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Abstract: Small object detection holds significant value in various practical applications. However, due 
to their limited pixel coverage, weak feature information, and susceptibility to background noise, 
YOLOv8 faces challenges in detecting small objects, including low recognition accuracy and missed 
detections. To address these issues, we propose an improved small object detection model, YOLOv8-Plus. 
First, to tackle the difficulty in detecting subtle features of small objects in the YOLOv8 model, we add a 
dedicated output layer, TDLayer, in addition to the original three output layers. This new layer generates 
larger feature maps, allowing for better differentiation of fine details in small objects. Second, to improve 
feature processing, we design the C2FDSC module, which adaptively adjusts detection strategies based 
on the shape and characteristics of small objects, ensuring fine details are captured. Finally, to mitigate 
the impact of background noise, we introduce the EACF module, which combines the advantages of 
CNNs and attention mechanisms to effectively reduce noise interference, improving both accuracy and 
robustness in small object detection. Experimental results on the VisDrone2019 dataset show that the 
improved YOLOv8-Plus model achieves a 6.7% and 4.7% increase in mAP50, respectively, compared to 
the baseline model. YOLOv8-Plus outperforms other state-of-the-art models, demonstrating superior 
performance in small object detection tasks in complex scenarios. 
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1. Introduction 

With the rapid development of computer vision and artificial intelligence technologies, the demand 
for object detection has significantly increased, especially in the detection of small objects. The 
applications are broad, including intelligent transportation[1], pedestrian detection[2], facial recognition[3], 
defect detection[4], robotics automation[5], remote sensing imaging[6], security monitoring[7], and medical 
applications[8]. To meet the demand for efficient and accurate small object detection, optimizing small 
object detection technology has become a major research challenge. 

Object detection algorithms can be categorized into two-stage and one-stage methods. The two-stage 
methods, such as R-CNN[9], first generate candidate boxes, extract features, and then predict classes and 
locations, offering high accuracy but lower speed. Fast R-CNN[10] improves upon R-CNN by using a 
feature extraction network, which increases speed; Faster R-CNN[11] further replaces selective search 
with a Region Proposal Network (RPN), enabling end-to-end training. In contrast, one-stage methods, 
such as the YOLO series, transform the object detection problem into a regression problem, enhancing 
detection speed. YOLOv1[12] divides the image into grids and predicts bounding boxes and classes for 
each grid, while SSD[13] uses multi-scale feature maps to improve detection accuracy for objects of 
varying sizes. YOLOv2[14] and YOLOv3[15] optimize the feature extraction network and introduce a 
Feature Pyramid Network (FPN) to further enhance detection accuracy. YOLOv5[16] optimizes the 
backbone network and enhances multi-scale prediction capabilities. Subsequently, YOLOv6[17], 
YOLOv7[18], and YOLOv8[19] have further optimized and improved performance. 

However, small objects present challenges due to their limited size and information, and they are 
often affected by complex backgrounds and noise, which degrade the performance of general object 
detection models. Improving the accuracy of small object detection remains a major challenge. In recent 
years, researchers have proposed various methods to improve the performance of small object detection. 
For instance, in[20-22], multi-scale feature fusion methods were employed by extracting information from 
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feature maps at different levels and fusing these features to enhance small object detection capability. 
Other methods[23-25] focus on context-based detection methods that emphasize capturing the surrounding 
environment (context information) to aid in identifying small objects. Similar to feature fusion, context-
based methods aim to provide more information to the final detection network, but small object 
information may be masked by redundant context information. Furthermore, some researchers have 
improved the performance of small object detection by increasing the input image resolution. The use of 
Generative Adversarial Networks (GAN)[26-28] aims to reduce the feature discrepancy between small 
objects and larger/mid-sized objects by mapping the low-resolution features of small objects to high-
resolution object features, thereby enhancing the representation of small object features to achieve 
detection performance comparable to that of larger objects. However, GAN-based methods face the 
challenge of maintaining a balance between the discriminator and the generator. Another drawback of 
GAN-based methods is that the generator often struggles to produce enough samples during the training 
process. 

To improve the accuracy of small object detection, this paper proposes an improved algorithm based 
on the YOLOv8 model, named YOLOv8-Plus. By adding a dedicated output layer (TDLayer) for small 
object detection in the network architecture, the model’s performance in detecting small objects is 
enhanced. Additionally, by integrating the C2FDSC module and the Enhanced Attention Convolution 
Fusion (EACF) module, the model’s performance on small object detection tasks is further improved. 
This method effectively reduces false negatives and false positives for small objects, providing better 
detection accuracy and real-time performance, making it suitable for a broader range of practical 
application scenarios. 

2. YOLOv8 

YOLOv8, released by Ultralytics, is a newer object detection model that inherits the advantages of 
the YOLO series in real-time detection. It improves inference speed while maintaining high accuracy. 
The YOLOv8 architecture consists of three main components: Backbone, Neck, and Head. In the 
Backbone of YOLOv8, CSPNet is used to extract image features, and the C3 module from YOLOv5 is 
replaced with the C2f module, which contains more residual connections, thereby enhancing detection 
accuracy. In the Neck, FPN fuses high-level semantic information with low-level detailed information, 
while PAN enhances the information transfer from low-level positions to high-level ones. The Head of 
YOLOv8 is responsible for predicting the object category, bounding box coordinates, and confidence 
score, separating the classification task from the regression task, which improves the accuracy of object 
detection. 

Although YOLOv8 improves the detection capability of small objects by introducing a stronger 
feature fusion mechanism, precise localization and recognition of small objects in complex backgrounds 
or under occlusion remains a challenge. Therefore, the model requires more sophisticated design to 
effectively capture subtle features and enhance the detection performance of small objects. 

 
Figure 1: YOLOv8-Plus network structure. 
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3. YOLOv8-Plus 

This chapter proposes the YOLOv8-Plus model, specifically designed for small object detection, 
based on the YOLOv8s algorithm. First, the TDLayer, which adds a small object detection layer, is used 
to fully leverage the shallow spatial location information and semantic information of small objects, 
effectively enhancing the model's sensitivity to small objects. Next, the C2FDSC module is designed to 
better capture the complex structural features within images. Finally, the EACF module is adopted to 
integrate both global and local features, strengthening the focus on small objects. The overall model 
structure is shown in Figure 1. 

3.1. TDLayer 

YOLOv8 employs a multi-scale feature fusion structure, utilizing three different feature layers (P2, 
P3, and P4) to achieve multi-scale object detection. For example, when the input image is 640×640, after 
convolutional downsampling with strides of 8, 16, and 32, the three detection layers output feature maps 
of sizes 80×80, 40×40, and 20×20, respectively. These feature maps correspond to the detection of small, 
medium, and large objects. However, the 80×80 feature map, which has the smallest receptive field, 
represents information from an 8×8 region of the original image. Given that many small objects are even 
smaller than this, after several convolution operations, the image size gradually reduces, causing the 
representation of smaller objects on the feature map to become weaker. As a result, YOLOv8 may suffer 
from missed detections when it comes to small object detection. 

The feature map at the P1 level retains a high resolution, which provides the network with more 
detailed information and enhances the detection of small objects. Therefore, this paper introduces an 
additional detection layer, TDLayer, based on the original three feature layers, incorporating a 4x 
downsampling factor. This modification enables a more effective feature fusion framework, as illustrated 
in Figure 2. The feature map generated by TDLayer has a size of 160×160, with each pixel corresponding 
to a 4×4 region of the original image. This improvement allows the network to efficiently detect small 
objects with a resolution of at least 16 pixels. This multi-scale fusion approach significantly improves 
the detection of objects at various sizes, with particular emphasis on small objects, thereby enhancing the 
overall performance of the network in real-world object detection tasks. 

 
Figure 2: Detection framework. 

3.2. C2FDSC module 

In the YOLOv8 algorithm, the C2f module acts as a crucial component designed to maintain the 
model's lightweight nature while providing richer gradient flow information. However, for small object 
detection, traditional convolution operations often struggle to effectively capture these subtle features, as 
small objects typically have complex shapes and boundaries and occupy a small proportion of the image's 
pixels. 

To address this, we propose a new module called the C2FDSC, which is designed to capture fine-
grained features. The structure of this module is shown in Figure 3. In the C2FDSC module, the C2f 
component is responsible for cross-stage feature fusion, thus providing the model with comprehensive 
image information. Meanwhile, DSC[29] dynamically adjusts the receptive field of convolution kernels, 
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focusing on capturing and processing image structures with complex shapes and backgrounds. This 
enhances the model’s ability to perceive such structures. By combining DSC with the C2f module, we 
effectively leverage the strengths of both components in feature extraction and fusion. 

 
Figure 3: Schematic Diagram of the C2FDSC Module. 

To provide greater flexibility to the convolutional kernels and enable them to focus on the complex 
geometric features of the target, DSC introduces a deformation offset, denoted as Δ. However, if the 
model is allowed to freely learn the deformation offset, the receptive field may shift away from the target. 
To address this issue, an iterative strategy is adopted. In this approach, the next position of each target to 
be processed is sequentially selected for observation. This ensures the continuity of attention and prevents 
the receptive field from expanding excessively due to large deformation offsets, which could lead to an 
over-diffusion of the perception area. The standard convolution kernel is straightened along the x and y 
axes. For example, in the case of a convolution kernel F of size 9 along the x-axis, the specific position 
of each grid in F is represented as: 𝐹𝐹𝑖𝑖 ± 𝑘𝑘=(𝑥𝑥𝑖𝑖 ± 𝑘𝑘,𝑦𝑦𝑖𝑖 ± 𝑘𝑘), where 𝑘𝑘 = {0, 1, 2, 3, 4} represents the 
horizontal distance from the center grid. The se1lection of each grid 𝐹𝐹𝑖𝑖 ± 𝑘𝑘 in the convolution kernel F 
is an accumulated process. Starting from the center position 𝐹𝐹𝑖𝑖, the position 𝐹𝐹𝑖𝑖+1 further from the center 
grid depends on the added offset Δ ={θ｜θ∈[-1,1]} relative to 𝐹𝐹𝑖𝑖. Therefore, the offset needs to be 
accumulated, denoted as ∑, to ensure that the convolution kernel conforms to a linear structural form. 
Along the x-axis is transformed as: 

𝐹𝐹𝑖𝑖±𝑘𝑘=�
(𝑥𝑥𝑖𝑖+𝑘𝑘,𝑦𝑦𝑖𝑖+𝑘𝑘) = (𝑥𝑥𝑖𝑖 + 𝑘𝑘,𝑦𝑦𝑖𝑖 + ∑ ∆𝑦𝑦𝑖𝑖+𝑘𝑘

𝑖𝑖 ),
(𝑥𝑥𝑖𝑖−𝑘𝑘,𝑦𝑦𝑖𝑖−𝑘𝑘) = (𝑥𝑥𝑖𝑖 − 𝑘𝑘,𝑦𝑦𝑖𝑖 + ∑ ∆𝑦𝑦𝑖𝑖

𝑖𝑖−𝑘𝑘 ),
                  (1) 

Along the y-axis direction, it becomes: 

𝐹𝐹𝑗𝑗±𝑘𝑘=�
(𝑥𝑥𝑗𝑗+𝑘𝑘 ,𝑦𝑦𝑗𝑗+𝑘𝑘) = (𝑥𝑥𝑗𝑗 + ∑ ∆𝑥𝑥𝑗𝑗+𝑘𝑘

𝑗𝑗 ,𝑦𝑦𝑖𝑖 + 𝑘𝑘),

(𝑥𝑥𝑗𝑗−𝑘𝑘 ,𝑦𝑦𝑗𝑗−𝑘𝑘) = (𝑥𝑥𝑗𝑗 + ∑ ∆𝑥𝑥𝑗𝑗
𝑗𝑗−𝑘𝑘 ,𝑦𝑦𝑖𝑖 − 𝑘𝑘),

                  (2) 

Due to the variations in the two dimensions (x-axis and y-axis), the DSC covers a 9 × 9 range during 
the deformation process. 

3.3. EACF module 

Feature maps contain different feature information in each channel, but convolutional layers primarily 
compute features from adjacent positions within each map, without considering inter-channel interactions. 
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Inspired by hyperspectral denoising[30], this paper proposes the Enhanced Attention Convolution Fusion 
(EACF) module to suppress background noise and enhance the network's attention to small 
objects.EACF is an enhanced module that integrates convolution operations and attention mechanisms. 
It consists of a local branch, a global branch, DropPath regularization, GELU activation functions, and 
shortcut connections, as shown in Figure 4. 

 
Figure 4: Schematic diagram of the EACF module structure. 

In the local branch, convolution and channel rearrangement are used to extract local features and 
focus on the detailed information in the image. First, a 1×1 convolution is used to adjust the channel 
dimension, followed by a channel shuffling operation to divide the input tensor into multiple groups 
along the channel dimension. Depthwise separable convolutions are then applied within each group to 
shuffle the channels. The output tensors of each group are concatenated along the channel dimension to 
generate a new output tensor. Finally, a 3×3×3 convolution is used to extract features. The local branch 
can be represented as: 

Plocal = K3×3×3(CS(K1×1(I)))                         (3) 

In the global branch, an attention mechanism is used to capture long-range dependencies and focus 

on the global context information in the image. First, three tensors of shape ˆˆ ˆH W C× ×  are generated 
using a 1×1 convolution and a 3×3 depthwise separable convolution, which serve as the query (Q), key 
(K), and value (V), respectively. Next, the dimensions of Q and K are rearranged to generate 

ˆˆ ˆˆ  HW CQ R ×∈  and 
ˆ ˆ ˆˆ   C HWK R ×∈ . This reduces the computational cost when calculating the attention 

map for interaction. The output of the global branch computation can be obtained through the following 
steps: 

1 1
ˆ ˆ ˆ ( ,  ,  )globalP K Attention Q K V I×= +

                   (4) 

Then, after performing a concatenation operation on the outputs of the two branches, the DropPath 
technique and GELU activation function are applied, and a shortcut residual connection is introduced, 
resulting in the output computed by the EACF module: 

Poutput = G(D(Plocal + Pglobal)) + I                     (5) 
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4. Experiments 

4.1. Dataset 

The VisDrone-DET2019 dataset [31] was collected and released by the AISKYEYE team from the 
Machine Learning and Data Mining Laboratory at Tianjin University. It contains a total of 8,629 images, 
as shown in Figure 5. Among them, 6,471 images are used for training the model, 548 images are used 
for model validation, and 1,610 images are used to test the model's performance. This dataset includes 
10 different categories of everyday scenes, specifically: pedestrians, people, bicycles, sedans, vans, 
trucks, tricycles, canopy tricycles, buses, and motorcycles. 

 
Figure 5: VisDrone-DET2019 dataset. 

4.2. Evaluation Metrics 

In this experiment, we use Precision (P), Recall (R), mean Average Precision (mAP) for each category, 
number of model parameters (Parameters), Frames Per Second (FPS), and GFLOPS as evaluation metrics 
to assess the model's performance. 

4.3. Ablation Experiments 

To clearly demonstrate the improvement in the model's detection capability, ablation experiments 
were conducted on the VisDrone dataset. The experiments were performed on the YOLOv8s network 
model, with the proposed modules and methods added progressively.The experimental results are 
detailed in Table 1. 

Table 1: Ablation Experiment Results on VisDrone dataset 

Number Methods P(%) R(%) mAP50(%) mAP50-95(%) Params(M) FPS 
Exp.1 Baseline 49.8 38.8 39 23.2 11.1 1118.52 
Exp.2 Baseline+TDLayer 54.3 41.7 43.7 26.5 10.6 713.81 
Exp.3 Baseline+C2FDSC 51.3 39.4 40.6 24.3 13 258.94 
Exp.4 Baseline+EACF 51.1 38.7 39 23.7 12.8 768.12 

Exp.5 Baseline+TDLayer
+C2FDSC 55.3 42.8 44.9 27.3 12.5 256.55 

Exp.6 Baseline+TDLayer
+C2FDSC+EACF 55.5 43.5 45.4 27.9 14.2 244.89 

The YOLOv8 model, as shown in Table 1, demonstrates significant improvements in small object 
detection accuracy with the introduction of various enhancements. Exp.1 presents the baseline YOLOv8s 
network, while Exp.2 adds a small object detection layer, resulting in a 4.7% improvement in mAP50 
with minimal increase in parameters. This indicates that the modified detection head is better at 
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preserving small object features, reducing missed and false detections. Additionally, the TDLayer 
improves detection resolution while reducing channel numbers, optimizing efficiency and reducing 
network redundancy. Despite an increase in layers, the overall number of parameters decreased, 
maintaining high detection performance and computational efficiency. In Exp.3, replacing the C2F 
module with the C2FDSC module led to improvements in detection accuracy, recall rate, and mAP50, 
with increases of 1.5%, 0.6%, and 1.6%, respectively. This suggests the C2FDSC module adapts better 
to varying object shapes and sizes. Exp.4 introduced the EACF (Attention and Convolution Fusion) 
module, improving detection accuracy by 1.3%, with a slight decrease in recall rate (0.1%) and a 0.9% 
increase in mAP50. The EACF module strengthens important features during extraction and reduces 
interference, enhancing overall detection performance. Exp.5 combined the small object detection layer 
with the C2FDSC module, achieving a 5.9% improvement in mAP50. The combined effect of these 
modules outperforms individual implementations. Finally, Exp.6 integrated all three modules into the 
YOLOv8-Plus algorithm, resulting in a 5.7% improvement in accuracy, a 4.7% increase in recall rate, 
and a 6.4% rise in mAP50. Although FPS decreased slightly, it remained above 30 frames per second, 
meeting real-time detection requirements. The YOLOv8-Plus algorithm thus achieved a balance between 
mAP and FPS, significantly enhancing small object recognition and detection capabilities. 

4.4. Comparative Experiments 

To validate the YOLOv8-Plus model's performance, we compared it with popular object detection 
algorithms on the VisDrone dataset (see Table 2).  

Table 2: Comparative Experimental Results on VisDrone dataset 

Methods P(%) R(%) mAP50(%) mAP50-95(%) Parameters(M) GFLOPS 
RetinaNet 24.2 18.9 18.8 10.8 61 145 

SSD 42.8 27.9 26.7 14.9 26.3 62.8 
Faster-RCNN 36.5 27.7 28.7 16.5 41.2 206.7 
YOLOv3-tiny 38.3 25 23.9 13.3 12.1 19.1 

YOLOv5n 44 32.4 32.4 18.6 2.5 7.2 
YOLOv5s 50.1 38.1 39.1 23.2 9.1 24.1 
YOLOv6n 39.7 31.2 30.3 17.7 4.2 11.9 
YOLOv6s 47.7 37.3 37.2 22.1 16.3 44.2 

YOLOv7-tiny 48.6 37.5 35.7 18.6 6 13.3 
YOLOv8n 44.5 32.8 33 19.2 3 8.2 
YOLOv8s 49.8 38.8 39 23.2 11.1 28.7 
YOLOv8m 53.2 41.9 42.5 25.9 25.9 79.1 

YOLOv9c[32] 56.3 42.8 44 27 25.5 103.7 
YOLOv8-Plus 55.5 43.5 45.4 27.9 14.2 46.7 
The results show that RetinaNet, SSD, and Faster-RCNN perform 26.6%, 15.6%, and 15.8% worse 

than YOLOv8-Plus, respectively, while having significantly higher parameter counts and GFLOPS. 
While YOLO models maintain a favorable parameter count for small object detection, their accuracy still 
lags behind. The mAP50 of YOLOv3-tiny, YOLOv5n, YOLOv5s, YOLOv6n, YOLOv7-tiny, and 
YOLOv8n are 8.2% to 26.6% lower than YOLOv8-Plus. YOLOv8m and YOLOv9c have mAP50 values 
only 2.9% and 1.4% lower, but their parameter counts and GFLOPS increase significantly (by 11.7M 
and 11.3M parameters, and 32.4 and 57 GFLOPS, respectively), which can slow inference speeds. 
Overall, YOLOv8-Plus outperforms other models in various metrics, especially in instance segmentation. 
Its small parameter count and low computational burden make it ideal for practical applications on 
resource-constrained mobile devices or drones, giving it strong potential for future object detection tasks. 

4.5. Visualization Analysis 

Figure 6 compares the detection performance of the proposed algorithm and the baseline model across 
various scenarios, including well-lit, dimly lit, complex backgrounds, and dense target environments.In 
the first set, the baseline model misses many objects, while the proposed algorithm successfully detects 
distant pedestrians, motorcycles, and occluded tricycles and bicycles. In the second set, with dense targets 
and dim lighting, the baseline model both misses and misidentifies objects, such as confusing a toy with 
a motorcycle. In the third set, the proposed algorithm detects densely packed motorcycles and distant 
pedestrians, whereas the baseline misses several objects. In the final set, in low-light conditions, the 
baseline model fails to detect a motorcycle hidden under a tree, while the proposed algorithm performs 
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well in detecting objects in such environments. 

 
Figure 6: The comparison of detection results on the VisDrone dataset: (a) column shows the original 

image, (b) column shows the detection results using YOLOv8s, and (c) column shows the detection 
results using YOLOv8-plus. 

Overall, the proposed algorithm outperforms the baseline, particularly in detecting small and 
occluded objects, and reduces missed and misdetections, providing better localization and detection for 
small-object detection. Figure 6 compares the detection performance of the proposed algorithm and the 
baseline model in various scenarios, including well-lit, dimly lit, complex backgrounds, and dense target 
environments. 

5. Conclusion 

In this paper, we address the issue of small objects occupying a small pixel area in images, which 
often leads to missed detections and susceptibility to noise. We propose an improvement to the popular 
YOLOv8 algorithm, adapting it for small object detection, resulting in the YOLOv8-Plus algorithm. 
Firstly, we introduce a new small object detection layer, TDLayer, into the neck network, allowing the 
model to fully leverage both shallow spatial location information and deep high-level semantic 
information for small object detection. Secondly, we integrate the C2FDSC module, designed in this 
study, enabling the model to flexibly capture the shapes and boundaries of small objects during training. 
Finally, we introduce the attention convolution fusion module, EACF, which allows the model to focus 
more on the target region, suppressing noise and ignoring irrelevant background information. 
Experimental results on the VisDrone 2019 dataset show that the model not only achieves significant 
improvements in detection accuracy but also demonstrates stronger generalization capability, effectively 
handling object detection tasks in complex environments. However, there are still some limitations in the 
proposed detection algorithm, such as minor missed detections for extremely dense and small objects. 
Although model accuracy has improved, the increase in model size and complexity has led to longer 
training and inference times. Future research will focus on optimizing the computational efficiency of 
the model, such as by introducing lighter network architectures or enhancing the parallel processing 
capability of the algorithm to improve real-time detection performance. Additionally, to address the 
challenges of small object detection, exploring more advanced feature extraction techniques and loss 
function designs may further improve the robustness and accuracy of the model. 
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