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Abstract: With the rapid evolution of global land use patterns, accurate and efficient land use 

identification technologies are crucial for resource management and ecological protection. This study 

focuses on the application of the Extreme Learning Machine (ELM) in land use identification and 

systematically conducts a sensitivity analysis of Landsat bands. By constructing an ELM classification 

model, we quantify the contribution of each band and band combination to the recognition accuracy of 

different land use types. The results indicate that the ELM model exhibits excellent performance in land 

use identification, achieving an overall identification accuracy of 80.9% when the number of hidden 

neurons is set to 90. The sensitivity analysis reveals that bands B3, B4, and B7 demonstrate significant 

advantages in desert identification, consistently maintaining an accuracy of 100%. Bands B5 and B7 

achieve an accuracy of 99% in water identification, while identifying construction land presents the 

main challenge, with an average accuracy of only 54.7%. The further introduction of vegetation indices 

(e.g., EVI, NDVI) and band combination analysis shows that EVI enhances the recognition accuracy of 

forest land by 29.3%, and NDWI improves the recognition accuracy of construction by 10%. This 

verifies the important value of band sensitivity analysis in optimizing feature selection.This study 

confirms that band sensitivity analysis based on ELM can effectively reveal the intrinsic correlations 

between spectral data and land use types, providing a scientific basis for constructing high-precision 

and robust land use identification models, which is significant for advancing the application of remote 

sensing technology in land resource monitoring and management. 

Keywords: Extreme Learning Machine; Land Use; Band Sensitivity Analysis 

1. Introduction 

Scene classification of remote sensing images is crucial for various fields, including land 

management, urban planning, environmental exploration and monitoring, and natural disaster 

detection[1-2]. Over the past few decades, researchers have conducted extensive experiments in scene 

classification for satellite and aerial photographs, leading to the development of numerous 

taxonomies[3]. However, most classical methods rely on artificial or shallow learning algorithms, which 

extract low- to mid-level semantic features with limited descriptive capability. This limitation hinders 

further improvements in classification accuracy. Machine learning (ML) has become instrumental in 

addressing challenging problems in forecasting, classification, and clustering. However, conventional 

machine learning algorithms typically assume that the underlying distributions of training and testing 

samples are the same. Unfortunately, this assumption is frequently violated in practice, causing 

conventional ML algorithms to fall short of their intended purpose [4]. The extreme learning machine 

(ELM), introduced by Huang et al., is a relatively new algorithm that has been applied to various 

relational problems due to its simple structure, rapid learning capabilities, and superior generalization 

performance[5]. 

Currently, numerous domestic and international scholars have applied Extreme Learning Machines 

(ELM) to the classification of remote sensing images, achieving commendable results. However, most 

studies focus on high-resolution images[6-7]. The challenge lies in the fact that many high-resolution 

remote sensing images lack long-term sequences and are difficult to obtain, resulting in a scarcity of 

research on the classification of medium and low-resolution remote sensing images using ELM. To 

address this gap, we propose a novel automatic recognition system for remote sensing images based on 

Landsat imagery with a resolution of 30m×30m. By investigating the sensitivity of ELM to the bands 

of Landsat TM remote sensing images and understanding the interaction and disturbance mechanisms 
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inherent to the ELM model, this study aims to provide a theoretical foundation for the recognition and 

classification of remote sensing images utilizing ELM. Additionally, we evaluate the effects of various 

band indices, including DVI, RVI, NDVI, NDWI, and EVI, on the accuracy of predicting forest land, 

grassland,farmland, construction land, water, and desert areas. 

2. Materials and Methods 

2.1 Data processing 

The artificial feature sample data consists of 200 samples, collected from the Aksu region. Given 

that neural network models require a substantial number of samples for effective training, an additional 

2200 sample points were interpreted from Google Earth images with a resolution of 0.9 meters during 

the same period. The coordinate information and feature types of these points were recorded, and they 

will be utilized alongside the artificial feature sample data for training the neural network. The feature 

types include forest land, grassland,farmland, water, construction land, and desert, as illustrated in Fig. 

1. The Landsat 1-7 TM remote sensing image data were sourced from the Landsat series available on 

the Geospatial Data Cloud, with a resolution of 30 meters (strip numbers 144/145/146/147, line 

numbers 31/32). The Landsat remote sensing images from the same period underwent geometric 

correction, atmospheric correction, geometric calibration, radiometric calibration, and image mosaic 

stitching and cropping. Ultimately, band values and indices for 2400 sample pixels were extracted, 

including EVI, DVI, RVI, NDVI, and NDWI. 

 

Figure 1 Remote Sensing Interpretation Samples 

(Note: from left to right are forest , grassland, farmland, water, construction and desert) 

2.2 Extreme learning machine(ELM) 

Extreme Learning Machine (ELM) is characterized as a single-hidden layer feedforward network 

(SLFN). Unlike traditional neural networks, ELM operates in a single step rather than through iterative 

processes. Consequently, the learning speed of ELM is significantly faster than that of conventional 

neural networks. In ELM, the parameters, including input weights and hidden biases, are fixed after 

being randomly generated, allowing the output layer weights to be computed using the least squares 

solution[8].The basic principle of the extreme learning machine is shown in Figure 2. 

 

Figure 2 Basic schematic diagram of the extreme learning machine 

The mathematical modeling of ELM-based classifier is presented in the following formula in detail. 

Firstly, we assume the training data specimens H(Yn, Tn) utilized for designing the ELM classifier then 

activation function xexg  1/1)( will be utilized and is represented as  
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For h hidden nodes with G training data specimens and error = zero, then relation of βi; ωi and bi: 
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And β is given by 
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The output weight vector β can be calculated by 

TH  
                                   (6) 

Where Hψ = the Moore–Penrose pseudo-inverse of the hidden layer output matrix H 

T = the output matrix is given as follows: 
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Based on this learning algorithm, ELM training was quickly completed. 

3. Results and discussions 

3.1 ELM-based band sensitivity analysis 

 

Figure 3 ELM-based band sensitivity analysis 

(Note: horizontal coordinate is the number of hidden neurons, vertical coordinate is the inversion 

accuracy of neural network) 
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Since the launch of the first satellite in 1972, the Landsat series has accumulated decades of Earth 

observation data, providing crucial support for global land monitoring. The bands are as follows: Band 

1 is the blue light band (0.45-0.52 μm); Band 2 is the green light band (0.52-0.60 μm); Band 3 is the 

red light band (0.63-0.69 μm); Band 4 is the near-infrared band (0.77-0.90 μm); Band 5 is the 

short-wave infrared 1 band (1.55-1.75 μm); Band 6 is the thermal infrared band (10.4-12.5 μm); and 

Band 7 is the short-wave infrared 2 band (2.09-2.35 μm). These seven bands span a broad spectral 

range from visible to thermal infrared, complementing each other to provide multi-dimensional spectral 

information for remote sensing applications, such as land use classification, vegetation dynamics 

monitoring, and the inversion of surface physical parameters. They play a pivotal role in the 

comprehensive analysis of complex surface environments. To investigate the perturbation mechanism 

of ELM land use type classification, this paper employs the ELM model to analyze Landsat remote 

sensing images across these bands, with the results illustrated in Figure 3. 

The results indicate that for the ELM model, the optimal number of hidden neurons ranges from 70 

to 120. In terms of single-band sensitivity analysis, the B1 band exhibits the highest sensitivity to water, 

achieving a maximum recognition accuracy of 90%, which enables effective differentiation between 

water and soil. The B2 band demonstrates greater sensitivity to deserts and farmland; specifically, with 

100 hidden neurons, the recognition accuracy for farmland is 80%, while for deserts, it is 98%. This 

band can be utilized to assess vegetation presence and health. The B3 band is notably sensitive to both 

deserts and water, consistently identifying deserts with an accuracy of 100%, regardless of the number 

of hidden neurons, while achieving 80% accuracy for water bodies. Thus, the ELM can distinguish 

between deserts and non-deserts using the B3 band as a key feature, which is crucial for differentiating 

between vegetated and non-vegetated areas. The B5 band also shows high sensitivity to water bodies, 

maintaining a 100% recognition accuracy irrespective of the number of hidden neurons, allowing for a 

complete distinction between water bodies and non-water bodies based solely on the B5 band. 

Similarly, the B6 band is highly sensitive to water bodies, achieving a recognition accuracy of 99%. 

The B7 band is sensitive to deserts, water bodies, andfarmland, with recognition accuracies of 100% 

for deserts, 99% for water bodies, and 71% for farmland, making it the band that best reflects feature 

information among the B1 to B7 bands. 

Overall, bands B3, B4, and B7 demonstrate a remarkable capability to identify deserts without the 

limitations typically associated with neurons, achieving a recognition accuracy approaching 100%. This 

makes deserts the least ambiguous category among the features analyzed. Bands B5 and B7 also exhibit 

high efficacy in recognizing water bodies, with individual recognition accuracy nearing 100%. 

However, the overall recognition accuracy for water bodies declines to 88.9% when integrating bands. 

In contrast, the individual bands are less effective in classifying and recognizing grassland, forest, and 

construction areas. Nevertheless, following band integration, the recognition accuracy improves to 

65.9%for grassland and 57.5% for forest and construction, likely attributable to the development of 

multidimensional spectral features and the complementary nature of these features. Bands B1, B2, B4, 

and B7 can be utilized for identifying arable land, although they are prone to confusion with other land 

feature classes. 

3.2 Sensitivity analysis of vegetation index based on ELM 

Vegetation indices reflect the differences in vegetation reflectance between the visible and 

near-infrared bands, as well as the soil background. Various vegetation indices can effectively quantify 

the physiological state and cover information of vegetation under specific conditions, providing an 

intuitive and differentiated basis for land remote sensing monitoring. This study investigates the 

significance of several common band indices in the inversion of feature identification using the ELM 

model and explores the potential application value of vegetation indices by integrating machine 

learning with spectral features. The vegetation indices, including RVI (Ratio Vegetation Index), NDVI 

(Normalized Vegetation Index), DVI (Difference Vegetation Index), and EVI (Enhanced Vegetation 

Index), are widely utilized for monitoring vegetation cover, biomass, and growth. Additionally, NDWI 

(Normalized Difference Water Index) is selected as the water index for identifying water and land 

boundaries and monitoring the water environment.The calculation formulas and functions of each 

index are shown in Table 1. 
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Table 1 Common Band Indices 

Index Formula Function 

RVI(Ratio 

Vegetation Index) 

RVI=NIR/R The RVI is much higher than 1 for green and 

healthy vegetation cover areas and about 1 for 

unvegetated ground, which is suitable for 

monitoring vegetation growth in areas with high 

vegetation cover[9]. 

NDVI(Normalized 

Vegetation Index) 

NDVI=(NIR-R)/(NIR+R) Usually used to detect the growth status of 

vegetation; the range of values is from - 1 to 1. 

When NDVI<0, it means that the ground cover 

is cloud, water, snow, etc.; when NDVI=0, the 

ground cover is rock or bare soil, etc.; when 

NDVI>0, it means that the ground surface is 

covered with vegetation, and it increases with 

the increase of the degree of cover[10]. 

DVI(Difference 

Vegetation Index) 

DVI=NIR-R It is used for monitoring vegetation ecosystems 

and is suitable for detecting vegetation in the 

early to middle stages of vegetation 

development, or in low to medium cover[11]. 

EVI(Enhanced 

Vegetation Index) 

EVI=2.5×
ρNIR−ρRED

ρNIR+6ρRED−7.5ρBLUE+1
 

Typically used for monitoring in heavily 

vegetated areas, the vegetation signal is 

enhanced by the inclusion of a blue band to 

correct for the effects of soil background and 

aerosol scattering; EVI values range from - 1 to 

1, with a range of 0.2 - 0.8 for green vegetated 

areas[12]. 

NDWI(Normalized 

Difference Water 

Index) 

NDWI=(Green-NIR)/ 

(Green+ NIR) 

Often used to extract water body information 

from images, suitable for the extraction and 

monitoring of large water bodies in the natural 

environment[13]. 

In this study, a total of 2,400 sample points were extracted, organized, and grouped, with 80% 

allocated for training and the remaining 20% designated for prediction. The subsequent figure 

illustrates the impact of incorporating various band indices—DVI, RVI, NDVI, NDWI, and EVI—on 

the accuracy of predicting forest land, grassland, farmland, construction land, water bodies, and desert 

areas, under different configurations of hidden neurons. It is noted that both excessively high and low 

numbers of hidden neurons can adversely affect the accuracy of feature type discrimination. Therefore, 

this paper selects a range of hidden neurons from 70 to 120 and investigates the influence of band 

indices on feature classification and recognition, utilizing a constrained learning machine model. 

As illustrated in Fig. 4, the model achieves the highest overall recognition performance when the 

number of hidden neurons is set to 90, resulting in a recognition accuracy of 80.9%. The Extreme 

Learning Machine demonstrates exceptional recognition accuracy for desert areas, attaining 100% 

accuracy in desert recognition regardless of variations in the number of hidden neurons or the inclusion 

of the band index. Conversely, the recognition accuracy for construction land is comparatively lower, 

with an average recognition accuracy of 54.7%. Data analysis indicates a decreasing trend in 

recognition accuracy for construction land following the addition of the band index, with a slight 

improvement observed only upon incorporating the DVI and NDWI indices. Notably, when the number 

of hidden neurons is set to 120, the combination of B1-7 and NDWI yields the highest recognition 

accuracy for construction land, reaching 97.5%. The recognition accuracy of the Extreme Learning 

Machine for water bodies is 91.1%, and the B1-7+ALL combination enhances this accuracy. The 

average recognition accuracy for grassland using the Extreme Learning Machine is 70.6%. The 

B1-7+EVI combination improves grassland recognition accuracy by an average of 9.1%, while the 

B1-7+ALL combination enhances it by an average of 11.2%. For farmland, the average recognition 

accuracy of the Extreme Learning Machine is notably better, averaging 85.7%. The sensitivity to band 

indices is minimal, showing no significant fluctuations in recognition accuracy whether or not the band 

indices are included. The average recognition accuracy for forest land is 72.2%, with a higher 

sensitivity to the EVI and ALL band indices. The combination of B1-7 and EVI improves accuracy by 

29.3%, while the B1-7 and ALL combination enhances accuracy by 23.6% compared to B1-7. 
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(a)Hidden neurons = 70                      (b)Hidden neurons = 80   

 
(c)Hidden neurons = 90                    (d)Hidden neurons = 100 

 
(c)Hidden neurons = 110                    (d)Hidden neurons = 120  

Figure 4 Effect of different band indices on feature types under different hidden neuron numbers 
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Table 2 Classification of the ground objects by the neural network model 

  Grassland Farmland  Water Construction  Desert Forest 

B1-7 0.659  0.855  0.888  0.575  1.000  0.575  

B1-7+DVI 0.668  0.854  0.896  0.611  1.000  0.664  

B1-7+RVI 0.689  0.864  0.875  0.500  1.000  0.696  

B1-7+NDVI 0.732  0.854  0.936  0.589  1.000  0.707  

B1-7+NDWI 0.671  0.850  0.921  0.675  1.000  0.732  

B1-7+EVI 0.750  0.861  0.925  0.361  1.000  0.868  

ALL 0.771  0.861  0.939  0.518  1.000  0.811  

To investigate the sensitivity of the extreme learning machine (ELM) to each band index, the 

overall recognition accuracy for each hidden neuron was averaged. The results, presented in Table 2, 

indicate that the overall recognition accuracy for B1-7 is 75.9%, demonstrating greater sensitivity to 

deserts, water bodies, and farmland, while showing insensitivity to forested land and construction land, 

which had a recognition accuracy of only 57.5%. After adding the DVI (Difference Vegetation Index), 

the recognition accuracy of each feature type was improved, and the overall recognition accuracy of 

B1-7+DVI was 78.2%, of which the most significant improvement in recognition accuracy was for 

forest land, with the accuracy improved by 8.9%. When the RVI (Ratio Vegetation Index) was added, 

the overall recognition accuracy for B1-7+RVI reached 77.1%. The RVI specifically improved the 

recognition accuracy of vegetation types such as grassland, farmland, and forest, with forest land 

accuracy increasing by 12.1%. However, it had no effect on construction land and water bodies, even 

reducing their recognition accuracy. The NDVI (Normalized Difference Vegetation Index) significantly 

improved recognition accuracy for both grassland and forest land, with grassland accuracy increasing 

by 7.3% and forest accuracy by 13.2%. The overall recognition accuracy for B1-7+NDVI was 80.3%. 

The NDWI (Normalized Difference Water Index) also greatly enhanced recognition for construction 

and forest, improving building accuracy by 10% and forest land accuracy by 15.7%, contributing to an 

overall accuracy increase of 4.97%. The EVI (Enhanced Vegetation Index) significantly boosted 

accuracy for grassland and forest, with grassland recognition improving by 9.1% and forest by 29.3%. 

Overall, the combination of the 7-band values with various band indices resulted in a recognition 

accuracy that was 5.8% higher than that of the single 7-band, with specific improvements of 11.2% for 

grassland, 0.6% for farmland, 5.1% for water bodies, and 23.6% for forest land. The highest 

classification accuracy and optimal results were achieved by utilizing the B1-7 band values alongside 

all band indices as training objects for the extreme learning machine, leading to an overall accuracy 

improvement of 5.8%. 

3.3 ELM-based land use remote sensing inversion 

Extreme Learning Machine (ELM) is particularly well-suited for processing large-scale and 

high-resolution remote sensing data due to its randomly generated hidden layer parameters, which 

eliminate the need for iterative optimization. Based on the sensitivity analysis results of ELM 

concerning Landsat band indices and vegetation indices, this paper utilizes Landsat bands B1, B2, B3, 

B4, B5, B6, B7, as well as RVI, NDVI, DVI, EVI, and NDWI as the training object limits for the 

learning machine. The number of hidden neurons is set to 90 for classifying land use in the Alar 

reclamation area, resulting in an overall model recognition accuracy of 80.9%. The results are 

illustrated in Figure 5. 

 

Figure 5 Land use distribution map of Aral 
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4. Conclusion and discussion 

In this paper, we utilize the ELM model to conduct band sensitivity analysis on Landsat remote 

sensing images, systematically revealing the performance of ELM model parameters and multispectral 

bands in feature recognition. This study finds that when the number of hidden neurons in the ELM 

model is within the range of 70 to 120, the overall performance of the model is more stable. 

Specifically, when the number of hidden neurons is set to 90, the overall recognition accuracy reaches 

80.9%, indicating optimal performance and providing a stable algorithmic foundation for subsequent 

waveband sensitivity analysis.  

In terms of single-band sensitivity, each band shows distinctive feature recognition specificity. The 

results show that Band 1, Band 5, Band 6, and Band 7 have high accuracy in recognizing water bodies 

even when analyzed individually. These bands can be utilized for monitoring water-related data, such 

as soil moisture, soil water content, agricultural irrigation management, and drought monitoring. Future 

research can explore the feasibility of new algorithms and develop new band indices for monitoring 

subtle plant moisture and crop moisture. Band 3, Band 4, and Band 7 are capable of distinguishing 

between desert and non-desert areas with a single band, thereby serving as core bands for 

differentiating vegetation from non-vegetation. Additionally, we can explore new band indices through 

the combination of these bands to monitor vegetation health, changes in chlorophyll content, and 

vegetation coverage. The band 2 is particularly sensitive to desert and farmland, making it suitable for 

monitoring crop growth and providing a foundation for smart agriculture and irrigation practices. 

The band indices of RVI, NDVI, DVI, EVI, and NDWI are not significant for the identification of 

farmland, grassland, desert, and construction land; however, the accuracy of forest land identification 

has improved, with EVI showing the most significant enhancement, increasing accuracy by 29.3%. 

This improvement may be attributed to the higher vegetation cover in forested areas, where EVI 

performs exceptionally well. Furthermore, the fusion of multi-band information provides richer spectral 

features, aiding in the differentiation of forest from other land cover types. This capability also allows 

for better capture of details regarding forest vegetation, such as tree species and growth stages, thus 

offering more multi-dimensional information for forest identification and improving accuracy. 

Although NDVI, EVI, and NDWI positively influence the recognition accuracy of water bodies, the 

inclusion of vegetation indices and other bands can reduce the recognition accuracy of water bodies 

compared to the use of single bands B5 and B7. This reduction may stem from the fact that B5 and B7 

belong to the short-wave infrared (SWIR) bands, where water bodies exhibit strong absorption 

properties and their reflectance approaches zero. In contrast, the reflectance of most non-water features 

(e.g., vegetation, soil, and construction) is significantly higher in SWIR bands. The underlying reasons 

for this pronounced spectral difference, which enables the identification of water bodies using a simple 

reflectance threshold, warrant further investigation. 
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