
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 4: 56-61, DOI: 10.25236/AJCIS.2024.070408

Published by Francis Academic Press, UK
-56-

Attention-based Multilayer Linear Diffusion Model

Yixuan Zhang1,*

1College of Information Engineering, Nanjing University of Finance and Economics, Nanjing, China
*Corresponding author: 670891548@qq.com

Abstract: In recent years, two major issues in recommendation systems have received extensive attention
from researchers: (1) The incompleteness of user interaction data: In recommendation systems, user
interaction data is often incomplete. (2) Difficulty in accurately reflecting users' true preferences through
interactions: User interaction data may suffer from selection biases, with some interactions possibly
being noise, leading to misinterpretation of user preferences by the recommendation system. To address
these challenges, we propose an Attention-based Multilayer Linear Diffusion Model (AMLDM).
Specifically, we gradually introduce pre-defined Gaussian noise into the forward process to disrupt
users' interaction histories. Subsequently, through multiple attention-based linear layers, we iteratively
restore the damaged interaction histories incurred during th e forward process, ensuring that the
distribution of the repaired interaction history aligns with the original distribution of user interaction
history. By injecting an appropriate amount of noise into users' interaction histories, we enhance the
robustness of the recommendation system and learn users' true preferences during the reverse process.
Comparative analysis with several benchmark recommendation system models demonstrates the
significant advantages of our proposed algorithm in recommendation performance.

Keywords: Recommendation System, Neural Network, Diffusion Model

1. Introduction

For modern recommendation systems, leveraging historical interaction data between users and items
to learn user preferences and recommend items is crucial. Traditional deep learning approaches, such as
Multilayer Perceptrons (MLP), Recurrent Neural Networks (RNN), Convolutional Neural Networks
(CNN), and the Transformer framework, typically represent items as dense vectors in a latent space.
However, this approach encounters two main challenges:(1)User interests are diverse and may change
over time, making it difficult for fixed-length vectors to fully capture user preferences.(2)These methods
assume that items with the highest correlation to user interactions are the most relevant, potentially
leading to exposure bias.To address these issues, researchers have employed generative models such as
Generative Adversarial Networks (GANs) and Variational Autoencoders (VAEs) to infer the interaction
probabilities of users without item interaction records. These models treat user preferences as latent
factors determining user behavior and sample from learned probability distributions to mimic the
uncertainty in user behavior.

GAN learns the judging criteria in the discriminator through adversarial training. For instance, in
IRGAN (IRGAN: A Minimax Game for Unifying Generative and Discriminative Information Retrieval
Models), researchers proposed a generative retrieval GAN model for item recommendation; while SD-
GAR (Sampling-Decomposable Generative Adversarial Recommender) further improved this process by
sampling decomposition in the generator. However, adversarial training suffers from significant
instability, leading to uncontrollable performance of recommendation systems based on GANs.

VAE learns the posterior distribution of latent factors by maximizing the likelihood of historical
interactions. For example, Liang et al. proposed VAE for collaborative filtering with implicit feedback;
while in ACVAE (Adversarial and Contrastive Variational Autoencoder for Sequential
Recommendation), authors utilized adversarial training to enhance sequential VAE for capturing user
preferences. Despite VAE having precise mathematical theoretical support, computing the posterior
distribution in VAE is very challenging.

In addition to the aforementioned issues, both GANs and VAEs may suffer from posterior collapse
due to information bottleneck, where the posterior probability degenerates to be consistent with the prior
probability, resulting in hidden representations possibly lacking information about user preferences. As
these methods generate only a small number of outputs over multiple iterations, they are also prone to

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 4: 56-61, DOI: 10.25236/AJCIS.2024.070408

Published by Francis Academic Press, UK
-57-

pattern collapse issues. To address these challenges, researchers have employed a new generative model
paradigm—diffusion models, which overcome the problems of traditional generative models and
accurately model complex user interactions in a denoising manner. In the forward process, diffusion
models progressively corrupt the initial image 𝑥𝑥0 with Gaussian noise; in the backward process, they
recover the initial image 𝑥𝑥0 from the final image 𝑥𝑥𝑇𝑇 . Because the noise added during the forward
process follows a Gaussian distribution rather than being randomly generated, based on Markov chain
theory, the state of the noise at any moment during the noise addition process can be calculated, making
the training of diffusion models controllable; while the backward process is the removal of noise added
during the forward process, which is computationally tractable. We propose the AMLDM model based
on the diffusion model in the field of image processing.AMLDM simultaneously address the challenges
in generative models: the training instability in GANs and the difficulty in computing the posterior
distribution in VAEs.

2. Method

As shown in Figure 1, The AMLDM model can be divided into two parts:Forward process: Gaussian
noise is gradually added to disrupt the user's interaction history. This process is part of a Markov
chain.Reverse process: Noise removal is gradually learned to restore the original data. Similarly, this is
also a Markov chain, where the transition probability 𝑝𝑝𝜃𝜃(𝑥𝑥𝑡𝑡−1 |𝑥𝑥𝑡𝑡) is based on the data distribution
generating 𝑥𝑥𝑡𝑡−1 given 𝑥𝑥𝑡𝑡. In the Reverse process, a multi-head attention mechanism is employed to
enhance the model's learning capability.

Figure 1: Attention-based Multilayer Linear Diffusion Model (AMLDM)

The Forward process is a continual addition of pre-defined Gaussian noise to the initial data
distribution. In other words, over time, the current data distribution is generated by adding pre-defined
noise to the distribution of the previous time step. This noise addition method is guided by the theory of
Markov chains and possesses "memorylessness" – the calculation of the next state only requires the
utilization of the previous state. The Markov chain theory decomposes the complex forward process into
a series of discrete states and transition probabilities, thereby simplifying the complexity of the diffusion
model. Compared to randomly adding noise, pre-defined noise allows for the precise calculation of the
data state at any given time.

To add noise to the state 𝑥𝑥𝑡𝑡−1 to transition it to state 𝑥𝑥𝑡𝑡, the formula is as follows:

𝑞𝑞(𝑥𝑥𝑡𝑡|𝑥𝑥𝑡𝑡−1) = 𝒩𝒩(𝑥𝑥𝑡𝑡;�1 − 𝛽𝛽𝑡𝑡𝑥𝑥𝑡𝑡−1,𝛽𝛽𝑡𝑡𝐼𝐼) (1)

Where, 𝑥𝑥𝑡𝑡represents the data distribution at time 𝑡𝑡, 𝛽𝛽𝑡𝑡 ∈ (0, 1). The mean and variance of the
injected noise are determined by 𝛽𝛽𝑡𝑡, used to control the scale of Gaussian parameter injection. Based on
renormalization techniques and the additivity property of two Gaussian distributions, we do not need to
iteratively compute every step of the state in the Markov chain, but can directly compute 𝑥𝑥𝑡𝑡 from the
initial state 𝑥𝑥0:

𝑥𝑥𝑡𝑡 = �𝛼𝛼�𝑡𝑡𝑥𝑥0 + �1 − 𝛼𝛼�𝑡𝑡𝜖𝜖 (2)

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 4: 56-61, DOI: 10.25236/AJCIS.2024.070408

Published by Francis Academic Press, UK
-58-

Where 𝛼𝛼𝑡𝑡 = 1 − 𝛽𝛽𝑡𝑡 , 𝛼𝛼�𝑡𝑡 = Π𝑖𝑖=1𝑡𝑡 𝛼𝛼𝑖𝑖, with random noise 𝜖𝜖, 𝜖𝜖 (0,)I∼  .

In the original diffusion model, noise grows linearly with time 𝑡𝑡. Specifically, the magnitude of noise
added in the first step is 0.1, in the second step is 0.2, and in the third step is 0.3. However, for the initial
data, after the first step, the noise level is 0.1, after the second step, it becomes 0.3, and after the third
step, it reaches 0.6. Since recommendation systems are highly sensitive to noise, excessive noise may
lead to imbalanced recommendation outcomes. Therefore, this study adopts a simple linear
transformation, making the noise level in the data a linear function of time 𝑡𝑡.

1 − 𝛼𝛼�𝑡𝑡 = 𝑅𝑅 ⋅ �𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 −
𝑇𝑇 − 𝑡𝑡
𝑇𝑇 − 1

(𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 − 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚)� , 𝑡𝑡 ∈ 1, … ,𝑇𝑇 (3)

𝑅𝑅 ∈(0,1) is used to modulate the intensity of noise generation; 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 > 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚 ∈ (0,1) represent the
upper and lower bounds of the noise, respectively. 𝑇𝑇 is the total number of steps for noise generation,
while 𝑡𝑡 is the current step. In the formula, the only variable is 𝑡𝑡, with all other parameters being fixed
constants, resulting in noise generation being a linear function of 𝑡𝑡. During the forward process, the
generated noise progressively approaches the set upper limit, 𝑁𝑁𝑚𝑚𝑚𝑚𝑚𝑚. Through linear transformation and
selecting appropriate noise upper bounds, it ensures smooth noise generation without disrupting the
normal operation of the recommendation system.

We choose to use user-item interaction data as the initial data distribution:

𝑥𝑥𝑢𝑢 = �𝑥𝑥𝑢𝑢1, 𝑥𝑥𝑢𝑢2, … , 𝑥𝑥𝑢𝑢
|𝐼𝐼|� (4)

Where 𝑥𝑥𝑢𝑢1 = 1 represents an interaction between user and item 1.

The Reverse process involves gradually removing the noise added during the forward process,
restoring the user's initial interaction history. When the added noise is sufficiently small, we can assume
it follows a Gaussian distribution 𝑞𝑞(𝑥𝑥𝑡𝑡−1 ∣ 𝑥𝑥𝑡𝑡), but cannot progressively fit this distribution because it
requires traversing the entire dataset, which would be computationally prohibitive. Similar to the forward
process, the backward process is also a Markov chain. We can equivalently substitute 𝑞𝑞(𝑥𝑥𝑡𝑡−1 ∣ 𝑥𝑥𝑡𝑡 , 𝑥𝑥0)
for the inexpressible distribution 𝑞𝑞(𝑥𝑥𝑡𝑡−1 ∣ 𝑥𝑥𝑡𝑡).

Expanding 𝑞𝑞(𝑥𝑥𝑡𝑡−1 ∣ 𝑥𝑥𝑡𝑡 , 𝑥𝑥0) and substituting into the probability density function of the Gaussian
distribution and parameter renormalization, we obtain the mean and variance as 𝑥𝑥0:

𝜇𝜇�(𝑥𝑥𝑡𝑡 , 𝑥𝑥0, 𝑡𝑡) =
�𝛼𝛼𝑡𝑡(1 − 𝛼𝛼�𝑡𝑡−1)

1 − 𝛼𝛼�𝑡𝑡
𝑥𝑥𝑡𝑡 +

�𝛼𝛼�𝑡𝑡−1(1 − 𝛼𝛼𝑡𝑡)
1 − 𝛼𝛼�𝑡𝑡

𝑥𝑥0 (5)

𝛽𝛽𝑡𝑡 � =
(1 − 𝛼𝛼𝑡𝑡)(1 − 𝛼𝛼�𝑡𝑡−1)

1 − 𝛼𝛼�𝑡𝑡
(6)

Since 𝑞𝑞(𝑥𝑥𝑡𝑡−1 ∣ 𝑥𝑥𝑡𝑡) is unknown, we need to design a neural network to fit 𝑞𝑞(𝑥𝑥𝑡𝑡−1 ∣ 𝑥𝑥𝑡𝑡), the formula
is as follows:

𝜇𝜇𝜃𝜃 and Σ𝜃𝜃represent the mean and variance of the Gaussian distribution obtained through neural
network training. Determining the optimization direction by computing the likelihood function of
equation (7).

𝑝𝑝𝜃𝜃(𝑥𝑥𝑡𝑡−1|𝑥𝑥𝑡𝑡) = 𝒩𝒩�𝑥𝑥𝑡𝑡−1;𝜇𝜇𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡), Σ𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡)� (7)

log 𝑝𝑝𝜃𝜃(𝑥𝑥0) ≥ log 𝑝𝑝𝜃𝜃(𝑥𝑥0) − 𝐷𝐷𝐾𝐾𝐾𝐾(𝑞𝑞(𝑥𝑥1:𝑇𝑇|𝑥𝑥0) ∣∣ 𝑝𝑝𝜃𝜃(𝑥𝑥1:𝑇𝑇|𝑥𝑥0)) (8)

We skip the intermediate complex derivation process and directly provide the final results.And the
final obtained loss function is (9):

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 = 𝔼𝔼𝑥𝑥0,𝜖𝜖(||𝜖𝜖 − 𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡)||2) (9)

𝜖𝜖 represents the true generated noise, and 𝜖𝜖𝜃𝜃 needs to be fitted by a neural network. The smaller the
difference between the two, the smaller the loss function, and the more accurate the denoising process.
When the model fits A, it is substituted into equation (7) obtain 𝑥𝑥𝑡𝑡−1.

Where 𝜎𝜎𝑡𝑡𝑧𝑧 represents the error between simulated noise and actual noise.

𝑥𝑥𝑡𝑡−1 =
1
�𝛼𝛼𝑡𝑡

�𝑥𝑥𝑡𝑡 −
1 − 𝛼𝛼𝑡𝑡
�1 − 𝛼̄𝛼𝑡𝑡

𝜖𝜖𝜃𝜃(𝑥𝑥𝑡𝑡 , 𝑡𝑡)� + 𝜎𝜎𝑡𝑡𝑧𝑧 (10)

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 4: 56-61, DOI: 10.25236/AJCIS.2024.070408

Published by Francis Academic Press, UK
-59-

Figure 2: The training process of the AMLDM

As shown in Figure 2, the core component of AMLDM is the multi-attention linear layer, which takes
𝑥𝑥𝑡𝑡 and 𝑡𝑡 as inputs and outputs the fitted noise 𝜖𝜖𝜃𝜃.

We designed a multi-attention linear layer, which consists of the commonly used linear layers and
attention layers. By utilizing self-attention mechanism, this layer can compute different weights for linear
layers at different positions. Combining self-attention and multi-linear layers, we constructed the multi-
attention linear layer, whose specific structure is shown in Figure 3.

Assuming there are M linear layer outputs {y1, y2, ..., yM}, and N attention layers are used, which
contain learnable parameters {v1, v2, ..., vN}, {q1, q2, ..., qN}, and {k1, k2, ..., kN}, with input 𝑦𝑦 having a
dimension of d: 𝑦𝑦=𝑤𝑤𝑥𝑥. The calculation of the attentioni layer is as follows:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑞𝑞𝑖𝑖𝑦𝑦(𝑘𝑘𝑖𝑖𝑦𝑦)
√𝑑𝑑

�𝑣𝑣𝑖𝑖𝑦𝑦 (11)

In the multi-attention linear layer model, qi (query), ki (key), and vi (value) can be the same input
(self-attention) or different inputs. In the multi-linear layer model, the output of each linear layer can be
used as q, k, and v. In self-attention, qi and ki both come from the output of the multi-linear layer, and
they are used to learn the dependency relationship of qi on all other ki, meaning each feature information
is a combination of relationships among all other feature information within the group. After calculating
all the attention, we take their average and multiply the average result with the output of the linear layer
to obtain the final result, which is then output. The final result is the fitted noise. The formula is as follows:

𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑛𝑛𝑖𝑖 = 𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠 �
𝑞𝑞𝑖𝑖𝑦𝑦(𝑘𝑘𝑖𝑖𝑦𝑦)
√𝑑𝑑

�𝑣𝑣𝑖𝑖𝑦𝑦 (12)

Figure 3: The Structure of the multi-attention linear layer

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 4: 56-61, DOI: 10.25236/AJCIS.2024.070408

Published by Francis Academic Press, UK
-60-

3. Experiments

In this chapter, to validate the effectiveness of the proposed model, we conducted a series of
experiments on multiple publicly available datasets. First, we will introduce the information of the
datasets used in the experiments and the methods for evaluating the performance of the algorithms. Then,
we will introduce several baseline models for recommendation systems and the experimental parameter
settings used for comparison. Finally, we will analyze the experimental results.

3.1. Datasets

To evaluate the performance of the proposed model, we utilized two publicly available datasets. Table
1 summarizes detailed information about the datasets, including the number of users, items, and
relationships between users. A brief description of each dataset is provided below:

(1) MovieLens-1m: MovieLens-1m is a classic dataset in traditional recommendation systems,
collected and publicly available from the MovieLens website by the GroupLens project. It consists of
movie ratings provided by users.

(2) Filmtrust: Filmtrust is a small-scale dataset obtained from the Filmtrust website, known as a
classic dataset in social recommendation systems.

Table 1: Descriptions of datasets

 MovieLens-1m Filmtrust
Ratings 1000209 35497
Users 6040 1508
Items 3952 2071
User Links None 1853

3.2. Experimental Setup

We compared our proposed model with 5 baseline models, setting parameters according to the
original paper, and averaging results over 10 iterations for each experiment.

(1)MultiVAE[1]: This model use a variational autoencoder to capture implicit feedback in
collaborative filtering. The core of this model involves incorporating a polynomial likelihood function
and using Bayesian inference for parameter estimation.

(2)RecVAE[2]: Building upon MultiVAE, this model adopts a novel composite prior distribution for
latent encoding. Regarding the β hyperparameter, this model sets up the β-VAE framework and
introduces a training method based on alternate updates.

(3)LightGCN[3]: The most popular GCN (Graph Convolutional Network) models propagate user and
item embeddings linearly onto the user-item interaction graph, thus learning embeddings for users and
items. In this model, embeddings learned at each layer are weighted and aggregated, serving as the final
embeddings. This approach achieves collaborative filtering through neighbor

(4)DGCF[4]: This graph neural network model, which focuses on user intent, models an intent
distribution for each user-item interaction and iteratively optimizes to decouple the user intent within the
intent distribution.

(5)BPR[5]: Recommendation models commonly used for personalized ranking tasks employ the core
idea of Bayesian analysis, optimizing personalized ranking through maximum a posteriori estimation.

For each experiment, I randomly shuffle the dataset and split it into train, validation, and test sets in
a ratio of 8:1:1.

3.3. Experimental Results

As shown in Tables 2 and 3, our model exhibits significant performance advantages in terms of
recommendation performance compared to five baseline recommendation models on the two datasets.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 4: 56-61, DOI: 10.25236/AJCIS.2024.070408

Published by Francis Academic Press, UK
-61-

Table 2: Recommendation performance on MovieLens-1m

Methods Recall@10 MRR@10 NDCG@10 Hit@10 Precision@10
RecVAE 0.1846 0.4744 0.2795 0.777 0.2142
DGCF 0.1709 0.4536 0.2639 0.7525 0.2058
LightGCN 0.1620 0.4488 0.2590 0.7407 0.2029
BPR 0.1604 0.4431 0.2564 0.7358 0.2026
MultiVAE 0.1718 0.4448 0.2567 0.7629 0.1995
AMLDM 0.2017 0.5106 0.3051 0.803 0.2346

Table 3: Recommendation performance on Filmtrust

Methods Recall@10 MRR@10 NDCG@10 Hit@10 Precision@10
DGCF 0.6745 0.4722 0.494 0.7514 0.171
RecVAE 0.6774 0.4835 0.5049 0.75 0.1705
BPR 0.6661 0.4656 0.4873 0.7457 0.1698
LightGCN 0.665 0.4663 0.4881 0.7407 0.1696
MultiVAE 0.6596 0.424 0.4593 0.7357 0.1689
AMLDM 0.6914 0.5097 0.5255 0.76 0.1731

4. Conclusions

In this study, we introduce a novel recommendation model, namely AMLDM, which is an adaptive
generative recommendation model based on the diffusion model. To ensure the accuracy of personalized
recommendations, we reduce the noise ratio during the forward process. We conducted empirical
validation on two different datasets, and the results demonstrate that AMLDM has significant advantages
in recommendation performance.

References

[1] Liang D, Krishnan R G, Hoffman M D, et al. Variational autoencoders for collaborative filtering[C]//
Proceedings of the 2018 world wide web conference. 2018: 689-698.
[2] Shenbin I, Alekseev A, Tutubalina E, et al. Recvae: A new variational autoencoder for top-n
recommendations with implicit feedback[C]//Proceedings of the 13th international conference on web
search and data mining. 2020: 528-536.
[3] He X, Deng K, Wang X, et al. Lightgcn: Simplifying and powering graph convolution network for
recommendation[C]//Proceedings of the 43rd International ACM SIGIR conference on research and
development in Information Retrieval. 2020: 639-648.
[4] Wang X, Jin H, Zhang A, et al. Disentangled graph collaborative filtering[C]//Proceedings of the
43rd international ACM SIGIR conference on research and development in information retrieval. 2020:
1001-1010.
[5] Rendle S, Freudenthaler C, Gantner Z, et al. BPR: Bayesian personalized ranking from implicit
feedback [J]. arXiv preprint arXiv:1205.2618, 2012.

	3.1. Datasets
	3.2. Experimental Setup
	3.3. Experimental Results

