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Abstract: With the deepening of sensing technology and deep learning, unmanned driving technology 

has been greatly developed. The purpose of this paper is to sort out the development status of 

unmanned obstacle recognition, summarize the technical points of obstacle recognition in the field of 

computer vision, and summarize the problems and defects of existing obstacle recognition technology 

and put forward relevant development suggestions. 
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1. Introduction 

In the past three decades, both academia and industry have steadily increased their research efforts 

on driverless car technology. This is due to the recent development of sensor technology and deep 

learning, as well as the potential impact on people's automobile traffic and the expected social benefits: 

in 2019, there were 193 traffic accidents in China, accounting for 41.59% of the safety accidents in that 

year. In 2019, there were 665 traffic deaths, accounting for 43.04% of the deaths caused by safety 

accidents in that year, of which 15.40% were caused by traffic accidents due to failure to comply with 

regulations; Traffic accidents caused by driving in violation of traffic signals accounted for 7.43%; 

Traffic accidents caused by speeding accounted for 4.83%. In order to ensure the safety and comfort of 

driving, people are eager to develop a new kind of vehicle, As far as possible, an intelligent driving 

mode that allows cars to perform driving tasks autonomously, and at the same time, autonomous 

vehicles will create a series of high-tech jobs for the society and gather wealth for the country while 

completing driving changes. Therefore, in the era of intelligent driving, how to accurately and 

efficiently identify obstacles in driving environment is very important. 

2. Overview of Unmanned Driving 

2.1  Domestic Unmanned Development 

As early as the 1980s, the research on unmanned driving began in China. In the same year, the first 

unmanned vehicle ATB-1 in China was jointly developed by Tsinghua University, National Defence 

Science and Technology University, Beijing Institute of Technology, Zhejiang University and Nanjing 

University of Science and Technology. In the demonstration experiment in 1996, the autonomous 

driving speed of the vehicle in straight line was up to 21km/h, and that in curved road was up to 12 

km/h, it marks that China's unmanned driving industry has entered an exploration period. Later, during 

the Ninth Five-Year Plan period, the ATB-2 unmanned vehicle was developed on the basis of ATB-1, 

and its performance was greatly improved. In 2005, ATB-3 unmanned vehicle was successfully 

developed, and its environmental awareness, target recognition and tracking based on multi-sensor 

fusion and all-weather navigation were further improved. 

Internet giants BAT (Baidu, Alibaba, Tencent) actively integrate resources and promote the research 

and development and industrialization of high-precision map technology in the core industry chain of 

intelligent driving; Alibaba and Tencent Shenzhen have seized the leading power of the entrance of car 

networking through taxi software and other applications. Baidu's research on driverless cars has formed 

a complete set of automatic driving technology scheme, and in December 2015, it realized the fully 

automatic driving test under the mixed road conditions of cities, loops and expressways. 
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In order to meet the new era of intelligent driving, the traditional automobile industry has also 

begun to enter the field of intelligent driving. SAIC has designed MG IGS intelligent driving assistant 

car, which can realize autonomous cruising and overtaking in the speed range of 60 ~ 120 km/h. 2015 

Geely Borui 1.The 8T flagship model is equipped with ADAS functions such as ACC (adaptive cruise 

control), SVC (panoramic camera), LDW (lane departure warning system), BDS (parallel auxiliary 

system), FCW (front collision warning system or active braking system), and AP (automatic parking). 

2.2  Overseas Unmanned Development 

As early as 1980s, intelligent driving was concerned by many foreign universities, research 

institutes and companies, the most famous of which was the DARPA Grand Challenge held by DARPA 

three times. In 2004, the first Challenge was held in the Mojave Desert of the United States, requiring 

self-driving cars to complete 142 miles of desert crossing within 10 hours. But all the participating cars 

broke down in the first few miles and were forced to abandon the race. In 2005, DARPA Grand 

Challenge was held again; requiring self-driving cars to cross flat and dry lake beds and mountain 

passes, including three narrow tunnels and more than 100 sharp turns, driving for 132 miles, and 

Stanford University's automobile Stanley (Thrun et al., 2006) won the first place. Carnegie Mellon 

University's automobile sandstorm and H1ghlander won the second and third place respectively. The 

third competition, called DARPA City Challenge, was held in California, USA in 2007. This challenge 

requires self-driving cars to complete a 60-mile route in 6 hours together with other manual driving 

cars in a simulated urban environment. And follow California's traffic rules, and finally, 6 vehicles 

completed the route within the specified time. Auto Boss of Carnegie Mellon University won the first 

place, Junior of Stanford University won the second place, and Odin of Virginia Tech University ranked 

third. Although these challenges are much simpler than actual traffic, they do lay the foundation for the 

development of autonomous driving. 

Since DARPA Challenge, many non-automobile manufacturing industries have joined in the 

research and development of autonomous vehicles. For example, the teams of Stanford and Carnegie 

Mellon University began to cooperate and develop Google driverless cars with the help of Google, and 

started to test the actual urban road environment in Las Vegas in 2010.In 2016, Uber Technology 

Company in Silicon Valley of the United States conducted a test on the streets of Pittsburgh, 

Pennsylvania, and provided unmanned driving services to the public. From 1987 to 1995, the "VaMP" 

and "VaMoRs" driverless cars jointly developed by the Federal University of Munich and 

Mercedes-Benz Motor Company can automatically avoid obstacles and realize autonomous overtaking. 

In 2011, the MRG team of Oxford University announced to the outside world for the first time the first 

self-driving car "Wildcat", which can also drive autonomously on rugged mountain roads. 

With the joining of Internet companies such as Google, and the feasibility of driverless cars being 

gradually verified, more and more foreign traditional automobile manufacturers have started to develop 

their own intelligent vehicles, and have increased their investment to speed up the pace of research and 

development. Toyota announced that it will launch driverless cars that can drive in prescribed lanes 

around 2020.As a leader in automobile safety, Volvo has proposed to ensure that its self-driving cars 

will not have major traffic accidents around 2020. BMW announced that it will cooperate with Intel, 

the chip manufacturer, and Mobileye, the developer of ADAS, to speed up the development of 

driverless cars, and plans to build a brand-new driverless system, which will achieve mass production 

in 2021. 

3. Unmanned Obstacle Recognition 

3.1  Teaching Neural Network 

In 1990, K.F. Kraiss first proposed a method of teaching neural network to guide vehicles to avoid 

obstacles. He designed an experimental model, in which vehicles need to pass through the door next to 

obstacles in the shortest distance from the starting point and drive to the end point. Mathematically 

correct test behaviour is used to determine the best path planning strategy, and vehicle distance d and 

direction error φ are taken as net inputs. The vehicle turning signal is taken as the output, and the error 

is reduced to a certain low level range by the reverse error propagation algorithm, and the test is 

terminated, thus obtaining the best driving route. However, because only the path information is added 

in the model, the ability to deal with unexpected events in real life is poor, resulting in poor 

generalization performance, so it has not been widely used. 
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3.2  Linear Stereo Vision 

In 1992, J.L. BRUYELLE and J.G. POSTAIRE first proposed a vehicle obstacle detection method 

based on computer vision. In the project, two linear cameras were used instead of video cameras to 

generate a linear stereo image sequence, thus reducing the data flow to be processed. By designing 

specific linear stereo correction and combining Canny differential operator, the selected segments in the 

left and right images are correlated with each other. The model can detect dynamic or static obstacles. 

In 1994, according to the existing stereo vision theory, F. Thomanek equipped the system with four 

cameras, facing the front and rear of his own vehicle. By combining the shadow under the vehicle with 

the 3D geometry and the 3D dynamic scene, the obstacle features are extracted step by step. 

In 1995, Yassine Ruichek and Jack-Gerard Postaire proposed a neural system based on linear stereo 

vision to detect obstacles in front of the vehicle in real time. The system first used recursive smoothing 

filter to remove noise and preserve edges, then used convolution smoothing signal and the first 

derivative of smoothing operator to detect edges, and finally obtained the optimal solution by Hopfield 

neural network. After testing, the system can detect pedestrians about 50 meters in front of the car 

when driving at a speed of 100 km/h. Compared with the previous implementation method, the system 

can improve the efficiency by 45%. 

In 2006, Iyadh Cabani proposed a fast adaptive stereo vision system for road obstacle detection. 

Firstly, the system extracted vertical edge points by using the operator's color reduction rate, and then 

used dynamic programming based on geometry, irreversibility, uniqueness and color luminosity 

constraints to associate the vertical edge points. At last, the three-dimensional edges of obstacles are 

extracted, and v disparity map and u disparity map are adopted. And use the box to divide the boundary 

of obstacles. The performances of segmentation, matching and obstacle detection are discussed. It is 

pointed out that even if the code is not optimized, the processing time of obstacle detection is too long, 

and the future work will focus on reducing the input number of color matching. 

In 2007, Guanglin Ma proposed a real-time obstacle and pedestrian detection algorithm, which used 

inverse perspective mapping to obtain a "virtual stereo system" to detect obstacles above the ground. 

The image collected by the monocular camera at t1 and the image collected at t0 are subjected to gray 

subtraction, because the gray value information of the ground will not change in a short time interval, 

However, the gray difference of obstacles on the ground is non-zero, so the area of obstacles can be 

obtained by marking the non-zero gray. Pedestrian detection is to calculate the binary edge image of 

defined ROI by using Sobel edge detection operator and then applying threshold. The method greatly 

improves the detection rate, At the same time, in the actual detection process, most pedestrians are 

detected reliably, and only a few errors are reported. However, because the algorithm is based on the 

condition of smooth road surface, on the actual road surface, the pitching of vehicles will lead to 

inaccurate kerb space, and the left side and the end are also marked as obstacles. 

In 2011, Intae Na proposed a new visual obstacle detection and tracking system based on stereo 

vision. Robust stereo matcher, obstacle detector and tracker module are implemented and tested under 

actual driving conditions. Inputting the collected stereo images into a stereo matcher to generate a 

disparity map,The disparity map is analyzed in the target detector to detect obstacles, and the average 

correct detection rate of the final test result is 82.4%. However, it is easy to be affected by the 

illumination environment, resulting in the problem of false detection. 

In 2014, Alexandru Iloie described a system for detecting obstacles in front of vehicles and dividing 

them into pedestrians and non-pedestrians. It uses a pair of low-cost grayscale stereo cameras to 

capture traffic scenes. In order to obtain high-density and high-precision stereo reconstruction points, 

Sort-SGM stereo reconstruction technology is adopted. Firstly, the road plane is calculated by using the 

V-direction disparity map, Then, obstacles are determined by analyzing the U-direction disparity map. 

Each pedestrian hypothesis is described by size correlation and direction gradient histogram based on 

gray features. Principal component analysis of features is used for feature selection and projection in 

correlation space. Considering the related features of pedestrian and non-pedestrian image sets, 

different support vector machine classifiers are trained. Finally, they are compared to select the one 

with the best classification score. 

However, because linear stereo vision requires the level of two linear cameras to be highly unified, 

a specific correction level system is set, and the image information is ignored and the linear path is 

used instead, the effect of dealing with small obstacles is poor. 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 5, Issue 2: 41-47, DOI: 10.25236/AJCIS.2022.050207 

Published by Francis Academic Press, UK 

-44- 

3.3  Machine Learning and Deep Learning Method 

In 2002, Feiden D and Tetzlaff R summarized the traditional obstacle detection based on statistical 

methods, that is, using monocular camera to record video sequences, then searching for prominent 

image areas, calculating the estimated value of gray gradient in limited image areas, and making edges 

more prominent, then carrying out displacement vector estimation and 3D motion estimation, and 

finally carrying out motion compensation and obstacle detection. In this paper, the traditional edge 

detection method is improved. CNN is directly used for edge extraction, and the threshold value 

processed by CNN and the extracted image are iteratively annealed and optimized, and finally the 

parameters are obtained. This method improves the traditional edge detection method, which makes the 

processing speed of the network faster and more robust. However, only the results of edge detection are 

given in this paper. The accuracy of obstacle detection is not explained. 

In 2009, Hern án Badino built a method called stixel-world to divide obstacles into adjacent 

rectangular bars with a certain height and width. SGM algorithm was used to calibrate dense 

stereoscopic images, and the depth changes of pixels were expressed in color, and the expected driving 

path of vehicles was marked in blue. The polar coordinates occupy the depth information of network 

obstacles and divide the free space, Using the same dynamic programming scheme as free space 

computing, the disparity images of foreground and background are segmented, and the height of stixels 

is obtained. That is, Stixel can be used to calibrate the position of obstacles. 

In 2010, Qi Wu proposed a framework for obstacle detection which is different from the traditional 

method. Firstly, a perspective film was generated, and a 9x25 rectangle was used in coordinates to 

define a clear candidate path area in front of the vehicle for feature extraction. Then, the probability 

estimator of support vector machine was used to estimate the initial probability of the patch 

corresponding to the clear path for the selected features. Finally, the initial estimation is improved by 

probabilistic patch smoothing based on spatio-temporal constraints, so as to improve the detection 

performance. 

In 2017, Sebastian Ramos built a visual system that used appearance, context and geometric clues 

to detect small target obstacles on the road, used the variant of fully rolled neural network to predict 

free space, combined with Stixel to mark unexpected obstacles on the road and semantic at pixel level, 

and used Bayesian framework to fuse semantic and stereo detection results. In the end, the relative 

performance is improved by 50% on the Lost and Found data set, and the detection rate can reach more 

than 90% at the test distance below 50 meters. 

In 2017, Gowdham Prabhakar used PASCAL VOC image data set to train regional convolution 

neural network ZF Net, and used Fast-RCNN to detect and classify objects on roads. It showed good 

performance in detecting KITTI, Iloads and Indian road images, and even detected animals walking on 

roads, and basically processed image data with different resolutions at a frame rate of 10fps.However, 

the average accuracy (AP) of the system for motorcycle detection under the video shot of 

kitti_drive005 is 0, and the average accuracy for bus detection in the 50 images of Chennai Road data 

set is 0.62, which is rather poor. 

In 2018, Penghua Li used region growing algorithm combined with morphological operation to 

extract obstacle regions, and used CNN neural network improved based on AlexNet network combined 

with RPN network to extract target features. Finally, in order to reduce the degree of over-fitting, 

Dropout layer was used to reduce training samples, and the model was obtained through Pascal VOC 

2007 training set and Pascal VOC 2012 test set. The vehicle real-time video was tested and found, 

Under complex conditions, the detection accuracy of the model is more than 60%, and most of them 

are about 90%. However, the accuracy of the model is poor under complex lighting conditions and 

needs to be improved. 

In 2019, Jing Lian proposed an obstacle detection and recognition method based on stereo vision 

and convolutional neural network. At first, the disparity map is obtained by semi-global stereo 

matching, and the obstacle candidate region is obtained by Stixel calculation. Then, we use U-Disparity 

Map to extract target obstacles from candidate regions. Finally, a new CNN convolutional neural 

network is proposed to identify target obstacles. Experimental results show that the proposed 

convolutional neural network improves the real-time performance (GPU memory and network 

computing load) by 69% when the recognition accuracy decreases by 4.9%. 

Hsiang-Y u Han proposed a novel semantic segmentation network EdgeNet, which includes a 

class-aware edge loss module and a channel-based attention mechanism, with the aim of improving the 
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accuracy without affecting the reasoning speed. The Edgenet is evaluated on the urban landscape data 

set. The experimental results show that the mIOU of this method in the urban landscape test set can 

reach more than 70%,Average IOU on GTX Titan X(Maxwell)GPU can reach above 30FPS. 

The enhanced YOLOv3+ network proposed by Chintakindi Balaram Murthy in 2020 aims to realize 

accurate and real-time detection of smaller pedestrians in complex environments. In the proposed 

network, K- means clustering is applied before training to select the best K bounding boxes. The 

improved YOLOv3+ network introduces the inverse residual module to improve the feature extraction 

ability, and improves the loss function to reduce the bounding box loss error. In terms of detection 

accuracy, Compared with the existing network, the AP reaches 79.86%, but when detecting smaller 

pedestrians, the detection speed decreases slightly. 

Lei Sun proposed a real-time fusion semantic segmentation network, RFNet, which can effectively 

utilize deep complementary features. Multi-dataset training and deep flow in the architecture enable the 

network to effectively detect unexpected small targets. Compared with ERF-PSPNet and SwiftNet, the 

tested network has significantly improved the tests on roads, sidewalks, buildings, walls, fences, poles, 

traffic lights and traffic signs.Furthermore, RFNet can even effectively avoid the features such as 

manhole covers which are easily mistaken for obstacles. However, the performance of RFNet network 

in detecting sidewalk, wall, motorcycle and other features is poor, only about 60%. 

Finally, The remaining SE blocks applied after each convolution layer will be explained, and the 

edge loss module will be used to obtain higher MIOU without affecting reasoning. two different data 

sets will be used to verify the accuracy of the network. after verification, it is found that the EdgeNet 

built by ourselves has a significant improvement on MIOU compared with other networks, but the 

average accuracy of detecting walls, buses, trains and motorcycles is lower. It is mentioned that training 

samples can be increased to improve the accuracy, and this method can achieve the same accuracy as 

the most advanced method, with an acceleration ratio exceeding 5 to 40 times. 

It can be seen that machine learning and deep learning methods use visual information such as color 

and depth to detect targets, which has significantly improved the accuracy of obstacle recognition. 

However, due to the increased complexity of visual information, the operation speed of the image 

processor is required to be higher, and the calculation time and cost are also increased. At the same time, 

due to the lack of pedestrians, motorcycles, The recognition accuracy of complex obstacles such as 

buses is only about 60%, and the deep learning method is greatly influenced by illumination. 

4. Conclusion 

Since 1990s, the concept of obstacle recognition has been proposed for the first time. The typical 

representative is the teaching neural network. Its principle is only to design a path from the starting 

point to the target to bypass the set known obstacles, so its generalization is poor. With the development 

of sensing technology, people gradually realize that obstacles can be recognized by binocular or 

multi-camera combined with disparity map. The vehicle can independently analyze the road ahead and 

make corresponding judgments, but linear stereo vision only extracts the path information from the 

visual information, ignoring other information such as color, depth, contour, etc., which makes the 

recognition accuracy of this kind of system low when dealing with small and changeable obstacles. 

With the gradual increase of the operation speed of image processor and the gradual development of 

deep learning technology, people gradually use CNN, EdgeNet, YOLOv3 and other networks instead of 

linear vision methods for target detection, which significantly improves the accuracy of obstacle 

recognition, but at the same time, problems such as operation time, real-time performance and cost 

need to be improved. The recognition accuracy of small and complex obstacles such as motorcycles is 

low, so we can build a special road data set for this kind of obstacles to improve the recognition 

accuracy. At the same time, the laser radar, acoustic radar and other sensors are used to assist the 

camera to improve the problem that the image information is greatly affected by illumination. 

References 

[1] Badue C, Guidolini R, Carneiro R V, et al. Self-driving cars: A survey. Expert Systems with 

Applications, 2020: 113816. 

[2] Bruyelle J L, Postaire J G. Disparity analysis for real time obstacle detection by linear stereovision. 

Proceedings of the Intelligent Vehicles92 Symposium. IEEE, 1992: 51-56. 

[3] Kraiss K F, Kuttelwesch H. Teaching neural networks to guide a vehicle through an obstacle 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 5, Issue 2: 41-47, DOI: 10.25236/AJCIS.2022.050207 

Published by Francis Academic Press, UK 

-46- 

course by emulating a human teacher. International Joint Conference on Neural Networks. IEEE, 1990: 

333-337. 

[4] Thomanek F, Dickmanns E D, Dickmanns D. Multiple object recognition and scene interpretation 

for autonomous road vehicle guidance. Proceedings of the Intelligent Vehicles' 94 Symposium. IEEE, 

1994: 231-236. 

[5] Yu X, Beucher S, Bilodeau M. Road tracking, lane segmentation and obstacle recognition by 

mathematical morphology. Proceedings of IEEE Intelligent Vehicles Symposium. 1992: 166-172. 

[6] Arion B, Ni Y, Devos F. A novel stereovision architecture for real-time obstacle detection. 

Proceedings 1st International Conference on Algorithms and Architectures for Parallel Processing. 

IEEE, 1995, 1: 395-403. 

[7] Ruichek Y, Postaire J G. Real-time neural vision for obstacle detection using linear cameras. 

Proceedings of the Intelligent Vehicles' 95. Symposium. IEEE, 1995: 524-529. 

[8] Ramos S, Gehrig S, Pinggera P, et al. Detecting unexpected obstacles for self-driving cars: Fusing 

deep learning and geometric modeling. 2017 IEEE Intelligent Vehicles Symposium (IV). IEEE, 2017: 

1025-1032. 

[9] Badino H, Franke U, Pfeiffer D. The stixel world-a compact medium level representation of the 

3d-world. Joint Pattern Recognition Symposium. Springer, Berlin, Heidelberg, 2009: 51-60. 

[10] Lian J, Kong L, Li L, et al. Study on obstacle detection and recognition method based on stereo 

vision and convolutional neural network. Chinese Control Conference (CCC). IEEE, 2019: 8766-8771. 

[11] Prabhakar G, Kailath B, Natarajan S, et al. Obstacle detection and classification using deep 

learning for tracking in high-speed autonomous driving. 2017 IEEE region 10 symposium (TENSYMP). 

IEEE, 2017: 1-6. 

[12] Cabani I, Toulminet G, Bensrhair A. Color stereoscopic steps for road obstacle detection. IECON 

2006-32nd Annual Conference on IEEE Industrial Electronics. IEEE, 2006: 3255-3260. 

[13] Cabani I, Toulminet G, Bensrhair A. Contrast-invariant obstacle detection system using color 

stereo vision. 11th International IEEE Conference on Intelligent Transportation Systems. IEEE, 2008: 

1032-1037. 

[14] Kim J B. A real-time moving object detection using wavelet-based neural network. 2009 Digest of 

Technical Papers International Conference on Consumer Electronics. IEEE, 2009: 1-2. 

[15] Feiden D, Tetzlaff R. Obstacle detection in planar worlds using cellular neural networks. 

Proceedings of the 2002 7th IEEE International Workshop on Cellular Neural Networks and Their 

Applications. IEEE, 2002: 383-390. 

[16] Sun L, Yang K, Hu X, et al. Real-time fusion network for RGB-D semantic segmentation 

incorporating unexpected obstacle detection for road-driving images. IEEE Robotics and Automation 

Letters, 2020, 5(4): 5558-5565. 

[17] Ma G, Park S B, Ioffe A, et al. A real time object detection approach applied to reliable 

pedestrian detection. 2007 IEEE Intelligent Vehicles Symposium. IEEE, 2007: 755-760. 

[18] Li P, Mi Y, He C, et al. Detection and discrimination of obstacles to vehicle environment under 

convolutional neural networks. 2018 Chinese Control And Decision Conference (CCDC). IEEE, 2018: 

337-341. 

[19] Han H Y, Chen Y C, Hsiao P Y, et al. Using Channel-Wise Attention for Deep CNN Based 

Real-Time Semantic Segmentation With Class-Aware Edge Information. IEEE Transactions on 

Intelligent Transportation Systems, 2020. 

[20] Murthy C B, Hashmi M F. Real Time Pedestrian Detection Using Robust Enhanced YOLOv3+. 

2020 21st International Arab Conference on Information Technology (ACIT). IEEE, 2020: 1-5. 

[21] Li J, Qiu M, Zhang Y, et al. A Fast Obstacle Detection Method by Fusion of Double-Layer Region 

Growing Algorithm and Grid-SECOND Detector. IEEE Access, 2020, 9: 32053-32063. 

[22] Cong Z, Li X. Track Obstacle Detection Algorithm Based on YOLOv3. 2020 13th International 

Congress on Image and Signal Processing, BioMedical Engineering and Informatics (CISP-BMEI). 

IEEE, 2020: 12-17. 

[23] Na I, Han S H, Jeong H. Stereo-based road obstacle detection and tracking. 13th International 

Conference on Advanced Communication Technology (ICACT2011). IEEE, 2011: 1181-1184. 

[24] Prokhorov D V. Road obstacle classification with attention windows. 2010 IEEE Intelligent 

Vehicles Symposium. IEEE, 2010: 889-895. 

[25] Wu Q, Zhang W, Chen T, et al. Camera-based clear path detection. 2010 IEEE International 

Conference on Acoustics, Speech and Signal Processing. IEEE, 2010: 1874-1877. 

[26] Hsieh Y Y, Lin W Y, Li D L, et al. Deep learning-based obstacle detection and depth estimation. 

2019 IEEE International Conference on Image Processing (ICIP). IEEE, 2019: 1635-1639. 

[27] Ding H, Tian L, Liu Y, et al. Stereovision based generic obstacle detection and motion estimation 

using v-stxiel algorithm. 2018 IEEE 4th Information Technology and Mechatronics Engineering 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 5, Issue 2: 41-47, DOI: 10.25236/AJCIS.2022.050207 

Published by Francis Academic Press, UK 

-47- 

Conference (ITOEC). IEEE, 2018: 903-908. 

[28] Mesvaniya N, Dhruva M, Khared I, et al. Real-Time Lane Detection and Object Recognition in 

Self-Driving Car using YOLO neural network and Computer Vision. 

[29] Bogdanovskyi M, Tkachuk A, Dobrzhanskyi O, et al. Autonomous navigation system with small 

four-wheel drive platform. E3S Web of Conferences. EDP Sciences, 2020, 166: 05004. 

[30] Sanberg W P, Dubbelman G, de With P H N. Extending the stixel world with online 

self-supervised color modeling for road-versus-obstacle segmentation. 17th International IEEE 

Conference on Intelligent Transportation Systems (ITSC). IEEE, 2014: 1400-1407. 

[31] Skulimowski P, Owczarek M, Strumiłło P. Ground plane detection in 3D scenes for an arbitrary 

camera roll rotation through “V-disparity” representation. 2017 Federated Conference on Computer 

Science and Information Systems (FedCSIS). IEEE, 2017: 669-674. 

[32] Yu H, Hong R, Huang X, et al. Obstacle detection with deep convolutional neural network. 2013 

Sixth International Symposium on Computational Intelligence and Design. IEEE, 2013, 1: 265-268. 

[33] Chen X, Sui H. REAL-TIME TRACKING IN SATELLITE VIDEOS VIA JOINT DISCRIMINATION 

AND POSE ESTIMATION. International Archives of the Photogrammetry, Remote Sensing & Spatial 

Information Sciences, 2019. 

[34] Lubna J I, Chowdhury S M A K. Detecting Fake Image: A Review for Stopping Image 

Manipulation. International Conference on Computational Intelligence, Security and Internet of Things. 

Springer, Singapore, 2019: 146-159. 

[35] Editorial Department of "Journal of Highway and Transport in China". Summary of Academic 

Research on Automotive Engineering in China•2017. Journal of Highway and Transport in China, 

2017, 30(06): 1-197. 

[36] Sun Zhenping. Autonomous driving car intelligent control system [D]. National University of 

Defense Technology, 2004. 

[37] Wang Kejun, Zhao Yandong, Xing Xianglei. Research progress of deep learning in the field of 

driverless cars. Journal of Intelligent Systems, 2018, 13(01): 55-69. 

[38] Chen Hui, Xu Jianbo. The development trend of smart car technology. China Integrated Circuits, 

2014, 23(11): 64-70. 

[39] Li Bin, Wang Rongben, Guo Keyou. Research on Obstacle Detection Method for Intelligent 

Vehicles Based on Machine Vision . Highway and Transportation Science and Technology, 2002(04): 

126-129. 

[40] Wang Rongben, Zhao Yibing, Li Linhui, Zhang Mingheng. Overview of obstacle detection 

research methods for smart vehicles. Highway and Transportation Science and Technology, 2007(11): 

109-113. 

[41] Tang Gaoyou. Research on Road Recognition and Obstacle Detection Technology Based on 

Machine Vision. Chongqing University, 2005. 

[42] Huang Xiyue, Chai Yi, Zhou Xin, Wang Xianju, Huang Hanmin. Obstacle detection in vehicle 

intelligent auxiliary operating system. Journal of Chongqing University (Natural Science Edition), 

2000(04): 123-126. 

[43] Shi Jinjin. Research on vision-based intelligent vehicle road recognition and obstacle detection 

methods. Harbin Institute of Technology, 2017. 


