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Abstract: Considering the influences of the rotational inertia and shear variables, the dynamical 
mathematical model for the vertically and extensible cantilevered pipes conveying fluid was established, 
and analyzed the stability of cantilevered pipes under different gravity and slenderness ratio. Based on 
the geometrically exact beam theory obtained the structural stiffness matrix of the cantilevered pipe, 
derived cantilevered pipes expression of the elastic potential energy. An extended Hamilton's principle 
was applied to establish a plane dynamic control equation for the cantilevered pipe, which includes the 
coupling between axial displacement, lateral displacement, and angular displacement. The weak form 
quadrature element method was used to discretize the dynamic control equation, then analyzed the 
variation under the different slender ratios and gravity by the numerical results. 
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1. Introduction 

As an important structure for conveying fluid, the cantilevered pipes are extensively used in 
engineering fields [1]-[3]. In the practical application to enhance work efficiency, it is usually preferable to 
design the pipe with as high a critical flow velocity as possible. However, as a non-conservative system, 
the cantilevered pipes are prone to losing stability at high speeds. Thus, performing stability analysis of 
the cantilevered pipes is crucial not only for structural design and optimization but also for improving 
the operational efficiency and safety of the conveying system. 

In recent years, there has been an increasing body of research discussing the stability analysis of 
cantilever flow pipe. Paidoussis [4]-[8] derived the dynamic equations for cantilevered pipes conveying 
fluid based on the Timoshenko beam theory and the Euler beam theory, and verified the correctness of 
the results by comparing with both theoretical and experimental data, thereby conducting an analysis of 
the stability of cantilevered pipes. Shayo [9]analyzed the stability of the cantilevered circular pipe with 
shaft movement under different slenderness ratios. Pramila A et al [10] analyzed vibration and stability of 
cantilevered pipes conveying fluid based the Timoshenko beam theory. Doaré et al [11] analyzed the effect 
of increasing length on the stability of a hanging fluid-conveying pipe is investigated. Texier et al [12] 
studied the deformation of an elastic pipe submitted to gravity and to an internal fluid flow by experiment. 
Huo et al [13] used Euler–Bernoulli beam theory and Hamilton’s principle derived the differential equation 
of the pipe, studied the dynamical behavior of the system under the different flow velocity, instantaneous 
length of pipe, gravity, and mass ratio. Bai Y et al [14] established a dynamic model for cantilevered pipes 
conveying a variable density to analyze the influences of the fluctuating amplitude, wave number and 
initial phase angle of the fluid density on the stability and dynamics of the cantilevered pipe system. 
ElNajjar et al [15] derived the equation of motion of the system based on the linear theory of elasticity 
model assumption, analyzed the possibility of increasing the stability of the system by considering one 
or more additional masses and/or springs at various locations along the pipe. Chang X and Hong X [16] 
derived the dynamic equation for a cantilevered pipe conveying fluid with a nonlinear energy sink under 
pulsating flow, and investigated the stability of cantilevered fluid-conveying pipe. Mi L D et al [17] based 
on the stable slug flow model and hysteretic model to study the dynamics and stability of a cantilevered 
piping system conveying slug flow. Previous research has shown that many scholars have nearly all 
established the dynamical models of cantilever pipes conveying fluid based on the Timoshenko beam 
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theory[18] and Euler-Bernoulli beam theory[19], and then analyzed various factors affecting the system 
stability. However, the dynamical behavior of cantilevered pipes is more complex and variable in 
practical engineering applications. Therefore, establishing a more accurate dynamical model is of great 
significance for ensuring the reliability of the structural and the stability of the system. 

Timoshenko beam theory and Euler-Bernoulli beam theory are theories based on the assumption of 
small deformations and linear elasticity. Geometrically exact beam theory [20]-[26] account for the influence 
of non-linear structural changes, using strain fields, stress fields, and deformation variations to more 
accurately describe and predict the mechanical behavior of structures under large strains and large 
displacements. More importantly, the strain proposed by geometrically exact beam theories is objective, 
which provides a unified measurement standard for structural analysis to fully reflecting the deformation 
conditions of the cross-section of the structure. Compared with traditional beam theories, geometrically 
exact beam theories are a more efficient and accurate mechanical theory to describe the mechanical 
behavior of structures.  

This study considering the effects of rotational inertia and shear deformation, based on the 
geometrically exact beam theory and the extended Hamiltonian principle to found the dynamical 
mathematical model for the vertically and extensible cantilevered pipes conveying fluid. The weak form 
quadrature element method [27]-[28] is applied for the discrete solution of the governing equations, and the 
correctness of the theoretical analysis is verified through numerical simulation results. Moreover, this 
paper analyzed the effect of the slenderness ratio and gravity on the stability of cantilevered pipes system. 

2. Found the dynamical model 

 
Figure 1 The pipe schematic diagram. 

The system under consideration consists of the pipe of length L , cross-sectional area pA , the outer 
diameter of the pipe is pD , cross-sectional moment of inertia pI , Young's modulus E , Poisson ratio 
ν , density pρ , and mass per unit length pm , conveying fluid of density fρ , cross-sectional area fA , 
the inner diameter is fD , and mass per unit length fm , with flow velocity U . Moreover, in this paper, 

( )′  represents the first-order derivative with respect to X, ( )′′  represents the second-order derivative 

with respect to X,   denotes the first-order derivative with respect to time,   denotes the second -
order derivative with respect to time. In the Figure 1, φ  is the shear deformation angle, ϕ  is the 
rotational angle of the neutral axis, and θ  is the rotational angle of the cross-section, where θ φ ϕ= + . 

Lagrange description is mainly used to describe the motion and deformation of solid materials in 
structural analysis, so the initial configuration of the pipeline is selected as the reference. Axial 
displacement u  and transverse displacement v  are introduced to describe the displacement of any 
point on the pipe axis after deformation, and the θ  represents the rotation angle of the cross section 
where the particle is located to describe the rotation of the cross section where the point is located after 
deformation. Where u , v  and θ  are all functions of X . Therefore, the configuration of the pipe 
can be fully represented by the following displacement vector 

 ( ), , Tu vς θ=  (1) 
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For convenience of derivation, let ( )Tcos sinθ θ=1λ  which is perpendicular the cross-section, 

and let ( )Tsin cosθ θ= −λ2  which is parallel to the cross-section. 

Assuming that in the initial state, the initial position of a point on the pipe is ( ), TX YX , and 

( ), Tx yx  is the location of the point after deformation in the current configuration. Based on the 
assumption of the plane section, the following can be obtained 

 ( )( , ) ,   , TTx y X u v= = +x r  (2) 

where r  is the centroid position of the current cross-section. 

Considering the local rotation of the neutral axis denoted ϕ , one obtains 

 ( )sin 1 ,  cos 1 1v e u eϕ ϕ′ ′= + = + +  (3) 

where is the strain along the neutral axis of the pipe. 

The Ressiner strain vector based on the geometrically exact beam theory is 

 [ ] 1 21
TT T Tε γ κ θ′ ′ ′ = = − χ λ r λ r  (4) 

where ε  is axial strain, γ is shear strain, and κ  is bending strain of the pipe. 

The velocity of the pipe at the center axis is 

 p x yu v= = +v r i i    (5) 

where xi  and yi  are unit vectors. 

The kinetic energy of the pipe 

 2 2 2

0 0

1 1
2 2

L L

p p pT m u v ds I dsθ= + +∫ ∫ 

   (6) 

The velocity of the fluid is 

 ( )1F P U ae ′= + −v v r  (7) 

where 1 2a ν= − [8], ′r  is the direction vector tangent to the centerline of the pipe. 

The kinetic energy of the fluid is 

 
2 2 2 2 2 2

2 2 2 2 20

2 2 2 21
2 2

L

f f

u U U u U u aU u Uu Uuu
T m dX

v Uvv aU v U v

′ ′ ′ ′ + + + − + +
=  

′ ′ ′+ − +  
∫

  

 

 (8) 

The potential energy of the pipe includes elastic potential energy and gravitational potential energy, 
which are respectively expressed as follows 

 
0

1
2

L T
PV D dX= ∫ χ χ  (9) 

 ( )( )
0

0
LT

g P FV m m g dX= − + ∫ r  (10) 

where g is the gravitational coefficient, and D is the material constitution relation matrix. 

 
0 0

0 0
0 0

S

EA
D k GA

EI

 
 =  
  

 (11) 

where sk  is shear correction factor. 
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The virtual work done by non-conservative forces in the pipe system is 

 ( )
2 2

1 1

t t

f L L Lt t
Wdt m U U dtδ δ′= +∫ ∫ r r r  (12) 

where Lr  and L′r  respectively represent the position vector and tangent vector of the centroid of 
the pipe at the terminal cross-section.  

As the cantilever pipeline system is a non-conservative system, the dynamic equations of the system 
are obtained based on the extended Hamilton's principle 

 ( )
2 2

1 1
0

t t

t t
T V dt Wdtδ δ− − =∫ ∫  (13) 

Based on the Hamilton's variational principle, the times 1t  and 2t  are fixed, thus the variation 

1
0tuδ = , 

2
0tuδ = 1, 

1
0tvδ = 、, 

2
0tvδ = , 

1
0tδθ = , 

2
0tδθ = . Moreover, since , ,u vδ δ δθ  

are respectively independent variations to ensure equation (13) hold, thus ( ) 0T V Wδ − − = , thereby 
yielding the vibration model of the pipeline as follows 

 

( ) ( )
( ) [ ]

( ) ( ) ( )

0 0 0

2 2
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0 0 0
2 0

L L L

p f p f p P

L L

f f

L L LT
f p f

m m u udX m m v vdX I dX

am U u v v dX m U u u v v dX

m U u u v v dX D dX m m g X u dX

δ δ ρ θδθ

δ δ δ δ

δ δ δχ χ δ δ

+ + + +

′ ′ ′ ′′ ′′+ + + +

′ ′+ + + − + + =

∫ ∫ ∫
∫ ∫
∫ ∫ ∫



 

 

 (14) 

where δχ  is expressed as follows 

 
1 2

2 1

1 2

0
δ 0

0 1 0

T T

T T

δ
δς

δθ
δθ

δθ×

   
′     ′= = −    

   


′ ′
′

   

λ λ r r
χ Γ λ λ r  (15) 

Define the node displacement vector of the pipe: 

 1 ,  1, ,
TT T T

k N k N = … … = d ς ς ς   (16) 

Using the differential quadrature principle from Ref [29] and equation (15), we obtain 
kδχ  

represented by δd  

 k
kk k k

k

δς
δβ

δ
 ′ 

= 
 

= δΓ Γ B dχ  (17) 

where [ ]1 3 3 3 3 3 3ζ ,k k k k ki kn× × ×=δ δ = δ … δ … δA d A I I I , I  is identity matrix. 

The differential quadrature positioning matrix can be expressed as : 

 [ ]1   k k ki kn= … …B b b b  (18) 

where 
(1)

3 3
2

kie
ki

ki

C
L ×
 
 =
 
  

I
b

α
, ( )0,0,ki ki= δα , 

1,
   

0,ki

k i
k i
=

δ =  ≠
 from Ref [28]. 

Introducing dimensionless parameters 

 [ ]2 1,   1,1X
L

ξ ξ= − ∈ −  (19) 

Based on the weak form quadrature method [27]-[28], the weak form vibration equation of the pipe is 

 u T+ + + + =Md + Cfd K d K d G C 0   (20) 
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where the mass matrix of the pipe is 

 ( )( )
12

N
T T T

k k k k k k
k

p p f p kf p
L Aw A Iρ ρ ρ

=

 + + + = ∑Μ E1 E1 E2 E2 E3 E3  (21) 

where E1  represents an 3N N×  matrix where the element in the k-th row and the 3k-2-th 
column is 1, and all other elements are 0, and kE1  represents the k-th row of E1 . E2  represents 

3N N×  matrix where the element in the k-th row and the 3k-1)-th column is 1, and all other elements 
are 0, and kE2  represents the k-th row of E2 . E3  represents an 3N N×  matrix where the 

element in the k-th row and the 3k-th column is 1, and all other elements are 0, and kE3  represents the 
k-th row of E3 . 

 ( ) ( )1 1

1 1 1
22

N N N
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The tangential stiffness matrix of the element as follows 

 ( )
12

n
T T

T k k k k k k k
k

L w
=

= +∑K B Γ D Γ Ξ B  (26) 

where 
kΞ  is expressed as follows 

 
2 2 2 1 1 2

1 2

1 2 1 2

0 0
0
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− + 
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 − + − − 
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 (27) 

From equation (26), the stiffness matrix of the structure is from TK  when 0=d . 

Let *
sd d d= + , thus 

 ( ) ( ) ( ) ( ) ( )* * * *
s s u s T s G C+ + + + Κ + = − +M d d + Cf d d K d d + d d     (28) 

then combine the equation (20) with equation (28) to linearize the equation 

 ( )u T+ + =Md + Cfd K K d 0   (29) 

Let 1 2= =q q d , 2 1= =q q d  , thus the natural frequency can be obtained by solving the state 
equation as follows 

 

( )

( )( )

2 2 1

1 1
1

12 2

u T

u T
−

+ +

    
=     + −     

Mq + Cfq K K q = 0

0 Eq q
K K M Cfq q







 (30) 

The dimensional parameter is as follows 
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 ( )
3

2,  ,  ,  f f p f
f g p f

p f

m m m mLU UL m m g L
EI m m EI EIξβ γ ω ω

+
= = = + =

+
 (31) 

where fU  is the dimensionless velocity, β  is the mass ratio coefficient, gγ  is the gravity term 

coefficient, and ξω  is the dimensionless frequency. 

3. Numerical results and discussion 

For improving the accuracy of numerical calculation results, in this paper uses two units for numerical 
calculation, each unit contains 11 nodes. The parameters of the pipe are respectively 210E Gpa= , 

0.1885pD m= , 0.1825fD m= , 37850 /p kg mρ = , 31000 /p kg mρ =  , 0.3ν = .  

By comparing the numerical results in Table 1, it can be found that the maximum relative error 
between the numerical results obtained and those in reference[30] is less than 0.50%. Furthermore, the 
results in the Figure 2 are also similar to the results found in reference[4] and reference[11].This not only 
proves the correctness of the model, but also demonstrated the efficiency of the model, which can ensure 
the calculation accuracy while selecting fewer parameters. 

Table 1 Natural frequency of pipes at u=0. 

 Ref[30] Ref[31] Present work Error % 
w1 3.5160  3.5160  3.5154 0.17 
w2 22.0345  22.0345  22.0097 0.11 
w3 61.6972  61.6972  61.5322 0.27 
w4 120.9019  120.9019  120.3064 0.49 

When the real part of the vibration equation's eigenvalue is greater than zero, the pipe will exhibit 
flutter instability. The speed corresponding to the instability point is the critical flow velocity 

crU . 

rL L r=  is the slenderness ratio, where ( )/ p fr I A A= −  is the moment of inertia radius of. In the 

Figure 2, 1/3
Vcr f gU U γ −= , and 1/3

gLγ γ= , and shows that for pipes of fixed length, an increase in 

gravity can enhance pipeline stability. 

  
Figure 2 (a) Dimensionless velocity based on the pipe length, (b) Dimensionless velocity based on 

gravity 

 

Figure 3 Gravity effects on crU  for the cantilevered pipe, (a), 100rL = , (b), 10rL = . 
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In the figure 3, S-shaped curves occur because the cantilevered pipe is significantly influenced by the 
slenderness ratio, such that under a single mass ratio coefficient, multiple critical flow velocities can 
correspond. Taking into account the variation of the critical flow velocity with different gravity 
coefficients when the slenderness ratio 100rL = , and 10rL =  to study the effects of gravity on the 
system stability of long pipes and short pipes. The data from Figure 3 (a) is agreed with the results from 
reference[4]. Moreover, it can be observed from Figure 3, the critical velocity increases with the increase 
of gravity when the same value of β  and rL , and the critical velocity also increases with the 

gravitational ratio coefficient increase of when the same value of rL  and gγ . 

 

Figure 4 Slenderness ratio effects on crU
 for cantilevered pipes 

In the Figure 4, it shows that the variation of the critical flow velocity with the slenderness ratio under 
the different gravity when 0.5β = . It can be found that the change in gravity significantly affects the 
influence of slenderness ratio on the critical flow velocity. Under the same gravity, the critical flow 
velocity increases with the increase of the slenderness ratio, when the slenderness ratio exceeds 100, at 
which point the critical flow velocity tends to stabilize. 

The numerical results of Table 2 show the variation of the critical velocity of the system with the 
value of , gravity term coefficient and mass ratio coefficients. The critical velocity of the system 
increases with the increase of  when the same value of  and . The critical velocity of the system 
increases with the increase of  when the same value of  and . 

Table 2 The critical flow velocity under different values of a , γ . 

  a=0.12 a=0.4 
  γ=0 γ=0  γ=10 γ=100 γ=0 γ=10 γ=100 
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 0.145 5.1226 5.08 0.84 5.65 10.29 5.09 5.66 10.3 
crU  0.250 6.2928 6.22 1.17 7.48 10.96 6.23 7.49 10.96 
 0.470 9.1558 9.14 0.17 9.62 14.42 9.15 9.63 14.43 

4. Conclusions 

In this study, the effects of slenderness ratio and gravity on the stability of the extensible cantilevered 
pipe is investigated. By comparing the numerical simulation results with reference data, the correctness 
of the plane dynamics mathematical model of the cantilever pipe established based on the geometrically 
exact beam theory was verified. The following conclusions on the influence of gravity and slenderness 
ratio on the stability of the vertical cantilever pipe can be drawn from the results of this study: 

(1) For the same slenderness ratio and gravity ratio coefficients, an increase in gravity can enhance 
the stability of the system of cantilevered pipes conveying fluid. 

(2) For the same influence of gravity, an increase in the slenderness ratio can improve the stability of 
the system of cantilevered pipes conveying fluid.  

(3) For systems of cantilevered pipes conveying fluid, an increase in the gravity parameter and the 
mass ratio coefficient leads to a greater number of S-shaped curves. 
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(4) For the same conditions, the critical flow velocity of cantilevered pipes increasing with the 
increase of the value of a , and appropriately considering the a  can enhance the stability of the system. 
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