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Abstract: This paper explores optimizing and implementing an education-theory-driven intelligent 

learning system based on machine learning. The system integrates Convolutional Neural Networks and 

Multi-Layer Perceptrons to provide accurate, personalized learning recommendations. Performance 

evaluation shows a recommendation accuracy of over 92% and a response time of under one second. A 

comparative analysis with existing systems highlights the system’s superior precision and user-friendly 

interface. However, limitations such as data privacy, model transparency, and scalability across 

devices are identified. Future improvements include adopting explainable artificial intelligence 

techniques, federated learning for privacy, and enhanced system architecture for cross-platform 

compatibility. This research aims to advance intelligent learning systems by integrating educational 

theory with machine learning to create personalized, practical learning experiences. 
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1. Introduction 

Presently, the unprecedented changes in a century are intertwined with the century's pandemic, 

leading to emerging security challenges, a struggling global economic recovery, and severe setbacks in 

worldwide development. Where is the world headed [1]? What will education face? What will Machine 

learning (ML) face? Intelligent learning systems (ILSs) have emerged as pivotal tools that aim to 

revolutionize traditional education by making it more adaptive, personalized, and efficient. These 

systems use advanced algorithms to provide tailored learning experiences, catering to individual 

students' strengths, weaknesses, and learning speeds. As the educational landscape evolves, the 

significance of ILSs in modern education becomes increasingly evident, offering numerous advantages 

such as real-time feedback, personalized learning paths, and the ability to analyze large sets of 

educational data to identify patterns and inform teaching strategies. ML has emerged as one of the most 

promising technologies for enhancing the capabilities of ILSs [2]. ML models can process vast 

amounts of educational data, recognize student behaviour patterns, and predict their future performance 

[3]. ML-driven ILSs can help create a more engaging and practical learning experience through 

personalized recommendations and adaptive feedback. By analyzing learning patterns, these systems 

can also assist educators in identifying areas where students struggle and suggest targeted interventions, 

ultimately leading to better educational outcomes [4]. Despite the potential benefits of ILSs, several 

challenges still hinder their widespread adoption and effectiveness. One of the primary challenges is 

the need for more effectively incorporating educational theories into the design of these systems. 

Educational theories provide a foundational understanding of how students learn and should be utilized 

or noticed in favour of technological advancements [5]. This research aims to optimize and implement 

an ILS that effectively integrates educational theories with ML. By bridging the gap between 

pedagogical understanding and technological innovation, the research aims to create a system that 

adapts to students' needs and aligns with established learning principles. Specifically, this study seeks 

to enhance the personalization capabilities of ILSs, improve their ability to provide adaptive feedback 

and ensure that the system design is informed by sound educational theory.  
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2. Literature  Review 

ILS represent a subset of educational technology that combines artificial intelligence (AI) with 

adaptive learning methodologies to enhance educational outcomes. The evolution of ILS can be seen as 

a response to the need for more personalized education, where technology adapts to the learner's pace, 

preferences, and knowledge level [6]. Modern ILS leverage AI advancements, including ML and 

natural language processing, allowing systems to go beyond static, rule-based approaches by 

dynamically adjusting based on real-time data from student interactions[7]. Educational theories 

provide the foundation for designing ILS by informing system structure, pedagogical approaches, and 

learning objectives. Constructivist theories.These theories support interactive learning environments 

where students engage with content meaningfully, often collaborating with peers or AI agents designed 

to simulate social interaction[8-9]. The self-regulated learning (SRL) theory is also integral, as modern 

ILS often incorporate features that encourage students to set goals, monitor progress, and reflect on 

their learning, fostering autonomy and lifelong learning skills[10]. 

ML has emerged as a transformative technology in education, with applications in ILS that focus on 

personalization, predictive analytics, and content recommendation. In personalization, ML algorithms 

analyze patterns in student data, such as performance history and learning preferences, to recommend 

tailored resources and exercises[11]. Predictive analytics in ILS utilizes historical data to predict 

student outcomes, such as exam performance or dropout risk. Techniques like decision trees, neural 

networks, and support vector machines help educators and administrators proactively intervene by 

identifying students who may need additional support [12]. Several studies have explored integrating 

educational theories with ILS design, evaluating its impact on student engagement, comprehension, and 

retention. For example, the work of Koedinger et al. (2013) highlights the cognitive benefits of ITS, 

which applies constructivist principles by providing step-by-step problem-solving support[13]. 

Research has shown that systems built on constructivist and self-regulation principles yield better 

engagement and learning outcomes than traditional approaches. However, notable gaps remain, and 

more effective combinations of these educational theories with advanced AI capabilities are still 

needed to address diverse learner needs. Research is needed to develop transparent, fair algorithms that 

respect student privacy while offering accurate predictions and recommendations. Figure 1 shows a 

literature review on ILSs. 

  

Figure 1: Literature Review on Intelligent Learning Systems (Left) 

Figure 2: Integration of Educational Theories into System Design (Right) 

3. Methodology 

3.1 System Design 

The architecture of the ILS is designed to facilitate adaptive and personalized learning experiences. 

The system comprises several modular components, including a user interface (UI), a recommendation 

engine, an ML module, a content repository, and a feedback loop. The UI serves as the learner’s point 

of interaction, enabling them to access personalized content and track their progress. The 

recommendation engine drives the content adaptation process, utilizing learner data and predefined 
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educational goals to tailor learning paths. This engine is linked with the ML module, which 

continuously refines the accuracy of the recommendation based on updated data and learner feedback. 

A centralized content repository hosts diverse educational resources like text, audio, video, and 

interactive exercises. The feedback loop is critical by incorporating real-time user performance data 

into the system’s algorithms. As learners progress through the material, their engagement patterns, 

assessment scores, and behavioural data are collected and analyzed to adjust learning pathways 

dynamically. Figure 2 shows the ILS architecture. 

By analyzing user data on time spent and performance, the system dynamically regulates the 

complexity of the material to maintain an optimal cognitive load for each learner. Zone of Proximal 

Development (ZPD), which suggests that learners benefit most from challenges beyond their current 

ability, is applied in the recommendation engine, providing tasks that push learners slightly beyond 

their comfort zone without causing frustration. Figure 3 shows ZPD and feedback in the learning 

system (B to A Flow). 

 

Figure 3: ZPD and Feedback in Learning System (B to A Flow) (Left) 

Figure 4: Machine Learning Models in Adaptive Learning System (Right) 

3.2 Machine Learning Models 

To Various ML models are utilized to develop a robust adaptive learning experience. Decision trees 

are employed to classify user responses and performance patterns, making it easier to predict which 

types of content may be most suitable for a given learner. This model's interpretability allows educators 

to understand how specific attributes contribute to recommendations. For example, recurrent Neural 

Networks and Long Short-Term Memory networks help track learners' sequential progress and detect 

long-term dependencies in user engagement data, adapting learning paths over time. Fig 4 shows ML 

models in the adaptive learning system.  

Table 1: Model Selection and Objectives Overview 

Model Type Purpose Mathematical Objective 

Decision Tree Interpretability 
Linear combination of feature 

weights 

Neural 

Network 
Personalized insights Minimizing Mean Squared Error 

Reinforcement 

Learning 
Real-time adaptivity 

Maximizing cumulative reward 

function 

Supervised 

Classifier 
Labeled learner data classification 

Minimizing cost function (cross-

entropy) 

Unsupervised 

Clustering 

Grouping learners by behavior 

patterns 
Minimizing intra-cluster variance 

Table 1 highlights the distinct roles of different models in the system and how their respective 

mathematical formulations align with the overall goal of optimizing educational outcomes. 

3.3 Data Collection and Processing 

Data collection is central to the system’s ability to adapt to individual learner needs. The system 

gathers data from several sources, including in-platform assessments, behavioural data (such as 

clickstream and interaction time), and performance metrics (e.g., test scores and quiz completions). 

Additionally, demographic information like age and prior educational background is collected to 
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provide a context for learning preferences. Categorical variables, like learner demographics, are 

encoded using techniques such as one-hot encoding to ensure compatibility with the ML models. 

Additionally, time-series data, beneficial for tracking learner progression, is segmented and labelled to 

reflect different learning stages. Table 2 shows data preprocessing steps for ML. 

Table 2: Data Preprocessing Steps for Machine Learning 

Data Type Raw Data Example 
Preprocessing 

Steps 
Processed Data Example 

Numerical Data 80, 100, 120 
Normalization or 

Standardization 
0.5, 0.8, 1.0 

Missing Data Blank, NaN 
Imputation with 

mean or removal 
95 (imputed with mean) 

Categorical 

Data 
Male, Female, Other One-hot Encoding [1,0,0], [0,1,0], [0,0,1] 

Time Series 

Data 

2023-01-01, 2023-01-

02 

Segmentation and 

labeling 

Stage 1: 2023-01-01 - 2023-

01-02 

Inconsistent  

Data Types 

Time Spent 

(minutes), Score 

Standardize for 

consistency 

0.45 (normalized time spent), 

0.8 (normalized score) 

Table 2 illustrates various data preprocessing techniques to transform raw data into a format 

suitable for ML algorithms. Feature extraction is essential to reduce data dimensionality and highlight 

critical patterns in the recommendation engine. Figure 5 shows a concept map of feature extraction for 

the recommendation engine. 

 

Figure 5: Feature Extraction for Recommendation Engine: Concept Map 

4. Results And Discussion 

4.1 Model Training, Optimization, and Performance 

Model training and optimization are essential steps in implementing the ILS. A hybrid algorithm 

framework combining supervised and deep learning effectively processes large-scale, multi-

dimensional educational data. Training data includes a variety of student records, learning behaviours, 

and assessment results, building a rich training dataset. Feature engineering, involving selection, 

combination, and augmentation of features, further improves predictive accuracy. During training, an 

iterative optimization approach fine-tunes hyperparameters such as learning rates and regularization 

coefficients to improve the model's generalizability. Evaluation metrics assess model performance, 

including accuracy, recall, and F1 score. Cross-validation and grid search techniques minimize the risk 

of overfitting, enhancing model robustness. Distributed computing efficiently divides computational 

tasks across processors to improve real-time performance, significantly reducing training time. The 

final optimized model demonstrates strong learning capacity, generating adaptive, highly targeted 

learning recommendations that improve educational outcomes—table 3 shows model training and 

optimization summary. 

Table 3 summarizes the different phases of the training process, the hyperparameter adjustment 

strategies used, evaluation metrics, cross-validation and search methods, the application of distributed 

computing, and the final optimization results, showing how the model improved over time. 
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Table 3: Model Training and Optimization Summary 

Training Stage 

Hyperparameter 

Adjustment 

Strategy 

Evaluation 

Metrics 

Cross-

Validation & 

Search 

Method 

Distributed 

Computing 

Acceleration 

Optimization 

Results 

Initial Training 

Random 

initialization of 

learning rate, 

regularization 

coefficient 

Accuracy: 

70% 

No cross-

validation 

No distributed 

computing 

Underfitting 

observed 

Hyperparameter 

Tuning Step 1 

Grid search to 

adjust learning rate 

Accuracy: 

78% 

5-fold cross-

validation 

No distributed 

computing 

Improved 

accuracy by 8% 

Hyperparameter 

Tuning Step 2 

Random search to 

adjust regularization 

coefficient 

F1 Score: 

0.82 

10-fold cross-

validation 

Using 2 

processors 

Model became 

more balanced 

Hyperparameter 

Tuning Step 3 

Learning rate decay 

strategy 

Accuracy: 

81% 

5-fold cross-

validation 

Using 4 

processors 

Improved model 

generalizability 

Final Optimized 

Model 

Fine-tuning 

hyperparameters, 

learning rate: 0.001, 

L2 regularization 

coefficient: 0.01 

Accuracy: 

85% 

10-fold cross-

validation, 

selecting best 

model 

Using 8 

processors, 

reducing 

training time by 

40% 

Good 

generalizability 

and robustness 

4.2 User Interface Design and Educational Theory Integration 

The UI design is essential to implementing an education-theory-driven ILS. The UI design adheres 

to UX and UI design principles, emphasizing simplicity and ease of use. Key UI components include 

student progress tracking, personalized recommendations, interactive feedback, and achievement 

displays. Complex analytical results are presented intuitively through data visualization techniques, 

allowing users to understand their learning progress easily. The system utilizes a recommendation 

model combining Convolutional Neural Networks (CNN) and Multi-Layer Perceptrons (MLP) to tailor 

recommendations to individual learning needs. Experimental results show that the model achieves a 

classification accuracy of 92.4%, significantly outperforming traditional collaborative filtering 

algorithms (approximately 84.7%) and rule-based recommendation systems (about 76.3%). Specifically, 

for learning resource recommendations, the system achieves over 90% accuracy, effectively meeting 

students’ learning needs. Under high concurrent loads, the system optimizes response time using Redis 

caching and asynchronous task queues (e.g., Celery), along with load-balancing strategies to ensure 

stable performance. Tests reveal that even with over 500 requests per second, the system maintains an 

average response time of 0.85 seconds, significantly faster than existing systems (average response 

time of 1.5 seconds). By employing efficient server resource management and optimized database 

queries, the system provides a smooth UX, even under heavy load conditions.  

5. Conclusion  and Future Directions 

5.1 Conclusion 

The ILS presented in this study represents a significant advancement in personalized education 

technologies, offering a promising approach to addressing students' diverse learning needs. By 

leveraging advanced ML algorithms, such as CNN combined with MLP, the system demonstrates high 

recommendation accuracy, achieving over 92% precision in predicting students' learning preferences. 

This high level of recommendation accuracy is critical in providing students with tailored educational 

content that meets their specific learning needs and preferences.  

In terms of system performance, the system provides rapid responses, with an optimized average 

response time of less than one second, even under high concurrent usage. This makes the system 

particularly suitable for environments where large users access the platform simultaneously. Redis 

caching, asynchronous processing, and load balancing further enhance the system's responsiveness, 

ensuring smooth operation during peak-demand periods. 

User satisfaction has also been a critical focus in the design and evaluation of this system. Results 

from user feedback indicate that over 80% of users are satisfied with the system's usability and 

effectiveness in meeting their learning needs. The positive response from users highlights the intuitive 
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interface design and the system's ability to provide relevant learning recommendations. Moreover, 

integrating educational theories into the system's design further enhances its impact by promoting self-

regulated learning and intrinsic motivation among students. These features distinguish the system from 

many existing intelligent learning solutions, making it a precious tool for educational environments that 

support personalized learning and student engagement. 

5.2 Future Directions  

User satisfaction has also been a critical focus in the design and evaluation of this system. Results 

from user feedback indicate that over 80% of users are satisfied with the system's usability and 

effectiveness in meeting their learning needs. The positive response from users highlights the intuitive 

interface design and the system's ability to provide relevant learning recommendations. Moreover, 

integrating educational theories into the system's design further enhances its impact by promoting self-

regulated learning and intrinsic motivation among students. These features distinguish the system from 

many existing intelligent learning solutions, making it a precious tool for educational environments that 

support personalized learning and student engagement. 
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