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Abstract: This study introduces a novel deep learning approach to enhance the accuracy and efficiency 
of diagnosis in single-photon emission computed tomography myocardial perfusion imaging (SPECT 
MPI). To address key limitations of current convolutional neural network (CNN)-based methods—such 
as insufficient information capture, difficulty in removing redundant features, and limited capacity for 
modeling long-range dependencies—we reconstruct the three-dimensional structure of myocardial 
perfusion images in a stacked format and propose a multi-branch medical transformer network. This 
architecture extracts comprehensive features from different anatomical views while integrating critical 
information, leveraging the Transformer's strength in capturing long-range dependencies to overcome 
traditional CNN shortcomings. Experimental results demonstrate that the proposed method consistently 
outperforms conventional CNN-based models across multiple evaluation metrics, achieving improved 
feature extraction and higher diagnostic accuracy. Comparative experiments and ablation studies 
further validate the effectiveness of the multi-branch Transformer architecture. The proposed multi-
branch vision transformer provides a powerful tool for automated SPECT MPI diagnosis, enhancing 
diagnostic performance and offering potential support for clinical decision-making. 

Keywords: Myocardial Perfusion Imaging, Tomography, Emission-Computed, Single-Photon, Vision 
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1. Introduction 

According to the 2024 Global Burden of Disease Study, coronary artery disease (CAD) affected about 
315 million people worldwide in 2022, remaining the leading cause of death and disability [1,2]. Single-
photon emission computed tomography myocardial perfusion imaging (SPECT MPI) is a widely used 
non-invasive technique for CAD diagnosis, providing three-dimensional assessment of myocardial 
perfusion under stress and rest conditions [3,4]. However, diagnosis still relies heavily on manual visual 
interpretation, which is time-consuming and dependent on clinical expertise. Consequently, computer-
aided diagnosis (CAD) systems, especially deep learning-based ones, have gained importance [5]. 

Convolutional neural networks (CNNs) are extensively applied in MPI diagnosis due to their strong 
feature representation capabilities [6]. Common architectures include ResNet [7], VGG [8], and 
InceptionNet [9], which analyze two-dimensional MPI images for diagnostic predictions. Nevertheless, 
CNNs’ fixed receptive fields limit their ability to capture global context and long-range dependencies. 

Data security concerns, along with the high cost and labor-intensive nature of data acquisition and 
annotation, have hindered large-scale medical dataset construction [10,11]. This has driven interest in 
methods requiring less data, with stronger generalization and efficient training. Transfer learning (TL) 
addresses these challenges by transferring knowledge from a source domain to a target task, reducing 
dependence on large labeled datasets [12]. Self-supervised learning, an inductive TL approach using 
unlabeled data for pre-training followed by supervised fine-tuning, has shown strong potential to improve 
feature representation and generalization under limited labeled data [12,13]. 

Recent studies highlight TL’s effectiveness in medical imaging. Jiao et al. [14] proposed a self-
supervised method for fetal ultrasound videos, demonstrating strong transferability to downstream tasks. 
López et al. [15] used gender recognition as a pre-training task to build a CNN for PLN detection, 
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improving accuracy. Katamutu et al. [16] applied TL to COVID-19 detection, where a pre-trained VGG16 
achieved 98% accuracy, surpassing state-of-the-art methods. 

Due to scarce publicly available MPI datasets, most methods fine-tune models pre-trained on large 
datasets like ImageNet [17]. While stable, such approaches have limited improvement potential. MPI 
reports include short-axis (SA), vertical long-axis (VLA), and horizontal long-axis (HLA) slices under 
stress and rest (Fig. 1). Directly inputting multi-view data introduces redundancy and noise, raising 
computational cost and potentially reducing accuracy. Effective joint analysis across orientations is 
essential but often unachieved by conventional CNNs. 

The Transformer architecture, originally for NLP, models long-range dependencies via self-attention 
[18]. Its computer vision adaptation, Vision Transformer (ViT), partitions images into patches and 
processes them sequentially to capture global spatial dependencies, achieving performance comparable 
or superior to CNNs on large datasets [19]. Murphy et al. [20] reported ViT’s higher robustness to spurious 
correlations. Pachetti et al. [21] developed a 3D ViT for prostate cancer classification, achieving 84.6% 
accuracy versus 78.2% for ResNet3D [22]. 

In MPI, lesions may occur at multiple myocardial locations, making global contextual understanding 
crucial. CNNs’ fixed receptive fields and ImageNet-pretrained models’ mismatch with medical images 
limit the extraction of essential diagnostic features for reliable MPI classification. 

To address the limitations of CNNs and conventional transfer learning, we propose a multi-branch 
vision transformer architecture for MPI diagnosis. The main contributions are: 

(1) To reduce the redundancy present in existing approaches, we extract slices from the image reports 
and stack them into a three-dimensional format as network input, thereby restoring the volumetric 
information of the images. 

(2) We introduce a network pre-trained on medical three-dimensional CT and two-dimensional X-
ray datasets, fine-tuned on MPI data, with multiple successive Vision Transformer blocks designed to 
progressively extract multi-scale features from the 3D information, enhancing the network’s ability to 
learn features at different scales. 

(3) We independently process the data from each anatomical view via three separate branches and 
fuse their features through average pooling, effectively reducing redundancy among directions and 
ensuring both classification accuracy and efficiency. 

 
Figure 1: A complete myocardial perfusion imaging (MPI) report, including three imaging planes: 
short axis (SA), horizontal long axis (HLA), and vertical long axis (VLA), under two physiological 

states: stress (Str) and rest (Rst). 
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2. Related Work 

2.1. Deep Learning Applications in SPECT Imaging 

SPECT is a primary imaging modality in nuclear medicine. With rapid advances in artificial 
intelligence, deep learning has been widely applied to SPECT, mainly focusing on image 
diagnosis/classification and image quality optimization, including attenuation correction, denoising, and 
reconstruction. 

During SPECT imaging, detectors capture photons emitted by radioactive tracers, but tissue 
absorption and scattering lead to signal loss and uneven intensity, causing quantitative errors and 
attenuation artifacts [23]. Attenuation correction (AC) compensates for these losses, improving diagnostic 
sensitivity and specificity. Traditional AC relies on concurrently acquired CT images, yet ~80% of 
devices lack this capability, and asynchronous CTs may introduce registration errors. Deep learning offers 
promising solutions: indirect methods predict attenuation maps (μ-maps) or pseudo-CT images for 
subsequent reconstruction, whereas direct methods generate AC SPECT images end-to-end [23]. Nguyen 
et al. [24] combined 3D-GAN and U-Net to synthesize AC images from NAC inputs, achieving optimal 
SSIM and NMAE metrics. Chen et al. [25] used transfer learning with U-Net and DuRDN to predict μ-
maps, with DuRDN achieving a final SPECT image error of 1.11 ± 1.57%. Shanbhag et al. [26] employed 
a cGAN model to generate AC SPECT images without CT, raising classification accuracy from 54.6% 
(NAC) to 75%. 

Minimizing radiation exposure and patient discomfort necessitates low-dose and fast SPECT scans, 
which reduce signal-to-noise ratio (SNR) and may compromise diagnostic accuracy. Traditional 
denoising methods rely on filtering or smoothing, often losing fine structural details. Deep learning 
models, however, can restore image quality and enhance diagnostic performance by learning complex 
mappings from low-dose to fully quantitative images [27]. Shiri et al. [28] applied ResNet to restore fully 
acquired images under shortened acquisition time and reduced angle, showing deep learning effectively 
mitigates quality loss. Zhenglin Pan et al. [29] proposed a multi-module deep learning framework for 
accelerated SPECT/CT planar bone imaging (2× and 3× speeds), improving visual quality and contrast 
agent fidelity. 

Song et al. [30] developed a fully quantified 3D Res-CNN reconstruction method, achieving an NMSE 
of 0.153 and improved left ventricular wall resolution. Ramon et al. [31] evaluated 3D deep learning 
denoising at various dose levels (1/2–1/16), finding half-dose reconstruction AUC (0.799) closely 
matched full-dose (0.801). Wu et al. [32] proposed SCI-Net for low-dose reconstruction, leveraging 
structural features in the projection domain to achieve PSNR improvement from 21.95 to 33.14 and SSIM 
from 0.9084 to 0.9866, while reducing coefficient of variation in regions of interest. 

Overall, these studies demonstrate that deep learning increasingly plays a pivotal role in improving 
SPECT image quality and clinical utility. Table 1 summarizes the aforementioned deep learning 
approaches applied to SPECT imaging. 

2.2. Classification of SPECT MPI Imaging 

In coronary artery disease classification, CNNs are the predominant approach. Many studies utilize 
state-of-the-art CNNs pre-trained on large datasets such as ImageNet, while others develop customized 
architectures to better extract relevant features from medical images. Kaplan Berkaya et al. [33] classified 
SPECT images from 192 patients to detect perfusion abnormalities (ischemia and infarction) using two 
models: a CNN-SVM hybrid for deep feature classification, and a knowledge-based method combining 
segmentation, feature extraction, and rule-based algorithms on five predefined image features. The CNN-
SVM model achieved 92% accuracy, 84% sensitivity, and 100% specificity, whereas the knowledge-
based model achieved 93% accuracy, 100% sensitivity, and 86% specificity. 

Vincent Peter C. Magboo et al. [34] applied transfer learning by pre-training on ImageNet, freezing the 
main network, and fine-tuning on the SPECT-MPI dataset. Comparing backbones, VGG16 and 
InceptionV3 achieved 84.38% accuracy. In the same year, they proposed a hierarchical sequential neural 
network with three convolutional layers, a max pooling layer, and a flattening layer [35], achieving the 
highest accuracy of 93.75%. 

Dai Kusumoto et al. [36] introduced a 3D approach by stacking slices from three directions into a 
ResNet34-based CNN. Features from each network were concatenated and passed through fully 
connected layers, achieving 88% accuracy—the first 3D classification of SPECT MPI images. 
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Table 1: The Applications of Deep Learning in SPECT Images. 

Ref. Title Year Task Type Input Output Method Main Result 

[24] 3D Unet Generative 

Adversarial Network 

for Attenuation 

Correction of SPECT 

Images 

2020 Attenuation 

Correction 

SPECT

(NAC) 

SPECT(AC) 3D Unet 

generative 

adversarial 

network 

SSIM 

similarity: 

0.945% 

NMAE error: 

0.034 

[25] Cross-vender, cross-

tracer, and cross-

protocol deep transfer 

learning for 

attenuation map 

generation of cardiac 

SPECT 

2022 Attenuation 

Correction 

SPECT

(NAC) 

μ-map U-Net + 

Transfer 

Learning 

μ-map error:  

5.13±7.02% 

reconstructed 

image error:  

1.11±1.57% 

[26] Deep learning-based 

attenuation correction 

improves diagnostic 

accuracy of cardiac 

SPECT 

2023 Attenuation 

Correction 

SPECT

(NAC) 

SPECT(AC) conditional 

GAN 

TPD AUC: 0.79 

(95% CI: 0.72-

0.85) 

[28] Standard SPECT 

myocardial perfusion 

estimation from half-

time acquisitions 

using deep 

convolutional residual 

neural networks 

2021 Reconstruction 

(fast scan) 

Fast 

scan 

SPECT 

Full-time SPECT ResNet RMSE: 6.8±2, 

ARE: 3.1±1.1, 

PSNR: 

36.0±1.4; 

[29] Fast SPECT/CT 

planar bone imaging 

enabled by deep 

learning enhancement 

2024 Reconstruction 

(fast scan) 

Fast 

scan 

SPECT 

Full-time SPECT Handcrafted 

CNN 

LPIPS: 0.58 

FID: 0.17 

[30] Low-dose cardiac-

gated SPECT studies 

using a residual 

convolutional neural 

network 

2019 Denoising + 

Reconstruction 

(low dose) 

Low 

Dose 

SPECT 

Denoised Full-

Dose SPECT 

images 

3D-ResCNN NMSE: 0.153 

[31] Improving diagnostic 

accuracy in low-dose 

SPECT myocardial 

perfusion imaging 

with convolutional 

denoising networks 

2020 Denoising + 

Reconstruction 

(low dose) 

Low-

dose 

SPECT 

Denoised Full-

Dose SPECT 

images 

Various 3D 

deep learning 

models 

 Best 

Reconstruction 

AUC: 0.799 

[32] Sinogram-

characteristic-

informed network for 

efficient restoration of 

low-dose SPECT 

projection data 

2025 Reconstruction 

(Low Dose) 

Low-

dose 

SPECT 

Full Dose SPECT SCI-Net PSNR: 21.95 → 

33.14; 

SSIM: 0.91 → 

0.99; 

[33] Classification models 2020 Classification SPECT Classification Various CNNs Best Accuracy: 
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for SPECT 

myocardial perfusion 

imaging 

result：

Normal/Abnormal 

+ Transfer 

Learning & 

Knowledge-

based 

classification 

model 

0.94 

[34] Diagnosis of coronary 

artery disease from 

myocardial perfusion 

imaging using 

convolutional neural 

networks 

2023 Classification SPECT Classification 

result：

Normal/Abnormal 

Various CNNs 

+ Transfer 

Learning 

Best Accuracy: 

84.38 

Best F1-score: 

90.91 

[35] SPECT-MPI for 

coronary artery 

disease: a deep 

learning approach 

2024 Classification SPECT Classification 

result：

Normal/Abnormal 

Handcrafted 

CNN 

Best Accuracy: 

93.75 

[36] A deep learning-based 

automated diagnosis 

system for SPECT 

myocardial perfusion 

imaging 

2024 Classification SPECT Classification 

result：

Normal/Abnormal 

3D ResNet AUC: 0.91 

SSIM, Structural Similarity Index Measure 

NMAE, Normalized Mean Absolute Erro 

TPD, Total Perfusion Deficit 

AUC, Area Under the Receiver Operating Characteristic Curve 

CI, Confidence Interval 

RMSE, Root Mean Square Error 

ARE, Absolute Relative Error 

LPIPS, Learned Perceptual Image Patch Similarity 

FID, Frechet Inception Distance 

NMSE, normalized Mean Squared Error 

PSNR, Peak Signal-to-Noise Ratio 

3. Methods 

3.1. Dataset 

The SPECT-MPI dataset [33] comprises 192 patients, as shown in Table 2, who underwent stress/rest 
Tc-99m myocardial perfusion imaging (MPI) at Eskisehir Osmangazi University between December 
2018 and September 2019. Stress images were acquired approximately 30 minutes after the intravenous 
injection of 10 mCi Tc-99m MIBI following either treadmill exercise or pharmacological stress, while 
rest images were obtained 30 minutes after the injection of 30 mCi Tc-99m MIBI at rest. Reconstructed 
slices in the short-axis (SA), horizontal long-axis (HLA), and vertical long-axis (VLA) views were 
extracted for analysis. Two experienced cardiologists independently reviewed all images and labeled 
each case as either “normal” or “abnormal.” A perfusion defect was defined as a region exhibiting 
significantly reduced radiotracer uptake, classified as ischemia if present only in stress images, and as 
infarction if present in both stress and rest images. This retrospective study was approved by the Ethics 
Committee of Eskisehir Osmangazi University’s Department of Nuclear Medicine. 
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Table 2: Statistical Summary of the SPECT-MPI Dataset. 

Demographic Data Value 

Number of patients 192 

Normal (Healthy) 42 

Abnormal (Ischemia and/or Infarction) 150 

Age range 26~96 

Gender (male/female) 73/119 

3.2. Multi-Branch Medical Transformer 

Our method employs a Medical Transformer (MiT) [37] as the backbone network to extract features 
from SPECT myocardial perfusion images. After cropping each SPECT image, the short-axis (SA), 
horizontal long-axis (HLA), and vertical long-axis (VLA) slices are stacked in anatomical order to form 
3D volumetric data. These volumes are concatenated along the depth dimension with stress and rest state 
data to produce fused input volumes as a 4D tensor with dimensions 2D×H×W. The 3D volume data 
undergoes upsampling and data augmentation preprocessing before being fed into three independent MiT 
branches, each dedicated to multi-view feature extraction. The branches share the same architecture, each 
containing four Transformer stages. Through multi-head self-attention, the network captures spatial 
dependencies, and hierarchical learnable class tokens (CLS Tokens) enable cross-layer global 
information aggregation. CLS Tokens along with the other sequences from each stage are passed forward 
to enhance contextual understanding. Finally, global mean pooling is applied to the outputs of each 
branch to fuse multi-view features, reduce noise, and retain shared information. The concatenated 
features are then fed into a fully connected layer followed by a Softmax activation for classification. The 
overall process can be formalized as: 

y=Softmax �Wc ⋅
1
3

(fSA + fHLA + fVLA) + bc� (1) 

where fSA, fHLA, fVLAdenote the feature outputs of the three branches, Wc ∈ ℝC×d is the weight 
matrix of the fully connected layer, C is the number of categories for the classification task, bc ∈ ℝCis 
the bias term of the fully connected layer.  

By means of multi-perspective collaborative modeling and hierarchical context transmission 
mechanism, the classification efficiency of abnormal myocardial perfusion has been significantly 
improved. The overall framework is shown in Figure 2. 

 
Figure 2: Architecture of the multi-branch Medical Transformer (MiT) model. 
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3.3. UniMiSS 

The Universal Medical Self-Supervised (UniMiSS) framework [37] is a versatile self-supervised 
learning approach for medical imaging. Its core innovation, the Dimension Adaptive Embedding (SPE) 
module, enables unified modeling of both 2D (e.g., X-ray) and 3D (e.g., CT/MRI) images. UniMiSS 
adopts a student-teacher paradigm with a pyramid U-shaped Medical Transformer (MiT) [38] as backbone. 
The switchable SPE module dynamically performs 2D/3D embeddings, allowing the Transformer 
encoder-decoder to extract cross-dimensional, generalizable features, which are then projected into a 
contrastive feature space [39,40]. 

During training, the teacher network parameters are updated via an exponential moving average 
(EMA) of the student parameters, combined with gradient blocking to prevent model collapse [39]. A dual-
granularity consistency constraint is applied: one maximizes semantic agreement between student and 
teacher outputs through a symmetric cross-entropy loss, and the other aligns 3D volumetric features with 
2D slice representations via a body slice consistency loss, enhancing global feature representation. 
UniMiSS operates without manual annotations and can adaptively handle multimodal medical images, 
demonstrating robust and cross-dimensional generalization (Figure 3). 

 
Figure 3: Overall architecture of the UniMiSS framework. 

Each branch in the framework consists of a MiT backbone Fθ(⋅) and a projector Pθ(⋅), where the 
MiT extracts hierarchical features and the projector maps SSL tokens into a contrastive embedding space. 
The teacher’s parameters μ are updated using EMA: 

μ ← λμ + (1 − λ)μ (2) 

λ is gradually increased from 0.996 to 1.0 via cosine annealing. Gradient backpropagation to the 
teacher is blocked to preserve feature diversity. 

For 2D data, two augmented views x1 and x2 are generated and processed by student and teacher 
networks. Their outputs f1 = Ρθ(Fθ(x1; 2D))  and f2 = Ρθ(Fθ(x2; 2D))  are compared using a 
consistency loss: 

Η(f1, f2) = −soft max(
f2 − C
τt

) ∗ log( soft max(
f1
τs

)) (3) 

where C is the center for the teacher network's output, representing the distribution of different 
batches. τt and τs are the temperature parameter. The central update formula effectively prevents the 
excessive deviation of the teacher network output, maintains stability, and avoids model collapse [39]. 
The final 2D loss is symmetrized: 

L2D = Ex~D2D[Η(f1, f2) + Η(f2, f1)] (4) 

For 3D data, the volume is processed similarly, producing volume-level features f1 , f2 and slice-
level features f1′  and f2′  averaged over all 2D slices. A cross-combination consistency loss is then 
applied: 

L3D = Ex~D3D �
Η(f1, f2) + Η�f1, f2’ �+ Η�f1’ , f2� + Η�f1’ , f2’ �

+Η(f2, f1) + Η�f2, f1’ � + Η�f2’ , f1� + Η�f2’ , f1’ �
� (5) 

This cross-dimensional consistency encourages the model to learn coherent representations across 
2D slices and 3D volumes. Slice-level features capture fine-grained local structures, while volume-level 
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alignment preserves global context, resulting in robust and generalizable 3D representations. 

3.4. Medical Transformer 

MiT is a dimension-independent network architecture that employs an encoder-decoder framework 
divided into four stages to progressively extract features at multiple scales. The overall structure is shown 
in Figure 4. Each stage consists of a Switchable Patch Embedding (SPE) module and several Transformer 
layers. The SPE module automatically selects the appropriate convolution strategy based on the input 
image’s dimensionality (2D or 3D), converting the raw image into a token sequence. This adaptive 
module employs a learnable convolutional structure to effectively process medical images of different 
dimensions—particularly well-suited for modeling the continuity inherent in 3D data. It facilitates deeper 
exploration of spatial contextual information and cross-slice correlations within volumetric medical data. 
In the encoder, multi-scale feature representations are extracted through progressive downsampling. The 
decoder symmetrically upsamples the features and integrates the corresponding encoder stage features 
through skip connections (Jump Connections). This mechanism helps preserve local detail and global 
semantic information during upsampling, thereby improving decoding quality and detail restoration. To 
achieve self-supervised learning (SSL), UniMiSS introduces a learnable SSL token during the patch 
embedding stage [39,40]. New SSL tokens are dynamically generated and appended to the token sequence 
at each stage. These tokens interact with other visual tokens through the attention mechanism, effectively 
capturing long-range dependencies and enhancing semantic representation. 

To alleviate the computational and memory burden posed by high-resolution images in the 
Transformer, MiT incorporates a Spatial Reduction Attention (SRA) mechanism [38]. This mechanism 
applies spatial downsampling to queries q, keys k, and values v before feeding them into the Multi-Head 
Self-Attention (MSA) module. 

 
Figure 4: Overview of the MiT architecture. 

3.5. Experiment Settings 

For the downstream SPECT-MPI classification task, the MiT encoder pre-trained in the student 
pathway of UniMiSS is used as the feature extraction backbone. It processes slices from three anatomical 
views—horizontal long axis (HLA), vertical long axis (VLA), and short axis (SA)—with features from 
all views fused and passed through a fully connected layer for classification, where the output dimension 
matches the number of diagnostic categories. 

During fine-tuning, the stacked 3D input volume is resized to 32×96×96. To address class imbalance, 
minority class samples are upsampled, and various data augmentation strategies are applied, including 
spatial transformations, noise addition, resolution degradation, mirror flipping, and color enhancement, 
to improve generalization. 

The dataset is split 8:2 into training and validation sets. Training uses the AdamW optimizer [41] with 
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an initial learning rate of 1e-5, batch size of 16, and 200 epochs, performed on an NVIDIA RTX 3090 
GPU. Model performance is assessed via ROC curves, confusion matrices, and the area under the ROC 
curve (AUC). 

4. Results 

4.1. Comparison with Existing Methods 

The proposed method was compared against several representative deep learning models, including 
VGG16 [8], ResNet50 [7], DenseNet121 [42], and InceptionV3 [43]. All baseline models were pre-trained on 
ImageNet and fine-tuned on the SPECT-MPI dataset. As shown in Table 3 and Figure 5, the proposed 
approach achieved an AUC of 0.9600 and an F1-score of 0.9434, outperforming all baselines. The ROC 
curve of our model was positioned closer to the top-left corner, with a smooth and steep ascent at low 
false positive rates, demonstrating superior discriminative capability. Notably, the confusion matrix 
revealed that our method produced zero false negatives, indicating complete identification of abnormal 
patients, whereas baseline models exhibited varying levels of missed diagnoses. 

Table 3: Classifications Performance of Different Methods. 

Method Dataset AUC F1-score 

VGG16 

SPECT-MPI 

0.9200 0.9020 

ResNet50 0.8457 0.8800 

DenseNet121 0.9486 0.9388 

InceptionV3 0.8686 0.8750 

Ours 0.9600 0.9434 

 
Figure 5: Comparison of classification performance across different methods (ROC Curves & 

confusion matrices). 

Models from left to right: VGG16, ResNet50, DenseNet121, InceptionV3, and the proposed method. 

4.2. Comparison of Single-Axis Models and Fusion Model 

Table 4 and Figure 6 summarize the diagnostic performance of single-axis and multi-axis fusion 
models. Among the single-axis models, the SA axis achieved the highest performance with an AUC of 
0.9486 and an F1-score of 0.9434, but it still resulted in six false negatives. The HLA- and VLA-based 
models performed slightly worse individually but captured complementary structural cues. When 
integrating all three axes through fusion, the model achieved the highest AUC of 0.9600 with no false 
negatives, highlighting superior recall and diagnostic safety compared to single-axis approaches. 

 

 

 

 

 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 11: 38-51, DOI: 10.25236/AJCIS.2025.081105 

Published by Francis Academic Press, UK 
-47- 

Table 4: Classification Performance of Single-Axis Models and Fusion Model. 

Method AUC F1-score 

HLA-Only 0.9371 0.9231 

VLA-Only 0.9314 0.9259 

SA-Only 0.9486 0.9434 

Fusion Model (HLA+VLA+SA) 0.9600 0.9434 

  
Figure 6: Comparison of classification performance between single-axis models and fusion model 

(ROC curves and confusion matrices). 

From left to right: HLA-only, VLA-only, SA-only, and fusion model (proposed). 

4.3. Comparison of Different Fusion Strategies 

Three fusion strategies were compared: learnable weights, feature concatenation, and average pooling. 
Results in Table 5 and Figure 7 show that average pooling achieved the best overall performance (AUC 
= 0.9600, F1-score = 0.9434), with the fewest false positives and negatives. The concatenation strategy 
resulted in performance degradation (AUC = 0.9200) due to redundancy, while the learnable-weight 
approach showed the lowest AUC (0.8857) and signs of overfitting. 

Table 5: Classification Performance of Different Fusion Methods. 

Method AUC F1-score 
Learnable weights per axis 0.8857 0.9259 

Direct concatenation 0.9200 0.9259 
Average pooling (proposed method) 0.9600 0.9434 

 
Figure 7: Comparison of different fusion strategies for classification performance (ROC curves and 

confusion matrices). 
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From left to right: learnable weights per axis, direct concatenation, and average pooling (proposed). 

4.4. Comparison of Model Performance with and without Fine-tuning 

Table 6 demonstrates the effect of fine-tuning on UniMiSS pre-trained models. Fine-tuned models 
significantly outperformed those without fine-tuning across all settings. For single-axis models, AUC 
values increased to 0.9371 (HLA), 0.9314 (VLA), and 0.9486 (SA), compared to much lower values 
without fine-tuning. For the fusion model, fine-tuning achieved an AUC of 0.9600 versus 0.8571 without 
fine-tuning. These results confirm that fine-tuning is critical to fully exploiting the representational power 
of the pre-trained backbone. 

Table 6: Classification Performance of Fine-tuned and Non-fine-tuned Models. 

Fine-tuning Method AUC F1-score 

Fine-tuned 

HLA-Only 0.9371 0.9231 

VLA-Only 0.9314 0.9259 

SA-Only 0.9486 0.9434 

Fusion Model 

(HLA+VLA+SA) 
0.9600 0.9434 

Non-fine-tuned 

HLA-Only 0.7600 0.8889 

VLA-Only 0.8229 0.8929 

SA-Only 0.6857 0.8929 

Fusion Model 

(HLA+VLA+SA) 
0.8571 0.8889 

5. Discussion 

These results highlight several important findings. Firstly, compared with the traditional benchmark 
model based on convolutional neural networks, the proposed framework based on UniMiSS demonstrates 
superior diagnostic performance on the SPECT-MPI dataset. Thanks to the excellent long-distance 
relationship capturing ability of the Transformer architecture, the model can learn the features of different 
parts of the myocardium and their correlations, no longer learning the correlations between adjacent 
convolutional windows like traditional two-dimensional convolutional models, thus solving the 
limitation of fixed receptive fields in convolutional neural networks. Compared with the two-dimensional 
model, the three-dimensional model can learn more abundant myocardial information, providing strong 
assistance for diagnosis. The results of the ROC curve also show that the model is smooth and steep in 
the low false positive rate area, demonstrating higher robustness and clinical applicability. Moreover, the 
absence of false negatives in the model further highlights the advantages of this model in clinical safety 
and stability, which is particularly important for the diagnosis of coronary artery diseases, as missed 
diagnoses may lead to serious consequences. 

Secondly, the analysis of the single-axis model and the fusion model emphasizes the necessity of 
integrating information from multiple anatomical views. The SA-Only model achieved the best results 
among all single-axis models, thanks to the more abundant and complete myocardial information 
provided by short-axis section slices. However, the results of the confusion matrix show that the SA-
Only model has a higher false negative rate (FN = 6), indicating that it still needs additional perspectives 
to provide the missing key information. While the HLA-Only model and the VLA-Only model performed 
poorly, they can still provide complementary myocardial information from different perspectives, 
enabling the final fusion model to achieve the best effect. 

Thirdly, the comparison of fusion strategies shows that simplicity and balance are the advantages. 
The performance of the average pooling strategy is superior to more complex strategies, such as learnable 
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weights and concatenation strategies. Average pooling can reduce the information redundancy caused by 
concatenation while preventing overfitting. This indicates that in the case of limited data, simple 
aggregation methods can produce more reliable results, which is a common challenge in medical imaging. 

Finally, the fine-tuning experiment confirms the necessity of adapting the pre-trained model to the 
specific features of the SPECT-MPI dataset. The model without fine-tuning training showed a significant 
decline in performance, highlighting the importance of task-specific adaptation. This finding is consistent 
with previous research, that is, the pre-trained representations need to be optimized for specific domains 
to achieve the best diagnostic performance. 

6. Conclusions 

In summary, the proposed framework utilizes UniMiSS pre-training, multi-axis fusion, and average 
pooling to achieve robust and clinically reliable classification of myocardial perfusion images. The 
concept in the pre-training strategy of the UniMiSS framework enables the model to better understand 
the consistency between slices in the three-dimensional data. The multi-axis fusion strategy fully utilizes 
the key information from each axial slice, while average pooling demonstrates strong information 
integration ability. The model's strong generalization ability and safety indicate that it has promising 
prospects in the practical application of computer-aided coronary artery disease diagnosis. 
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