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Abstract: With the wide application of drones in agriculture, surveying and mapping, power inspection, 
security and other fields, its safety management problems are becoming increasingly prominent. 
Traditional UAV detection methods such as radar, infrared, acoustic and radio frequency detection 
have limitations such as low accuracy, high cost or poor anti-interference in complex environments. 
Visual inspection technology has become a research hotspot due to its high resolution and good target 
recognition ability. Focusing on the UAV target detection task, based on the YOLOv10 network 
structure, this paper proposes an improved detection algorithm to improve the detection accuracy and 
small target perception ability. Experimental results show that the improved algorithm can 
significantly improve the recognition effect of multi-scale UAV targets while maintaining the detection 
speed, and has good engineering application value. 
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1. Introduction 

With the wide application of UAV technology in military reconnaissance, agricultural plant 
protection, power inspection, logistics and transportation and other fields, how to achieve efficient 
identification and tracking of UAVs has become one of the current research hotspots[1]. Unmanned 
aerial vehicles (UAVs) are small in size, low in flight altitude, fast in motion, and often in complex and 
changeable backgrounds, which makes their detection tasks face great challenges in visual 
perception[2]. 

Traditional UAV detection methods include radar, infrared, acoustic, and radio frequency 
technologies, but these methods have problems such as high cost, complex deployment, and 
susceptibility to interference in the actual environment. In contrast, the image object detection 
technology based on computer vision can directly identify and locate UAVs from videos or images, 
which has stronger environmental adaptability and detection accuracy, especially in visual surveillance 
systems[3]. 

The UAV target detection task is essentially a target detection problem, and its core is to 
automatically identify the position and category of the UAV in the image through algorithms. In recent 
years, with the rapid development of deep learning technology, convolutional neural network 
(CNN)-based object detection algorithms have gradually replaced the traditional manual feature 
method and become the mainstream solution[4]. In particular, the YOLO (You Only Look Once) series 
algorithms have been widely studied and applied in the field of UAV detection due to their end-to-end, 
one-stage, and real-time characteristics. 

The current research mainly focuses on improving the detection ability of the model for small-target 
UAVs, the robustness in complex backgrounds, the multi-scale feature extraction ability, and the 
balance between detection accuracy and speed[5]. Therefore, how to construct a lightweight, efficient, 
and practical UAV target detection model has become an important direction of this research. 

2. Related research 

2.1 Basic theory of the YOLOv10 model 

YOLOv10 is an end-to-end single-stage object detection algorithm that simplifies object detection 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 7: 72-78, DOI: 10.25236/AJCIS.2025.080709 

Published by Francis Academic Press, UK 
-73- 

into a unified regression problem. The overall structure of the algorithm consists of four main 
components: Input, Backbone, Neck, and Head.The network structure is shown in Figure 1. 

 
Figure 1: Yolov10 network structure. 

The Input module preprocesses the input images, supporting multi-scale resolutions (320×320, 
640×640, etc.), and performs operations such as resizing, normalization, and pixel value 
standardization to meet the network’s input requirements and accelerate convergence[6]. 

The Backbone is responsible for feature extraction. Based on improvements to YOLOv8, it adopts 
more efficient modular convolutional structures such as C2f (Cross Stage Partial Fusion) and C3 
modules, which reduce the number of parameters and computational complexity while maintaining 
strong feature representation capabilities. The image is progressively downsampled (e.g., from 
320×320 down to 20×20), and a SPPF (Spatial Pyramid Pooling Fast) module is used to fuse 
multi-scale contextual information, enhancing the model’s perception of targets at different scales. 

The Neck module performs lateral transmission and vertical integration of multi-scale feature maps 
through operations such as upsampling, concatenation, and convolution. It effectively fuses deep 
semantic features with shallow spatial details to build a multi-scale semantic foundation for detection. 
It outputs three feature maps corresponding to large, medium, and small object detection, known as P5, 
P4, and P3 layers. 

Finally, the Head performs prediction operations on each scale of the fused feature maps. YOLOv10 
adopts a decoupled detection head design, which separates bounding box regression, objectness 
confidence, and classification tasks. Each scale’s feature map outputs multiple bounding box 
predictions, each containing object confidence scores and class probabilities. 

2.2 Share the convolutional feature pyramid module (FPSConv) 

In the original YOLOv10 network structure, the SPPF (Spatial Pyramid Pooling - Fast) module is 
used at the end of the backbone network, and its main function is to expand the receptive field and 
aggregate multi-size context information through the maximum pooling operation of different sizes, so 
as to improve the semantic understanding ability of deep features to large targets[7]. However, there are 
still some shortcomings in this module, one is that it relies on a fixed pooling scale and lacks 
adaptability to local features, and the other is that the coverage effect of the receptive field of small 
targets is limited, which is easy to lead to the loss of feature details[8]. 
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In order to solve the above problems, this paper uses a Feature Pyramid Shared Conv module to 
replace the original SPPF module. The module constructs a lightweight multi-scale feature fusion 
mechanism through a set of shared convolution kernels and dilated convolutions with multiple 
expansion rates, and has the multi-scale modeling idea of pyramids, and its module structure is shown 
in Figure 2. 

 
Figure 2: FPSConv structure. 

2.3 Multi-Path Multi-Scale Feature Pyramid Network (MP-MSFPN) 

In order to further improve the performance of the YOLOv10 network in multi-scale object 
detection tasks, especially to enhance its ability to detect small targets, we have made comprehensive 
and in-depth improvements to the neck structure of the original YOLOv10 network. The existing 
YOLOv10 neck structure has some problems in the process of multi-scale feature fusion, such as single 
fusion mode, insufficient feature expression ability, and low efficiency of scale information interaction, 
which seriously limits the detection performance of the network in complex scenes[9]. In order to solve 
these problems, a novel and efficient neck improvement structure was proposed by combining the 
fusion module and the multi-scale convolutional enhancement module (CSP_MSCB) to enhance the 
feature fusion and expression ability of the network. The module structure is shown in Figure 3. 

 
Figure 3: MP-MSFPN structure. 

The structure designs a cross-layer connection path from P5 to P3, so that the feature maps of 
different levels can interact repeatedly in multiple directions through the upsampling, convolution and 
fusion modules. The features of each layer are enhanced by multi-scale convolution through the 
CSP_MSCB module, which further excavates the local and global information expression capabilities. 
This combination of multi-layer interconnection, multi-scale dynamic fusion, and multi-stage 
enhancement processing significantly improves the richness and adaptability of features in spatial, 
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semantic, and scale dimensions, and the overall structure presents obvious multi-path feature fusion 
and enhanced interaction characteristics. 

3. Experiments and analysis of results 

3.1 Introduction to datasets 

The datasets used in all experiments in this section are DUT Anti-UAV datasets[10].The DUT 
Anti-UAV dataset is divided into two subsets: object detection and target tracking, and this paper uses a 
drone detection subset, which includes a training set: 5,200 images, 5,243 targets, a validation set: 
2,600 images, 2,621 targets, a test set: 2,200 images, 2,245 targets, and the image resolution varies 
from 160×240 to 3744×5616, providing multi-scale training and test data. 

3.2 Experimental environment 

The experiments were conducted using the PyTorch deep learning framework on the Anaconda 
platform. The server was equipped with an AMD EPYC 7532 32-Core Processor, configured with 8 
cores and 30 GB of RAM. The GPU used was an NVIDIA GeForce RTX 4060 Ti with 16 GB of 
VRAM, and the CUDA version was 12.1. The programming language was Python 3.8, running on the 
Linux operating system. The development environment was based on PyCharm as the integrated 
development tool. 

All input images are uniformly resized to 640×640 pixels. In order to improve the efficiency of 
model training, the stochastic gradient descent (SGD) optimizer was used, the initial learning rate was 
set to 0.01, the momentum coefficient was set to 0.937, the weight decay parameter was set to 0.0005, 
and the batch size was set to 16. 

3.3 Ablation experiments 

In order to verify the role of each improved module in improving the performance of YOLOv10 
network, four sets of ablation experiments were designed, and FPSConv and MP-MSFPN neck 
structures were gradually introduced, and their effects on the average accuracy, detection accuracy, 
recall rate, computational size, model complexity and inference speed were evaluated, respectively, and 
the results are shown in Table 1. 

Table 1: Ablation experimental results of the improved algorithm module on the DUT Anti-UAV 
dataset. 

Group FPSConv MP-MSFPN mAP@0.5(%) P/% R/% Parameters GFLOPS 
1 × × 85.5 91.7 77.1 2265363 6.5 
2 √ × 86.8 92.7 78.7 2412819 6.5 
3 × √ 86.9 92.6 78.5 1850084 5.9 
4 √ √ 87.1 94 76.6 1997540 6.5 

The ablation experiments were conducted to assess the individual and combined impact of the 
FPSConv and MP-MSFPN neck modules on the YOLOv10 network's performance. From the results: 

Baseline (Group 1): Without either FPSConv or MP-MSFPN, the baseline model achieves a 
mAP@0.5 of 85.5%, with 6.5 GFLOPs and 2.26M parameters. 

FPSConv only (Group 2): Introducing only the FPSConv module improves the mAP to 86.8% and 
recall to 78.7%, showing that FPSConv effectively enhances feature representation and detection recall 
without increasing computational complexity. 

MP-MSFPN only (Group 3): Using only MP-MSFPN achieves a slightly higher mAP of 86.9%, 
with the lowest parameter count (1.85M) and lowest GFLOPs (5.9) among all groups, demonstrating its 
superior efficiency in feature fusion and lightweight design. 

Combined (Group 4): When both modules are used together, the best precision (94%) and highest 
mAP (87.1%) are achieved, indicating a strong complementary effect. Although the recall slightly 
drops to 76.6%, the overall detection performance improves, and the parameter count remains 
reasonably low (1.99M). 

The combined use of FPSConv and MP-MSFPN achieves the best trade-off between accuracy, 
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efficiency, and model complexity, confirming the effectiveness of the proposed improvements in 
enhancing multi-scale feature representation and detection precision. 

3.4 Comparative experiments 

In order to reasonably evaluate the detection performance of the model and illustrate the feasibility 
of the optimization method, the table is compared with YOLOv8n and other algorithms based on 
YOLOv10n network improvement, and the table is arranged according to the value of mAP@0.5 (%) 
from small to large. The comparison results are shown in Table 2. 

Table 2: Comparative experiments of different algorithms on the DUT Anti-UAV dataset. 

Group model parameters GFLOPs mAP@0.5(%) P/% R/% 
1 YOLOv8n 3005843 8.1 84.1 92.2 75.9 
2 YOLOv10n-AFGC 2270587 6.5 84.9 90.9 76.9 
3 YOLOv10n-CBAM 2270775 6.5 85.2 92.6 76.3 
4 YOLOv10n 2265363 6.5 85.5 91.7 77.1 
5 YOLOv10n-CPCA 2283819 7.1 85.8 92.7 76.2 
6 YOLOv10n-ASF 2304979 6.9 86.5 92.1 77.3 
7 Ours 3054467 6.5 87.1 94 76.6 

The comparative experiments demonstrate that the proposed improved YOLOv10 model achieves 
the best overall performance. It obtains the highest detection accuracy with a mAP@0.5 of 87.1%, 
outperforming YOLOv8n (84.1%) and other YOLOv10n variants. While maintaining a moderate 
parameter size (3.05M) and low computation cost (6.5 GFLOPs), it also achieves the highest precision 
(94%) and a competitive recall rate (76.6%). These results validate the effectiveness and efficiency of 
the proposed improvements. 

3.5 Visual comparison of test results 

Figures 4 through 7 show the results of the improved YOLOv10 (left) and YOLOv10 (right) in 
different environments, bright light, complex backgrounds, open scenes, and nighttime environments, 
respectively. The results show that the improved YOLOv10 is much better than the original network in 
these environments, with a 3% increase in confidence under the influence of bright light, an enhanced 
detection capability in complex backgrounds, and an 11% increase in open space and night conditions. 

 
Figure 4: Comparison of the detection effect of the improved YOLOv10 and YOLOv10 under the 

influence of strong light. 

 
Figure 5 Comparison of the detection effect of improved YOLOv10 and YOLOv10 in complex 

background. 
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Figure 6 Comparison of the detection effect of improved YOLOv10 and YOLOv10 in open scenes. 

 
Figure 7 Comparison of the detection results of the improved YOLOv10 and YOLOv10 in the evening 

environment. 

4. Conclusions 

According to the problems existing in the small-target UAV detection algorithm, a new and 
improved YOLO object detection algorithm is proposed in this chapter, and in view of the limitations 
of the original model in small-target detection, the shared convolutional feature pyramid module is 
introduced, and the multi-scale dilated convolution and shared weight mechanism are used to enhance 
the feature perception ability and improve the expression accuracy of multi-scale targets. A multi-path 
and multi-scale Enhanced Feature Fusion Neck (MP-MSFPN) structure was designed to enhance the 
semantic information interaction and fusion capabilities between features at different scales. In order to 
verify the role of each improved module in improving the performance of YOLOv10 network, four sets 
of ablation experiments were designed, and FPSConv and MP-MSFPN neck structures were gradually 
introduced, and their effects on the average accuracy, detection accuracy, recall, computational size, 
model complexity and inference speed were evaluated respectively. 
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