design
4.1. Research Object and Data source

The freight OD data used in this study is sourced from a domestic online freight trading platform,
This study specifically focuses on the departure and destination cities within the Chengdu-Chongqing
urban agglomeration, in line with the Chengdu-Chongging Twin-City Urban Cluster Development Plan.
Sixteen cities were selected for analysis, including Chengdu, Zigong, Luzhou, Deyang, Mianyang,
Suining, Neijiang, Leshan, Nanchong, Meishan, Yibin, Guang'an, Dazhou, Ya'an, Ziyang, and
Chonggqing. The study area is depicted in Figure 3.
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Figure 3: The study area and cities involved in the Chengdu-Chongqing urban agglomeration.

The data spans the period from November 1, 2017, to March 7, 2018. The total number of data entries
is 85,766. The format of some data fields is shown in Table I:
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Table 1: Freight OD Data Set Fields and Descriptions.

Field Name Description
Date The data type is datetime64[ns], and the calculation unit is days
Departure City The scope of the cities covers 16 cities in the Chengdu-Chongging region
Arrival City The scope of the cities covers 16 cities in the Chengdu-Chongqing region
Total Distance The total highway trunk mileage for cargo transportation, in kilometers
Cargo Weight The data type is float64, and the unit is tons

4.2. Parameters

Considering the influence of freight volume history over the q days immediately preceding date t,
this study incorporates the OD freight volume data from the previous q days along with other influencing
factors as inputs to the model. Given the periodic nature of freight activities and the importance of
prediction accuracy, we set g=7.

After normalizing the data, the dataset is split into a training set and a validation set with a ratio of
70%:30%. The training set is used for learning and optimizing model parameters, while the validation
set is used to evaluate the model's performance on unseen data, ensuring that it demonstrates good
generalization ability. The Adam optimization algorithm is employed for model training, replacing the
traditional stochastic gradient descent method.

We chose Mean Squared Error (MSE) as the loss function for the prediction model. The formula for
calculating the MSE of a two-dimensional matrix is as follows:

m-n

1
MSE = —— P —y.) 10
20 (10)

Here, m and n denote the length and width of the input matrix, respectively. y, represents the predicted

value, while y, refers to the actual value.

Given the limited data volume, the 2D DWT-ConvLSTM model begins with a 2D convolutional layer
featuring a 3x3 kernel, 64 filters, a stride of 1, and zero padding. This Conv2D layer is responsible for
extracting fused high-frequency feature information. Subsequently, the data stream passes through two
2D DWT-ConvLSTM layers to capture the integrated feature flow of both high-frequency and low-
frequency components, each consisting of 64 units. The first ConvLSTM layer utilizes a convolutional
kernel of 5x5, while the second layer employs a 3x3 kernel. Both layers apply the ReLU activation
function and use 'same' padding to maintain the dimensionality across the layers. To mitigate potential
shifts in data distribution between network layers, a Batch Normalization (BN) layer is incorporated after
each ConvLSTM layer. Moreover, to prevent overfitting during training, Dropout layers are integrated
into the model, with a random dropout rate set to 0.3, thereby enhancing the model's generalization
capabilities.

The model's performance is evaluated using two metrics: Root Mean Square Error (RMSE) and Mean
Absolute Error (MAE). The formulas for calculating these two metrics are provided below:

RMSE = [ 35, - 3)° (11)

1 n .
MAE=—3 |7, -y (12)
i=1

RI=1— Zj:l(j}i _yi)2
Zi:l(yi _J_})z

Here, n denote the length of the input matrix, p, represents the predicted value, while y, refers to the

(13)

actual value.
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5. Result and Discussion
5.1. The prediction results and carbon emissions calculation.

We input the historical freight volume data for each OD pair in the Chengdu-Chongqing urban cluster
from March 8 to March 14, 2018, into the model. Using ConvLSTM prediction, the forecasted freight
volume for the main OD pairs in the Chengdu-Chongqing urban cluster for the following week is shown
in Figure 4.

Figure 4: Total cargo volumes for major OD pairs in the coming week.

For the calculation of carbon emissions, this study assumes that all road freight vehicles
in the Chengdu-Chongqing urban cluster use diesel as fuel. According to data from the "China
Transportation Yearbook 2006-2016" and the "China Logistics Yearbook," the energy
consumption per unit turnover of diesel is 8.6L/100 ton-kilometers. Based on the "Guidelines
for the Calculation of Greenhouse Gas Emissions from Energy Consumption, Tool Version 2.1"
by the World Resources Institute, the CO2 emission coefficient of diesel is 3.0959 kgCO2/kg.
By substituting the predicted freight turnover data into Equation (9), the corresponding carbon
emissions are calculated. The predicted total daily carbon emissions in the Chengdu-Chongqing
urban cluster for the next 7 days are presented in Table 2.

Table 2: Predicting freight turnover and measuring carbon emissions.

Date Freight turnover (100 ton-kilometers) Carbon emissions (tons)
2018.03.08 38715707.87 164518.58
2018.03.09 27689184.37 117662.46
2018.03.10 42963534.95 182569.30
2018.03.11 35441614.87 150605.65
2018.03.12 55116330.74 234211.41
2018.03.13 65774783.94 279503.46
2018.03.14 39145837.96 166346.38

5.2. Effect of parameters on freight Demand Prediction Performance

To assess the effect of hidden layer size on the model's predictive performance, we fixed the learning
rate at 0.008, set the convolutional kernel size to 3x3, and used a batch size of 16. The hidden layer size
was varied across several iterations of training. Table 3 presents the influence of different hidden layer
unit configurations on the model's prediction accuracy.

Table 3: Effect of hidden size on LSTM and ConvLSTM prediction.

Hidden layer LSTM ConvLSTM

Size RMSE MAE R? RMSE MAE R?
2 14.821 11.534 0.136 11.463 3.212 0.143
4 13.235 10.144 0.142 11.454 3.737 0.144
8 11.2 8.132 0.288 4.749 2.620 0.312
16 7.546 5.468 0.459 3.708 2.021 0.581
32 5.632 3.445 0.543 3.170 1.685 0.633
64 3.221 2.137 0.782 2.215 1.158 0.850
128 4.573 3.288 0.633 2.972 1.534 0.730
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The experimental results show that predictive performance improves with hidden layer size, though
LSTM and ConvLSTM differ significantly. LSTM performs best with a hidden layer size of 64 (RMSE:
3.2, MAE: 2.1, R?%: 0.782) but degrades at 128 due to overfitting. ConvLSTM consistently outperforms
LSTM, achieving optimal results at 64 (RMSE: 2.215, MAE: 1.158, R%: 0.850) and maintaining greater
robustness even at 128. These findings highlight ConvLSTM's superior ability to capture complex
spatiotemporal features, offering higher accuracy and stability with well-tuned hidden layer sizes.

Similarly, to evaluate the effect of input length on the model's predictive performance, we maintained
a learning rate of 0.008, a convolutional kernel size of 3x3, and a batch size of 16. The input length
underwent multiple modifications, and the model was trained accordingly. The impact of varying input
lengths on the model's prediction performance is summarized in 7able 4

Table 4: Effect of input length on LSTM and ConvLSTM prediction.

Input LSTM ConvLSTM

length RMSE MAE R? RMSE MAE R?
1 15.221 11.531 0.201 14.920 6.357 0.214
3 10.462 7.345 0.266 10.004 3.058 0.275
5 5.385 4.323 0.626 3.340 1.979 0.676
7 2.437 1.890 0.779 2.437 1.390 0.848
9 6.782 5432 0.528 3.863 2.702 0.545

The experimental results emphasize the importance of input sequence length in LSTM and
ConvLSTM models. For LSTM, shorter sequences (1 and 3) lack sufficient temporal context, leading to
higher errors and lower R2. Performance peaks at a length of 7, capturing longer-term dependencies, but
degrades at 9 due to redundant information. ConvLSTM follows a similar trend, with optimal
performance at 7, achieving lower RMSE and MAE and higher R? than LSTM across all lengths.
ConvLSTM also shows greater stability with longer sequences, making it a more robust and accurate
choice for capturing spatiotemporal dynamics.

6. Conclusion

This study developed a ConvLSTM-based spatiotemporal freight volume prediction model for
highway transportation in the Chengdu-Chongqing urban cluster, achieving promising results. Compared
to LSTM, ConvLSTM, which incorporates spatial features, showed significantly better performance. The
predicted freight volumes for key OD pairs were used to calculate carbon emissions via a top-down
method, analyzing short-term trends and pinpointing emission peaks. These findings support precise
regulation of road freight emissions and promote green, low-carbon transportation. The key findings of
this study are as follows:

(1) This study applies ConvLSTM to the freight domain, fully considering both spatiotemporal
information of freight flows. In terms of accuracy, the ConvLSTM model achieves a prediction accuracy
of 85%, significantly outperforming common classical models, and improving by approximately 9%
compared to the basic LSTM model.

(2) The hidden layer size influences the prediction of OD freight flow. As the number of hidden layer
units increases from 2 to 128, the model's predictive performance first improves, then declines. Under
similar conditions, setting the number of hidden layer units to 64 yields the best predictive performance
for both LSTM and ConvLSTM models, with the ConvLSTM model consistently showing higher
predictive accuracy than the LSTM model.

(3) The input length affects the prediction of OD freight flow. As the input length varies from 1 to 9,
the model's performance initially increases, then decreases. Under similar conditions, setting the input
length to 7 yields the best predictive performance for both LSTM and ConvLSTM models, with the
ConvLSTM model consistently outperforming the LSTM model in predictive accuracy.
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