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Abstract: This study introduces a novel deep learning approach to enhance the accuracy and efficiency
of diagnosis in single-photon emission computed tomography myocardial perfusion imaging (SPECT
MPI). To address key limitations of current convolutional neural network (CNN)-based methods—such
as insufficient information capture, difficulty in removing redundant features, and limited capacity for
modeling long-range dependencies—we reconstruct the three-dimensional structure of myocardial
perfusion images in a stacked format and propose a multi-branch medical transformer network. This
architecture extracts comprehensive features from different anatomical views while integrating critical
information, leveraging the Transformer's strength in capturing long-range dependencies to overcome
traditional CNN shortcomings. Experimental results demonstrate that the proposed method consistently
outperforms conventional CNN-based models across multiple evaluation metrics, achieving improved
feature extraction and higher diagnostic accuracy. Comparative experiments and ablation studies
further validate the effectiveness of the multi-branch Transformer architecture. The proposed multi-
branch vision transformer provides a powerful tool for automated SPECT MPI diagnosis, enhancing
diagnostic performance and offering potential support for clinical decision-making.

Keywords: Myocardial Perfusion Imaging, Tomography, Emission-Computed, Single-Photon, Vision
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1. Introduction

According to the 2024 Global Burden of Disease Study, coronary artery disease (CAD) affected about
315 million people worldwide in 2022, remaining the leading cause of death and disability ™. Single-
photon emission computed tomography myocardial perfusion imaging (SPECT MPI) is a widely used
non-invasive technique for CAD diagnosis, providing three-dimensional assessment of myocardial
perfusion under stress and rest conditions [>#1. However, diagnosis still relies heavily on manual visual
interpretation, which is time-consuming and dependent on clinical expertise. Consequently, computer-
aided diagnosis (CAD) systems, especially deep learning-based ones, have gained importance Pl.

Convolutional neural networks (CNN5s) are extensively applied in MPI diagnosis due to their strong
feature representation capabilities ©l. Common architectures include ResNet [, VGG [P, and
InceptionNet ), which analyze two-dimensional MPI images for diagnostic predictions. Nevertheless,
CNNSs’ fixed receptive fields limit their ability to capture global context and long-range dependencies.

Data security concerns, along with the high cost and labor-intensive nature of data acquisition and
annotation, have hindered large-scale medical dataset construction %!, This has driven interest in
methods requiring less data, with stronger generalization and efficient training. Transfer learning (TL)
addresses these challenges by transferring knowledge from a source domain to a target task, reducing
dependence on large labeled datasets [!2!. Self-supervised learning, an inductive TL approach using
unlabeled data for pre-training followed by supervised fine-tuning, has shown strong potential to improve
feature representation and generalization under limited labeled data ['>13],

Recent studies highlight TL’s effectiveness in medical imaging. Jiao et al. ¥ proposed a self-
supervised method for fetal ultrasound videos, demonstrating strong transferability to downstream tasks.
Lopez et al. '3 used gender recognition as a pre-training task to build a CNN for PLN detection,
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improving accuracy. Katamutu et al. ' applied TL to COVID-19 detection, where a pre-trained VGG16
achieved 98% accuracy, surpassing state-of-the-art methods.

Due to scarce publicly available MPI datasets, most methods fine-tune models pre-trained on large
datasets like ImageNet ['7l. While stable, such approaches have limited improvement potential. MPI
reports include short-axis (SA), vertical long-axis (VLA), and horizontal long-axis (HLA) slices under
stress and rest (Fig. 1). Directly inputting multi-view data introduces redundancy and noise, raising
computational cost and potentially reducing accuracy. Effective joint analysis across orientations is
essential but often unachieved by conventional CNNs.

The Transformer architecture, originally for NLP, models long-range dependencies via self-attention
(8], Its computer vision adaptation, Vision Transformer (ViT), partitions images into patches and
processes them sequentially to capture global spatial dependencies, achieving performance comparable
or superior to CNNs on large datasets ['). Murphy et al. 2% reported ViT’s higher robustness to spurious
correlations. Pachetti et al. ?!l developed a 3D ViT for prostate cancer classification, achieving 84.6%
accuracy versus 78.2% for ResNet3D [22],

In MPI, lesions may occur at multiple myocardial locations, making global contextual understanding
crucial. CNNs’ fixed receptive fields and ImageNet-pretrained models’ mismatch with medical images
limit the extraction of essential diagnostic features for reliable MPI classification.

To address the limitations of CNNs and conventional transfer learning, we propose a multi-branch
vision transformer architecture for MPI diagnosis. The main contributions are:

(1) To reduce the redundancy present in existing approaches, we extract slices from the image reports
and stack them into a three-dimensional format as network input, thereby restoring the volumetric
information of the images.

(2) We introduce a network pre-trained on medical three-dimensional CT and two-dimensional X-
ray datasets, fine-tuned on MPI data, with multiple successive Vision Transformer blocks designed to
progressively extract multi-scale features from the 3D information, enhancing the network’s ability to
learn features at different scales.

(3) We independently process the data from each anatomical view via three separate branches and
fuse their features through average pooling, effectively reducing redundancy among directions and
ensuring both classification accuracy and efficiency.

Figure 1: A complete myocardial perfusion imaging (MPI) report, including three imaging planes:
short axis (SA), horizontal long axis (HLA), and vertical long axis (VLA), under two physiological
states: stress (Str) and rest (Rst).
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2. Related Work
2.1. Deep Learning Applications in SPECT Imaging

SPECT is a primary imaging modality in nuclear medicine. With rapid advances in artificial
intelligence, deep learning has been widely applied to SPECT, mainly focusing on image
diagnosis/classification and image quality optimization, including attenuation correction, denoising, and
reconstruction.

During SPECT imaging, detectors capture photons emitted by radioactive tracers, but tissue
absorption and scattering lead to signal loss and uneven intensity, causing quantitative errors and
attenuation artifacts 31, Attenuation correction (AC) compensates for these losses, improving diagnostic
sensitivity and specificity. Traditional AC relies on concurrently acquired CT images, yet ~80% of
devices lack this capability, and asynchronous CTs may introduce registration errors. Deep learning offers
promising solutions: indirect methods predict attenuation maps (pu-maps) or pseudo-CT images for
subsequent reconstruction, whereas direct methods generate AC SPECT images end-to-end (2!, Nguyen
et al. 4 combined 3D-GAN and U-Net to synthesize AC images from NAC inputs, achieving optimal
SSIM and NMAE metrics. Chen et al. ? used transfer learning with U-Net and DuRDN to predict p-
maps, with DuRDN achieving a final SPECT image error of 1.11 & 1.57%. Shanbhag et al. % employed
a cGAN model to generate AC SPECT images without CT, raising classification accuracy from 54.6%
(NAC) to 75%.

Minimizing radiation exposure and patient discomfort necessitates low-dose and fast SPECT scans,
which reduce signal-to-noise ratio (SNR) and may compromise diagnostic accuracy. Traditional
denoising methods rely on filtering or smoothing, often losing fine structural details. Deep learning
models, however, can restore image quality and enhance diagnostic performance by learning complex
mappings from low-dose to fully quantitative images 1?7, Shiri et al. ?* applied ResNet to restore fully
acquired images under shortened acquisition time and reduced angle, showing deep learning effectively
mitigates quality loss. Zhenglin Pan et al. **) proposed a multi-module deep learning framework for
accelerated SPECT/CT planar bone imaging (2% and 3x speeds), improving visual quality and contrast
agent fidelity.

Song et al. Y developed a fully quantified 3D Res-CNN reconstruction method, achieving an NMSE
of 0.153 and improved left ventricular wall resolution. Ramon et al. B! evaluated 3D deep learning
denoising at various dose levels (1/2—1/16), finding half-dose reconstruction AUC (0.799) closely
matched full-dose (0.801). Wu et al. 32! proposed SCI-Net for low-dose reconstruction, leveraging
structural features in the projection domain to achieve PSNR improvement from 21.95 to 33.14 and SSIM
from 0.9084 to 0.9866, while reducing coefficient of variation in regions of interest.

Overall, these studies demonstrate that deep learning increasingly plays a pivotal role in improving
SPECT image quality and clinical utility. Table 1 summarizes the aforementioned deep learning
approaches applied to SPECT imaging.

2.2. Classification of SPECT MPI Imaging

In coronary artery disease classification, CNNs are the predominant approach. Many studies utilize
state-of-the-art CNNs pre-trained on large datasets such as ImageNet, while others develop customized
architectures to better extract relevant features from medical images. Kaplan Berkaya et al. 1331 classified
SPECT images from 192 patients to detect perfusion abnormalities (ischemia and infarction) using two
models: a CNN-SVM hybrid for deep feature classification, and a knowledge-based method combining
segmentation, feature extraction, and rule-based algorithms on five predefined image features. The CNN-
SVM model achieved 92% accuracy, 84% sensitivity, and 100% specificity, whereas the knowledge-
based model achieved 93% accuracy, 100% sensitivity, and 86% specificity.

Vincent Peter C. Magboo et al. 3 applied transfer learning by pre-training on ImageNet, freezing the
main network, and fine-tuning on the SPECT-MPI dataset. Comparing backbones, VGG16 and
InceptionV3 achieved 84.38% accuracy. In the same year, they proposed a hierarchical sequential neural
network with three convolutional layers, a max pooling layer, and a flattening layer 3%, achieving the
highest accuracy of 93.75%.

Dai Kusumoto et al. % introduced a 3D approach by stacking slices from three directions into a
ResNet34-based CNN. Features from each network were concatenated and passed through fully
connected layers, achieving 88% accuracy—the first 3D classification of SPECT MPI images.
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Table 1: The Applications of Deep Learning in SPECT Images.

Ref. Title Year Task Type Input Output Method Main Result
[24] 3D Unet Generative 2020 Attenuation SPECT SPECT(AC) 3D Unet SSIM
Adversarial Network Correction (NAC) generative similarity:
for Attenuation adversarial 0.945%
Correction of SPECT network
NMAE error:
Images
0.034
[25] Cross-vender, cross- 2022 Attenuation SPECT p-map U-Net + U-map error:
tracer, and cross- Correction (NAC) Transfer 5.13+7.02%
protocol deep transfer Learning
reconstructed
learning for .
image error:
attenuation map
1.11£1.57%
generation of cardiac
SPECT
[26] Deep learning-based 2023 Attenuation SPECT SPECT(AC) conditional TPD AUC: 0.79
attenuation correction Correction (NAC) GAN (95% CI: 0.72-
improves diagnostic 0.85)
accuracy of cardiac
SPECT
[28] Standard SPECT 2021 | Reconstruction Fast Full-time SPECT ResNet RMSE: 6.842,
myocardial perfusion (fast scan) scan ARE: 3.1£1.1,
estimation from half- SPECT PSNR:
time acquisitions 36.0+1.4;
using deep
convolutional residual
neural networks
[29] Fast SPECT/CT 2024 | Reconstruction Fast Full-time SPECT Handcrafted LPIPS: 0.58
lanar bone imagin, fast scan scan CNN
P gne ¢ ) FID: 0.17
enabled by deep SPECT
learning enhancement
[30] Low-dose cardiac- 2019 Denoising + Low Denoised Full- 3D-ResCNN NMSE: 0.153
gated SPECT studies Reconstruction Dose Dose SPECT
using a residual (low dose) SPECT images
convolutional neural
network
[31] Improving diagnostic 2020 Denoising + Low- Denoised Full- Various 3D Best
accuracy in low-dose Reconstruction dose Dose SPECT deep learning Reconstruction
SPECT myocardial (low dose) SPECT images models AUC: 0.799
perfusion imaging
with convolutional
denoising networks
[32] Sinogram- 2025 | Reconstruction Low- Full Dose SPECT SCI-Net PSNR: 21.95 —
characteristic- (Low Dose) dose 33.14;
informed network for SPECT
SSIM: 0.91 —
efficient restoration of
0.99;
low-dose SPECT
projection data
[33] Classification models 2020 Classification SPECT Classification Various CNNs Best Accuracy:
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automated diagnosis
system for SPECT
myocardial perfusion

imaging

result:

Normal/Abnormal

for SPECT result: + Transfer 0.94
myocardial perfusion Normal/Abnormal Learning &
imaging Knowledge-
based
classification
model
[34] Diagnosis of coronary | 2023 Classification SPECT Classification Various CNNs Best Accuracy:
artery disease from result: + Transfer 84.38
myocardial perfusion Normal/Abnormal Learning Best Fl-score:
imaging using 90,91
convolutional neural
networks
[35] SPECT-MPI for 2024 Classification SPECT Classification Handcrafted Best Accuracy:
coronary artery result: CNN 93.75
disease: a deep Normal/Abnormal
learning approach
[36] | Adeep learning-based | 2024 Classification SPECT Classification 3D ResNet AUC: 091

SSIM, Structural Similarity Index Measure

NMAE, Normalized Mean Absolute Erro

TPD, Total Perfusion Deficit

AUC, Area Under the Receiver Operating Characteristic Curve

CI, Confidence Interval

RMSE, Root Mean Square Error

ARE, Absolute Relative Error

LPIPS, Learned Perceptual Image Patch Similarity

FID, Frechet Inception Distance

NMSE, normalized Mean Squared Error
PSNR, Peak Signal-to-Noise Ratio

3. Methods

3.1. Dataset

The SPECT-MPI dataset [*3 comprises 192 patients, as shown in Table 2, who underwent stress/rest

Tc-99m myocardial perfusion imaging (MPI) at Eskisehir Osmangazi University between December
2018 and September 2019. Stress images were acquired approximately 30 minutes after the intravenous
injection of 10 mCi Tc-99m MIBI following either treadmill exercise or pharmacological stress, while
rest images were obtained 30 minutes after the injection of 30 mCi Tc-99m MIBI at rest. Reconstructed
slices in the short-axis (SA), horizontal long-axis (HLA), and vertical long-axis (VLA) views were
extracted for analysis. Two experienced cardiologists independently reviewed all images and labeled
each case as either “normal” or “abnormal.” A perfusion defect was defined as a region exhibiting
significantly reduced radiotracer uptake, classified as ischemia if present only in stress images, and as
infarction if present in both stress and rest images. This retrospective study was approved by the Ethics

Committee of Eskisehir Osmangazi University’s Department of Nuclear Medicine.
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Table 2: Statistical Summary of the SPECT-MPI Dataset.

Demographic Data Value
Number of patients 192
Normal (Healthy) 42
Abnormal (Ischemia and/or Infarction) 150
Age range 26~96
Gender (male/female) 73/119

3.2. Multi-Branch Medical Transformer

Our method employs a Medical Transformer (MiT) 1371 as the backbone network to extract features
from SPECT myocardial perfusion images. After cropping each SPECT image, the short-axis (SA),
horizontal long-axis (HLA), and vertical long-axis (VLA) slices are stacked in anatomical order to form
3D volumetric data. These volumes are concatenated along the depth dimension with stress and rest state
data to produce fused input volumes as a 4D tensor with dimensions 2DxHxW. The 3D volume data
undergoes upsampling and data augmentation preprocessing before being fed into three independent MiT
branches, each dedicated to multi-view feature extraction. The branches share the same architecture, each
containing four Transformer stages. Through multi-head self-attention, the network captures spatial
dependencies, and hierarchical learnable class tokens (CLS Tokens) enable cross-layer global
information aggregation. CLS Tokens along with the other sequences from each stage are passed forward
to enhance contextual understanding. Finally, global mean pooling is applied to the outputs of each
branch to fuse multi-view features, reduce noise, and retain shared information. The concatenated
features are then fed into a fully connected layer followed by a Softmax activation for classification. The
overall process can be formalized as:

1
y:SOftmaX (WC . § (fSA + fHLA + fVLA) + bC) (1)

where fga, fyia, fypadenote the feature outputs of the three branches, W, € R®? is the weight
matrix of the fully connected layer, C is the number of categories for the classification task, b. € R¢is
the bias term of the fully connected layer.

By means of multi-perspective collaborative modeling and hierarchical context transmission
mechanism, the classification efficiency of abnormal myocardial perfusion has been significantly
improved. The overall framework is shown in Figure 2.
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Figure 2: Architecture of the multi-branch Medical Transformer (MiT) model.
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3.3. UniMiSS

The Universal Medical Self-Supervised (UniMiSS) framework 37 is a versatile self-supervised
learning approach for medical imaging. Its core innovation, the Dimension Adaptive Embedding (SPE)
module, enables unified modeling of both 2D (e.g., X-ray) and 3D (e.g., CT/MRI) images. UniMiSS
adopts a student-teacher paradigm with a pyramid U-shaped Medical Transformer (MiT) [*®! as backbone.
The switchable SPE module dynamically performs 2D/3D embeddings, allowing the Transformer
encoder-decoder to extract cross-dimensional, generalizable features, which are then projected into a
contrastive feature space 1349,

During training, the teacher network parameters are updated via an exponential moving average
(EMA) of the student parameters, combined with gradient blocking to prevent model collapse %1, A dual-
granularity consistency constraint is applied: one maximizes semantic agreement between student and
teacher outputs through a symmetric cross-entropy loss, and the other aligns 3D volumetric features with
2D slice representations via a body slice consistency loss, enhancing global feature representation.
UniMiSS operates without manual annotations and can adaptively handle multimodal medical images,
demonstrating robust and cross-dimensional generalization (Figure 3).

B sst Token

: Student Path
v

4 Xy —> MIT —— Projector

Input: x

(2D X-rays & 3D CTs) —> Data Augmentation EMA

4 X, —+* MT — Projector
A

- SSL Token

Figure 3: Overall architecture of the UniMiSS framework.

Teacher Path

Each branch in the framework consists of a MiT backbone Fg(:) and a projector Py(:), where the
MiT extracts hierarchical features and the projector maps SSL tokens into a contrastive embedding space.
The teacher’s parameters p are updated using EMA:

LeAp+ (1 —2)p (2)

A is gradually increased from 0.996 to 1.0 via cosine annealing. Gradient backpropagation to the
teacher is blocked to preserve feature diversity.

For 2D data, two augmented views x; and X, are generated and processed by student and teacher
networks. Their outputs f; = Pg(Fg(x4;2D)) and f, = Py(Fg(x,;2D)) are compared using a
consistency loss:

fz_c

t

f
H(fy, f,) = —softmax( ) * log( soft max( r_l)) 3
S
where C is the center for the teacher network's output, representing the distribution of different
batches. Ty and T4 are the temperature parameter. The central update formula effectively prevents the
excessive deviation of the teacher network output, maintains stability, and avoids model collapse [39].
The final 2D loss is symmetrized:

1?P = E,_pen[H(fy, ) + H(E,, )] Q)

For 3D data, the volume is processed similarly, producing volume-level features f; , f, and slice-
level features f; and f; averaged over all 2D slices. A cross-combination consistency loss is then
applied:

D o H(fy, f,) + H(f, ;) + H(f, £,) + H(fL, £5) ®)

D HH(E,, £) + H(E,, £) + H(E, f,) + H(f,, ;)

This cross-dimensional consistency encourages the model to learn coherent representations across
2D slices and 3D volumes. Slice-level features capture fine-grained local structures, while volume-level
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alignment preserves global context, resulting in robust and generalizable 3D representations.
3.4. Medical Transformer

MiT is a dimension-independent network architecture that employs an encoder-decoder framework
divided into four stages to progressively extract features at multiple scales. The overall structure is shown
in Figure 4. Each stage consists of a Switchable Patch Embedding (SPE) module and several Transformer
layers. The SPE module automatically selects the appropriate convolution strategy based on the input
image’s dimensionality (2D or 3D), converting the raw image into a token sequence. This adaptive
module employs a learnable convolutional structure to effectively process medical images of different
dimensions—particularly well-suited for modeling the continuity inherent in 3D data. It facilitates deeper
exploration of spatial contextual information and cross-slice correlations within volumetric medical data.
In the encoder, multi-scale feature representations are extracted through progressive downsampling. The
decoder symmetrically upsamples the features and integrates the corresponding encoder stage features
through skip connections (Jump Connections). This mechanism helps preserve local detail and global
semantic information during upsampling, thereby improving decoding quality and detail restoration. To
achieve self-supervised learning (SSL), UniMiSS introduces a learnable SSL token during the patch
embedding stage P*%1. New SSL tokens are dynamically generated and appended to the token sequence
at each stage. These tokens interact with other visual tokens through the attention mechanism, effectively
capturing long-range dependencies and enhancing semantic representation.

To alleviate the computational and memory burden posed by high-resolution images in the
Transformer, MiT incorporates a Spatial Reduction Attention (SRA) mechanism P81, This mechanism
applies spatial downsampling to queries q, keys k, and values v before feeding them into the Multi-Head
Self-Attention (MSA) module.

. N Input Image Output Feature
Tokens from Previous Stage A
T Y | oxiw IV
H . ! i\ 2747 a
I N Downsampling Stage1 B Upsampling Stage3
l Reshape ! N (SPE + Transformer Layers) (SPE + Transformer Layers)
SPE ' N D_H_W Yo H_ W
| Flatten ; A l Pl PXeXett
..... . 1 Downsampling Stage2 Upsampling Stage2
! (SPE + Transformer Layers) (SPE + Transformer Layers)
9] : ! A
S / l Dy B, Wy DB Wy
ol B 4 8 8 8" 16 " 16
i | ’3 Downsampling Stage3 Upsampling Stage1
v | '/ (SPE + Transformer Layers) (SPE + Transformer Layers)
2 ~ : 1 ! DH W o n w
) Spatial R;eductlon ; ! s XX t! TXp Xt
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=
N‘irm [ ssLToken
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FFN  Feed-Forword Network

MSA  Multi-head Self-attention

Figure 4: Overview of the MiT architecture.
3.5. Experiment Settings

For the downstream SPECT-MPI classification task, the MiT encoder pre-trained in the student
pathway of UniMIiSS is used as the feature extraction backbone. It processes slices from three anatomical
views—horizontal long axis (HLA), vertical long axis (VLA), and short axis (SA)—with features from
all views fused and passed through a fully connected layer for classification, where the output dimension
matches the number of diagnostic categories.

During fine-tuning, the stacked 3D input volume is resized to 32x96x96. To address class imbalance,
minority class samples are upsampled, and various data augmentation strategies are applied, including
spatial transformations, noise addition, resolution degradation, mirror flipping, and color enhancement,
to improve generalization.

The dataset is split 8:2 into training and validation sets. Training uses the AdamW optimizer ! with
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an initial learning rate of le-5, batch size of 16, and 200 epochs, performed on an NVIDIA RTX 3090
GPU. Model performance is assessed via ROC curves, confusion matrices, and the area under the ROC
curve (AUC).

4. Results
4.1. Comparison with Existing Methods

The proposed method was compared against several representative deep learning models, including
VGG16 ¥, ResNet50 [, DenseNet121 21, and InceptionV3 31, All baseline models were pre-trained on
ImageNet and fine-tuned on the SPECT-MPI dataset. As shown in Table 3 and Figure 5, the proposed
approach achieved an AUC of 0.9600 and an F1-score of 0.9434, outperforming all baselines. The ROC
curve of our model was positioned closer to the top-left corner, with a smooth and steep ascent at low
false positive rates, demonstrating superior discriminative capability. Notably, the confusion matrix
revealed that our method produced zero false negatives, indicating complete identification of abnormal
patients, whereas baseline models exhibited varying levels of missed diagnoses.

Table 3: Classifications Performance of Different Methods.

Method Dataset AUC F1-score
VGG16 0.9200 0.9020
ResNet50 0.8457 0.8800
DenseNet121 SPECT-MPI 0.9486 0.9388
InceptionV3 0.8686 0.8750
Ours 0.9600 0.9434

Figure 5: Comparison of classification performance across different methods (ROC Curves &
confusion matrices).

Models from left to right: VGG16, ResNet50, DenseNet121, InceptionV3, and the proposed method.

4.2. Comparison of Single-Axis Models and Fusion Model

Table 4 and Figure 6 summarize the diagnostic performance of single-axis and multi-axis fusion
models. Among the single-axis models, the SA axis achieved the highest performance with an AUC of
0.9486 and an F1-score of 0.9434, but it still resulted in six false negatives. The HLA- and VLA-based
models performed slightly worse individually but captured complementary structural cues. When
integrating all three axes through fusion, the model achieved the highest AUC of 0.9600 with no false
negatives, highlighting superior recall and diagnostic safety compared to single-axis approaches.
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Table 4: Classification Performance of Single-Axis Models and Fusion Model.

Method AUC F1-score
HLA-Only 0.9371 0.9231
VLA-Only 0.9314 0.9259
SA-Only 0.9486 0.9434
Fusion Model (HLA+VLA+SA) 0.9600 0.9434

ROC Curve

HLA-Only

ROC Curve - VLA-Only ROC Curve - SA-Only

aaaaaaaaaaaaaaaa

,,,,,,,
eeeeeeeeeeeee

Figure 6: Comparison of classification performance between single-axis models and fusion model

(ROC curves and confusion matrices).

From left to right: HLA-only, VLA-only, SA-only, and fusion model (proposed).

4.3. Comparison of Different Fusion Strategies

Three fusion strategies were compared: learnable weights, feature concatenation, and average pooling.
Results in Table 5 and Figure 7 show that average pooling achieved the best overall performance (AUC
=0.9600, F1-score = 0.9434), with the fewest false positives and negatives. The concatenation strategy
resulted in performance degradation (AUC = 0.9200) due to redundancy, while the learnable-weight
approach showed the lowest AUC (0.8857) and signs of overfitting.

Table 5: Classification Performance of Different Fusion Methods.

True label

Method AUC Fl-score
Learnable weights per axis 0.8857 0.9259
Direct concatenation 0.9200 0.9259
Average pooling (proposed method) 0.9600 0.9434

—— ROC curve (area = 0.8857) — ROC curve (area = 0.9200)

— ROC curve (area = 0.9600)
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Figure 7: Comparison of different fusion strategies for classification performance (ROC curves and

confision matrices).
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From left to right: learnable weights per axis, direct concatenation, and average pooling (proposed).
4.4. Comparison of Model Performance with and without Fine-tuning

Table 6 demonstrates the effect of fine-tuning on UniMiSS pre-trained models. Fine-tuned models
significantly outperformed those without fine-tuning across all settings. For single-axis models, AUC
values increased to 0.9371 (HLA), 0.9314 (VLA), and 0.9486 (SA), compared to much lower values
without fine-tuning. For the fusion model, fine-tuning achieved an AUC of 0.9600 versus 0.8571 without
fine-tuning. These results confirm that fine-tuning is critical to fully exploiting the representational power
of the pre-trained backbone.

Table 6: Classification Performance of Fine-tuned and Non-fine-tuned Models.

Fine-tuning Method AUC F1-score
HLA-Only 0.9371 0.9231
VLA-Only 0.9314 0.9259
Fine-tuned SA-Only 0.9486 0.9434
Fusion Model
0.9600 0.9434
(HLA+VLA+SA)
HLA-Only 0.7600 0.8889
VLA-Only 0.8229 0.8929
Non-fine-tuned SA-Only 0.6857 0.8929
Fusion Model
0.8571 0.8889
(HLA+VLA+SA)

5. Discussion

These results highlight several important findings. Firstly, compared with the traditional benchmark
model based on convolutional neural networks, the proposed framework based on UniMiSS demonstrates
superior diagnostic performance on the SPECT-MPI dataset. Thanks to the excellent long-distance
relationship capturing ability of the Transformer architecture, the model can learn the features of different
parts of the myocardium and their correlations, no longer learning the correlations between adjacent
convolutional windows like traditional two-dimensional convolutional models, thus solving the
limitation of fixed receptive fields in convolutional neural networks. Compared with the two-dimensional
model, the three-dimensional model can learn more abundant myocardial information, providing strong
assistance for diagnosis. The results of the ROC curve also show that the model is smooth and steep in
the low false positive rate area, demonstrating higher robustness and clinical applicability. Moreover, the
absence of false negatives in the model further highlights the advantages of this model in clinical safety
and stability, which is particularly important for the diagnosis of coronary artery diseases, as missed
diagnoses may lead to serious consequences.

Secondly, the analysis of the single-axis model and the fusion model emphasizes the necessity of
integrating information from multiple anatomical views. The SA-Only model achieved the best results
among all single-axis models, thanks to the more abundant and complete myocardial information
provided by short-axis section slices. However, the results of the confusion matrix show that the SA-
Only model has a higher false negative rate (FN = 6), indicating that it still needs additional perspectives
to provide the missing key information. While the HLA-Only model and the VLA-Only model performed
poorly, they can still provide complementary myocardial information from different perspectives,
enabling the final fusion model to achieve the best effect.

Thirdly, the comparison of fusion strategies shows that simplicity and balance are the advantages.
The performance of the average pooling strategy is superior to more complex strategies, such as learnable
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weights and concatenation strategies. Average pooling can reduce the information redundancy caused by
concatenation while preventing overfitting. This indicates that in the case of limited data, simple
aggregation methods can produce more reliable results, which is a common challenge in medical imaging.

Finally, the fine-tuning experiment confirms the necessity of adapting the pre-trained model to the
specific features of the SPECT-MPI dataset. The model without fine-tuning training showed a significant
decline in performance, highlighting the importance of task-specific adaptation. This finding is consistent
with previous research, that is, the pre-trained representations need to be optimized for specific domains
to achieve the best diagnostic performance.

6. Conclusions

In summary, the proposed framework utilizes UniMiSS pre-training, multi-axis fusion, and average
pooling to achieve robust and clinically reliable classification of myocardial perfusion images. The
concept in the pre-training strategy of the UniMiSS framework enables the model to better understand
the consistency between slices in the three-dimensional data. The multi-axis fusion strategy fully utilizes
the key information from each axial slice, while average pooling demonstrates strong information
integration ability. The model's strong generalization ability and safety indicate that it has promising
prospects in the practical application of computer-aided coronary artery disease diagnosis.
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