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Abstract: The fully convolutional detector uses a one-to-one (O2O) label assignment strategy removing 
NMS post-processing operations and realizes end-to-end detection. However, limited positive samples 
lead to slow convergence of the full convolutional end-to-end detector in crowded scenes. In this paper, 
we propose a Dual Subnet Label Assignment network (DSLA), which accelerates the model convergence 
to improve the detection performance and achieves end-to-end detection pipeline. First, we present Soft 
Label Assignment (SLA), which utilizes soft anchors with positive and negative sample semantics for 
model learning and accelerates model convergence. Meanwhile, SLA assigns labels to occluded targets 
in crowded scenes. We combine the SLA branch and the O2O branch for co-training, and achieve end-
to-end detection through the O2O branch. Finally, we propose Feature Shuffle to solve the problem of 
lack of information interaction between different feature layers and highlight the features of the occluded 
part in a crowded scenes. Experiments demonstrate that DSLA outperforms OneNet in terms of model 
convergence speed and detection performance. Especially, on the CrowdHuman dataset, our method 
outperforms SOTA, achieving 91.7 AP, 47.2 MR-2, 80.3 JI, and 98.5 Recall. 
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1. Introduction 

Object detection in crowded scenes is a both fundamental and challenging task in the field of 
computer vision. Previous research works have been rapidly improved with the help of deep neural 
networks and large datasets. However, most of them require NMS post-processing operations to remove 
redundant anchors. Especially in crowded scenes, the presence of NMS leads to situations where the 
detectors appear to have suboptimal selection of occluded targets. 

Removing the detector's NMS to achieve end-to-end detection is a current direction for researchers. 
DETR[1] is a fully end-to-end detection framework that achieves competitive detection performance by 
removing NMS through the introduction of learnable queries[2] to represent targets. Inspired by DETR, 
researchers have implemented fully convolutional end-to-end detection on OneNet[3] by using a one-to-
one label assignment strategy. OneNet shows that the key to implementing end-to-end detection on fully 
convolutional networks is to incorporate classification loss in the one-to-one label assignment strategy. 
By introducing classification loss, assigning only one prediction (positive sample) for ground-truth can 
effectively remove redundant detection frames, thus removing NMS to achieve end-to-end detection. 

However, due to the limited number of positive samples, the use of one-to-one label assignment 
strategy for fully convolutional detectors reduces the efficiency of detector learning and leads to the 
problem of slow model convergence. In DETR, this problem is addressed by introducing additional 
queries. However, the fully convolutional detector does not use the self-attention mechanism and cross-
attention mechanism in DETR to avoid repeated predictions. 

Researches[4-7] show that the reason for the slow convergence of the fully convolutional end-to-end 
detector is that the one-to-one label assignment strategy provides the model with limited learnable 
supervisory signals. Specifically, the one-to-one label assignment strategy only selects a fixed one of the 
samples for the target to match and ignores other samples which have similar speech information to it. 
The above findings motivate us to use these similar samples for fully convolutional end-to-end detector 
to learn. In this paper, we introduce a new soft label assignment approach as a branch to provide more 
learning signals for the detector. In this branch, we will feed samples that cannot be ignored into the 
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model as learnable supervised signals. The details are shown in Figure1.The soft label assignment branch 
is mainly used to learn these additional supervised signals to make the detector more focused on 
important features. We jointly train the Soft Label Assignment branch and one-to-one label assignment 
branch Once Dual Subnet Label Assignment is done with the training, we keep only one-to-one label 
assignment branch for end-to-end detection. 

Experimental results suggest that our Dual Subnet Label Assignment accelerates the convergence of 
the fully convolutional end-to-end detector and also improves the detection performance. After 36 epochs 
of training, our method can surpass the performance of mainstream NMS. detectors. We also introduce 
the Feature Shuffle feature fusion module for increasing the interactions between detection points 
between different feature layers to improve the detection performance of the detector in crowded scenes. 

Our main contributions are summarized as: 

 We propose the Soft Label Assignment strategy, which introduces soft anchors to provide more 
learning signals for the model, as a way to alleviate the problem of missed and wrong detections in crowd 
scenes 

 We propose Feature Shuffle to increase the information interaction between different feature layers. 

 We propose Dual Subnet Label Assignment to accelerate the model convergence by providing more 
feature learning signals from the Soft Label Assignment branch, and realize end-to-end detection through 
the one-to-one label assignment branch. 

 Compared with the current mainstream fully convolutional end-to-end detectors and anchor-based 
detectors, our method exhibits better detection performance. 

 
Figure 1: We jointly train the Soft Label Assignment branch and the one-to-one label assignment 

branch. 

2. Related Works 

2.1. Fully convolutional detector 

Fully convolutional detectors can be further subdivided into one-stage[8-10] detectors[11] and two-stage 
detectors[12-14] . The main difference between these two types of detectors is that the two-stage detector 
will have the stage of generating candidate regions, and then the model further removes the repetitions 
based on the generated candidate regions to finally output the results, while the one-stage detector directly 
predicts the dense anchor category and location region on the convolutional feature map. Then the shape 
and size of the anchors should be different for different datasets. To overcome this problem, anchor-free 
detectors simplify the detection pipeline. FCOS[8] and CenterNet[15] can directly select anchor points as 
regression target objects. 

There are two main reasons for the failure of crowded scene detection: (1) highly overlapping targets 
may have very similar characteristics, so it is difficult for the detector to generate differentiated 
predictions for each positive sample individually, and (2) instances may overlap heavily with each other, 
so the predictions are likely to be incorrectly removed by the NMS. To address the above problems, 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 5: 1-14, DOI: 10.25236/AJCIS.2024.070501 

Published by Francis Academic Press, UK 
-3- 

previous works try to tackle them from different perspectives, e.g., using soft NMS[16] to go out duplicates, 
new loss functions, etc. However, these methods are either too complex or less efficient in dealing with 
highly overlapping instances. In order to improve the shortcomings of previous work, MIP proposes 
multi-instance prediction methods, EMD loss and RM modules to deal with potentially erroneous 
predictions. Although the new multi-instance prediction and refinement modules can improve the 
detection performance of the detector, the performance of the detector is still limited due to the presence 
of post-processing operations such as NMS. 

2.2. Query-based detector 

As a pioneer of query-based detectors, DETR selects an alternate set of learnable object queries as 
candidate regions for image feature interaction. It achieves end-to-end target detection with the help of 
bipartite graph matching and a global attention mechanism. However, DETR suffers from slow 
proficiency and poor performance in small target detection. Much current research aims to improve the 
interaction mechanism between the feature map and query in order to obtain more relevant and accurate 
features to improve the detection performance of small targets. Recent work has found that the limited 
number of positive samples affects the convergence speed of DETR. Therefore, Group DETR[17] 
introduces additional positive samples in training to accelerate model convergence. However, in dense 
scenarios, this introduction of extra positive samples[18] incurs significant computational cost and longer 
training time. Therefore, in this paper, we make it easier to train end-to-end networks by introducing a 
class of samples with similar contextual semantics. 

In order to solve the problem of missed target detection in crowded scenarios, PDETR[19] proposes 
the use of sense queries in crowded scenarios. to address the problem of high computational effort of 
sense queries, PDETR designs local-attention strategy and rectified-attention for self-attention and cross-
attention in the decoder, respectively. attention strategy and rectified attention field proximity point set 
selection strategy, respectively. To alleviate the partial occlusion problem, PDETR proposes a V-Match 
supervision method. In order to speed up the KM process of computing sense queries with ground-truth, 
a Fast-Match method is proposed. 

3. Proposed Method 

 
Figure 2: Dual Subnet Label Assignment network pipeline. The green box is Dual Subnet Label 

Assignment, which contains Soft Label Assignment branch and one-to-one label assignment branch. 
The red box is the Soft Label Assignment branch, which only participates in the training phase. The 
structure in the orange box is Feature Shuffle, which is used to enhance the information interaction 

between different feature layers. 

In order to address the drawback of slow model convergence due to the lack of sufficient supervised 
signals (i.e., enough positive samples) for a fully convolutional detector using a one-to-one label 
assignment approach, we introduce Dual Subnet Label Assignment, as shown in Figure. 2. Like current 
fully convolutional end-to-end target detector, our DSLA takes images as input and extracts multi-scale 
features for classification and regression. Our overall network structure contains backbone, FPN, a 
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feature fusion module, and two subnets. Our approach constructs two branches (Soft Label Assignment 
branch and One-to-One Label Assignment branch) after feature fusion during training. As shown in the 
structure of the two-subnet network in Figure. 2, the structure in the green box is the two-subnet label 
assignment algorithm. In the orange box is the Soft Label Assignment branch, which is only involved in 
the training phase. Only one branch, One-to-One Assignment, is kept for end-to-end detection during 
inference. 

3.1. Dual Subnet Label Assignment 

Our approach is called Dual Subnet Label Assignment. We add Soft Label Assignment approach and 
one-to-one label assignment approach as two branches to the end-to-end detection network. The Soft 
Label Assignment branch is only involved in the training phase. These two branches take the shared 
classification features and regression features as inputs for prediction. Then, the label assignment strategy 
will be constructed in pairs (ground-truth, Prediction) to compute the loss. Optimizing the DSLA network 
allocation strategy is a multi-objective optimization problem. In the ideal case, we would like to find the 
solution where both branch losses are minimized. However, it is almost impossible for a solution to 
satisfy both losses functions under the same condition. Pareto optimization is a common solution to this 
problem.  

We set different weights for the two branches to ensure that the network is trained to introduce more 
supervised signals as well as to reduce the computational effort of removing duplicate frames. 

2 2o o o o SLA SLALoss L Lλ λ= × + ×                               (1) 

where 2o oL  and SLAL  are the loss functions for one-to-one and Soft Label Assignment branches, 
respectively. 2o oλ  and SLAλ  are the weights of 2o oL  and SLAL  respectively. (A relatively larger 
weight than the others indicates that the corresponding objective function is more important than the 
others.) For example, under the inference phase, when SLAL  is 0, it indicates that the network does not 
carry Soft Label Assignment branch and only performs one-to-one label assignment. 

Our DSLA combines the advantages of one-to-one label assignment strategy and Soft Label 
Assignment strategy. Our approach has both a Soft Label Assignment branch that provides enough 
learning signals to accelerate the convergence of the model and a one-to-one label assignment strategy 
branch that enables end-to-end. Our approach trains both branches (the one-to-one branch and the Soft 
Label Assignment branch) simultaneously in the training phase. At the end of training, only the one-to-
one label assignment branch is kept. The Soft Label Assignment branch we introduce is only used in the 
training phase, which is more similar to a plug-in that improves the detection performance with negligible 
increase in computational resource consumption. The whole network has no other post-processing 
operations in the evaluation phase, and still belongs to the end-to-end detector. 

3.2. Soft label assignment branch 

Disadvantages of using one-to-one label assignment strategy in full convolutional detection networks 
for end-to-end dense detection Due to the limited number of positive samples, it results in a one-to-one 
label assignment strategy that reduces the feature learning efficiency and ultimately affects the 
performance of detector. Additional positive samples are introduced in query-based end-to-end detectors 
to alleviate this problem, but attention operations in Transformer limit application to fully convolutional 
end-to-end detector. 

In this paper, we propose a simple and effective Soft Label Assignment strategy for dense detection. 
In addition to defining a certain anchor for each target, several soft anchors are defined that can be learned 
by the model. Introducing such soft anchors in a fully convolutional end-to-end detection network allows 
the detector to learn more supervised signals. The weight of such model-learning soft anchors is 
dynamically adjusted during training to allow them to contribute more to representation learning in the 
early training phase and more to repetitive prediction removal in the later phase. 

Soft anchor. Under one-to-one label assignment, the model selects only one anchor as the positive 
sample and ignores the remaining soft samples that can provide learning signals for the model. Especially 
in crowded scenes, these supervised signals with learnable signals cannot be ignored during the training 
process. 

As shown in Figure 3, the one-to-one label assignment approach uses only the red box part as a 
supervised signal. In terms of semantic information, the blue box and the red box do not differ much, and 
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both can provide learnable supervisory signals for the model. The Soft Label Assignment strategy selects 
one feature's anchor as a completely certain anchor (the red box), and selects several soft anchors to give 
them positive and negative weights to feed into the model. The positive and negative weights of the soft 
anchors are dynamically adjusted during the training process so that the network can learn a strong feature 
representation and achieve end-to-end detection capability at the same time. 

 
Figure 3: The comparison between one-to-one label assignment and soft label assignment. The certain 

anchor in the red box has similar semantic information to the soft anchor in the blue box. 

3.3. Select certain positive anchor 

In the Soft Label Assignment strategy, a specific positive anchor will be selected for each instance. 
Previous end-to-end detectors have used a selection metric for a predictive-aware mechanism, which 
takes into account the costs of classification and regression to select a uniquely positive sample. 
Following this principle, both the classification score and IoU  are incorporated into the selection metric 
for a particular anchor, which is defined as: 

[ ] )(, , ,i j j i cj i jS i p IoU b b= ∈Ω × ×                            (2) 

where ,i jS  denotes the score of the match between anchor i  and instance j. The spatial prior is 
used in the o2o and SLA approaches. ,i cjP , jb  This spatial prior is commonly used in o2o and SLA 
methods because the observed anchor in the center region of an instance is more likely to be a positive 
anchor. 

The anchors can be sorted in descending order based on the metric ,i jS . Prior work has typically 
formulated forward-anchor selection as a bisection matching problem and solved it by the Hungarian 
algorithm. In order to reduce the computational effort, in the forward-anchor selection part, we directly 
select the one with the highest score as the specific forward-anchor for each instance. 

3.4. Assigning labels to soft anchors 

In addition to specific positive anchors, based on the score ,i jS  selects anchors as soft anchors 
because they have similar semantic context as specific positive anchors. Dynamic soft labels are assigned 
to these soft anchors in order to reduce the possibility of repeated predictions. Assuming that there are N 
Epochs to train the network, the classification loss of each soft anchor i  during the j  epoch training 
period is defined as: 
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where iP  is the predicted categorization score of anchor i , and ( )1 j
it−  are the governmental 

degree of this anchor at the j  Epoch, respectively. 

where jT  is the time-dependent variable where is assigned the same value for all samples in the j  
epoch, and maxT  and minT  control the degree of positivity of the soft anchor for the first epoch and the 
last epoch, respectively. Setting the loss weights to be positively correlated with the assigned scores takes 
into account the fact that an anchor with a higher prediction score should provide more supervised signal 
for positive sample signals. Using iP  directly as a weight will destabilize the training of difficult 
samples because their prediction scores are much smaller than the prediction scores of simple samples. 
Therefore, use the ratio between iP  and max to normalize the weights of different samples to the same 
scale. 

Dynamic tuning of jT  is important because it controls the trade-off between feature learning and 
elimination of duplicates at different stages of the training phase. In the early training phase, jT  is set 
relatively large to introduce more positively supervised signals for representation learning so that the 
network can quickly converge to a robust feature representation space. As training progresses, the weight 
of the soft anchor is gradually reduced so that the network can learn to remove duplicate predictions. 

For each instance, a specific positive Anchor and a soft anchor are selected. The remaining Anchor is 
set to negative samples, and the training target for the classification branch is specified for each instance: 

( ) ( ) ( ),1 , , 0cls c i i i

i i

L BCE p BCE p t p
∈Α ∈Β

= + +∑ ∑
                  (5) 

where pc is the classification score of a single specific anchor, Α  and Β  denote the set of soft 
anchor and negative sample anchor respectively. BCE  denotes Binary Cross Entropy Loss and FL  
denotes Focal Loss. regression loss is defined as: 

( ),reg i gt
i

L GIoU b b
∉Β

= ∑                             (6) 

Where the GIoU  loss is based on the general intersection loss on the concatenated set, bi is the 
predicted position of anchor i , and is the position of the GT corresponding to anchor i . Note that the 
regression loss is applied to both certain anchor and soft anchor. 

3.5. Assigning labels to soft anchors 

In Anchor-free detectors, anchor points act like query in query-based detectors. However, there is no 
way for the attention mechanism and query to be able to interact with each other in a fully convolutional 
network as in Transformer. This leads to a congested scenario, which leads to an allocation failure in 
label assignment during detection. Inspired by DETR, we treat the anchor points in the FCOS network 
as query and increase the interaction between the anchor points by introducing the Feature Shuffle 
module. 

Inspired by the feature interactions between different channels in ShuffleNet[20] and RelationNet[21], 
we propose Feature Shuffle to compensate and increase the interactions between different levels of 
anchor points, as shown in Figure. 2. Where S channels across S neighboring levels are shuffled to form 
a new feature pyramid. In detail, the feature map of level i  exchanges S channels with the feature maps 
of levels 1i −  and 1i +  at the same time. Considering the different spatial dimensions on the feature 
pyramid, a bilinear interpolation method is used for the exchange. We apply Feature Shuffle after FPN, 
which allows the interaction of anchor points at different scales. This approach stabilizes the training and 
improves the detection performance, while the additional computational cost is negligible. 

4. Experiment and Analysis of Results 

4.1. Datasets 

In this section, we evaluate our method on the CrowdHuman dataset and the COCO dataset. 
Outperforming our proposed method mainly to improve the detection in crowded scenes, we perform 
most of the comparison experiments and ablation experiments on the CrowdHuman dataset. Experiments 
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on the COCO dataset verify that our method improves detection performance even in generalized 
scenarios. 

The CrowdHuman dataset contains training set, validation set and test set containing 15000, 4370 
and 5000 images respectively. On average, there are about 23 individuals per image in the CrowdHuman 
dataset, as shown in Table 1.The Crowd Human dataset has rich scenarios, different pedestrian poses, 
and different levels of crowding. Also, CrowdHuman dataset provides three different bounding box 
annotations for each pedestrian instance, namely head bounding box, visible area bounding box, and full 
body bounding box. 

The COCO dataset is very large, with 118,287, 5,000, and 40,670 images for the training, validation, 
and test sets, respectively, and contains multiple target categories and detailed annotations. Each image 
in the COCO dataset contains approximately nine targets, as shown in Table 1. The COCO dataset is 
annotated for each target with the location of the category and bounding box. 

Table 1: Instance densities for each dataset. The threshold for overlap statistics is IoU  > 0.5. 
*Averaged over the number of categories. 

Dataset #object/img # overlaps/img 
CrowdHuman[31] 22.64 2.40 

COCO[32] 9.34 0.0015 

4.2. Evaluation metric 

Evaluation of Indicators. We mainly use four important metrics, AP, MR-2, JI and Recall. 

Averaged Precision (AP). This is the most commonly used metric in the field of object detection. AP 
reflects the accuracy of the detection results. A larger AP indicates a better performance of detector. 

MR-2 is the logarithmic mean miss rate of false positives per image in [10-2,100]. This metric is 
commonly used in pedestrian detection.MR-2 is very sensitive to false positives, especially false positives 
with high confidence will significantly impair the MR-2 rate. A smaller MR-2 indicates better performance. 

Jaccard Index (JI) is primarily used to assess the counting ability of a detector. Unlike AP and MR-2 
defined on a predicted sequence with decreasing confidence, JI assesses the degree of overlap between 
the predicted set and the true frame. Typically, prediction sets can be generated by introducing a 
confidence score threshold. In this paper, for each evaluation entry, we compute the optimal JI score by 
exploring all possible no center thresholds. Larger JI indicates better performance. 

Recall. Recall is the fraction of samples that the classifier considers to be positive and are indeed 
positive as a proportion of the samples shown to be positive. Higher recall indicates better performance. 

4.3. Implementation details 

We chose to use OneNet as baseline and also as O2O branch for end-to-end detection. We use the 
pre-trained ResNet50[26] on ImageNet[27] as backbone and choose AdamW[28] as our optimizer. 
Meanwhile, our learning rate is defaulted to 0.001. Other hyper-parameters settings, such as batch size 
and weight decay, are consistent with OneNet. We train with 36 epochs training schedule. In terms of 
experimental environment, we conduct our experiments based on PyTorch 1.9.0[29] and MMdetection[30]. 
In terms of hardware, we use four 40G Tesla A100s for training and testing. 

4.4. Results on the CrowdHuman dataset 

In order to holistically and comprehensively evaluate the method proposed in this paper, we 
conducted extensive experiments on the CrowdHuman dataset. The evaluation is based on four 
evaluation metrics, with AP as the main evaluation metric. In Table 2, we give the experimental results 
of the method proposed in this paper as well as the results of the current mainstream detectors. For a fair 
comparison, all the anchor-free detectors, anchor-based detectors and baselines in the table use ResNet50 
pre-trained on ImageNet as the backbone. We compare the current mainstream detectors including 
Anchor-based and Anchor-free detectors. Detectors. 
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Table 2: Results for different detectors on the CrowdHuman validation set. All detectors use ResNet50 
pre-trained on ImageNet as the backbone. +MIP denotes multi-instance prediction using the set NMS 

as post-processing. 

Method AP(%) MP-2 JI(%) Recall(%) 

RetinaNet[9] 85.3 55.1 73.7 - 

ATSS[22] 87.0 51.1 75.9 95.9 

ATSS[22]+MIP[11] 88.7 51.6 77.0 - 

FPN[23]+NMS 85.8 42.9 79.8 - 

FPN[23]+soft NMS[16] 88.2 42.9 79.8 - 

NGLA[24] 89.5 46.6 - 96.2 

FPN+MIP[11] 90.7 41.4 82.4 - 

FCOS[9] 86.6 54.0 75.7 - 

FCOS[8]+MIP[11] 87.3 51.2 77.3 - 

POTO[25] 89.1 47.8 79.3 97.9 

FCOS[8]+NGLA[24] 90.1 45.6 - 96.6 

baseline[3] 90.1 50.0 78.2 97.9 

Ours 91.7 47.2 80.3 98.5 
As demonstrated by the results in Table 2, our method outperforms these well-established detectors 

and achieves a significant performance improvement compared to the Anchor-based and Anchor-free 
detectors. This indicates that our method can effectively address the problem of pedestrian occlusion in 
crowded scenes. In particular, our method achieves 1.6 higher AP than OneNet as well as 2.8 and 2.1 
improvement in MR-2 and JI, respectively. Especially, we show SOTA in Recall. 

As shown in the left part of Figure.4 (a), our method converges faster with the same training parameter 
settings compared to OneNet. At the same time, our method exhibits better performance with the same 
epochs settings. 

Compared with OneNet, our method converges faster with the same training parameter settings, as 
shown in Figure. 4(a). The convergence curve of the model of our method stabilizes at the tenth epoch, 
while OneNet starts to stabilize only at the fourteenth epoch. Meanwhile, the detection performance of 
our method performs better. 

Table 3: Results of current mainstream end-to-end detectors on CrowdHuman validation set 

Method AP(%) MR-2 Recall(%) 

DETR[1] 75.9 73.3 - 

DeFCN[25] 89.1 47.8 97.9 

PDETR[19] 91.6 43.7 - 

D-DETR[4] 91.5 43.7 - 

baseline[3] 90.1 50.0 - 

Ours 91.7 47.2 98.5 

The current mainstream end-to-end detectors are the DETR family and full convolutional networks, 
respectively. As shown in Table 3, our method outperforms current query-based detectors. Compared 
with PDETR, our method also has a small lead. In terms of the fully convolutional end-to-end detector, 
our method improves 2.6 AP and 0.6 MR-2 compared to DeFCN[25]. In terms of Recall, we have a 
significant improvement, which suggests that the soft anchor and the certain anchor we introduce in the 
SLA branch have the same semantic information and can be used for the model to learn features 
simultaneously. 

The visualization results of DSLA on the CrowdHuman dataset are shown in Figure. 5. The 
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experimental and visualization results show that our method can effectively mitigate the problem of 
inaccurate detection and localization due to occlusion in crowd scenes. Our method is able to show 
competitive performance in different occlusion situations, such as pedestrian-to-pedestrian occlusion and 
pedestrian-to-object occlusion. 

     
(a) Convergence curve of DSLA on CrowdHuman  (b) Convergence curve of DSLA on COCO 

Figure 4: (a) is the convergence curve of DSLA on CrowdHuman, (b) is the convergence curve of DSLA 
on COCO dataset. Both DSLA and baseline use ResNet50 as backbone, and both complete training 

under the same 36 epochs. Our experiments are done under PyTorch and MMdetection 

 
Figure 5: Visualized detection results on CrowdHuman, where the method proposed in this paper is 

able to present better detection results for pedestrians in different backgrounds, crowdedness, occlusion 
between pedestrians and pedestrians, occlusion between pedestrians and objects, and detection of 

pedestrians in different poses. The first row is dense occlusion between pedestrians; the second row is 
occlusion between pedestrians and objects; the third row is occlusion of pedestrians in both near and 

far views; and the fourth row is sparse occlusion. 
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Ablation experiments on CrowdHuman. The ablation experiments were performed to verify the 
effectiveness of the SLA branching and Feature Shuffle feature fusion methods. Table 4 shows that after 
adding SLA branch, AP, MR-2, and Recall have 1.0, 2.2, and 0.3 enhancements, respectively. After the 
addition of FS, although there is an improvement in all indicators, the improvement is very small. From 
the results in Table 4, it can be seen that SLA can effectively solve the problem of pedestrian occlusion 
in congested scenarios. At the same time, FS also enables SLA to show can good performance, indicating 
its necessity and effectiveness. 

Table 4: Ablation experiments on CrowdHuman 

Model FS DSLA AP MR-2 Recall 

baseline[3] ✗ ✗ 90.1 50.0 97.9 

ours ✓ ✗ 90.5 49.6 97.5 

ours ✗ ✓ 91.1 47.8 98.2 

ours ✓ ✓ 91.7 47.2 98.5 

In this paper, the original intention of our proposed method is to be able to accelerate the end-to-end 
detector convergence speed without increasing the computational resources. Combing the results in Table 
5 and the graph in Figure. 4(a), our method only adds negligible computation in the model training phase. 
In the evaluation phase, our computation remains consistent with OneNet. The results show that our 
method not only effectively solves the problem of slow convergence speed of the end-to-end fully 
convolutional detector, but also improves the performance of the detector without consuming additional 
computational resources. 

Table 5: Ablation experiments on CrowdHuman 

Model phase Params FLOPs 

baseline[3] infer 32.0M 201 

ours infer 32.0M 201 

ours train 32.2M 204 

4.5. Influence of different hyper-parameter settings in SLA 

In the SLA branch, we want the number of generated SOFT anchors to provide a sufficiently large 
number of learnable signals for the model. At the same time, that number of samples does not increase 
the additional computational resources generated by removing duplicate frames due to redundancy. 

Table 6: Ablation experiments on CrowdHuman numbers of soft anchors 

K 10 9 8 7 6 5 4 

AP 90.2 90.7 91.2 91.2 91.7 90.8 90.0 

Recall 96.5 96.8 97.2 97.8 97.8 97.5 98.6 

As shown in Table 6, when we set the number of soft anchors to 6, the best detection performance is 
achieved on the CrowdHuman val set without consuming additional computational resources. So in the 
following experiments, we all set the soft anchor quantity to 6 by default. 

Table 7: Experimental results of close-up retrieval 

 
Tmax 

     

 
Tmin 

0.4 90.8 91.7 89.2 88.7 

0.3 90.5 90.4 90.0 88.6 

0.2 90.3 90.4 89.4 88.2 

0.1 89.0 90.1 89.9 88.6 
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In the SLA branch, we want the soft anchor to be able to occupy a large weight in the initial stage of 
training, while in the end stage of training, we want to reduce the dependence on the SLA branch and 
focus on the O2O branch. The two parameters maxT  and minT  control the positive and negative weights 
of the soft anchor in the first and the last Epochs, respectively, during the training process. As shown in 
Table 7, different results were obtained by adjusting different sizes of maxT  and minT . It can be seen 
that when maxT  is taken as 0.6, a reduced minT  will decrease the detector performance, which suggests 
that a large minT  is also important to increase the performance of the detector in terms of the learning 
provided in the final training phase. When minT  is taken as 0.4, increasing or decreasing maxT  will 
affect the performance of the detector, which suggests that soft anchors with similar semantics affect the 
performance of the model in the de-duplication phase during training. 

4.6. Results on the COCO dataset 

In this paper, our proposed DSLA is used to solve the problem of downstream earthly masking in 
congested scenarios. There are also some mildly congested scenarios in the COCO dataset. We do 
experiments and ablation experiments on the COCO dataset to evaluate our approach. 

Our experiments are scheduled on MMdetection. Backbone uses a pre-trained ResNet50 model on 
the ImageNet dataset. The optimizer uses AdamW with a default learning rate of 4e-4. The batch size 
and weight decay settings are kept the same in order to compare the fairness of the experiments. The 
results in Table I are all obtained after 36 epochs of training. 

As shown in Table 8, our method exhibits good performance on the COCO dataset. With the same 
parameter settings, our method has a 1.8 AP improvement over OneNet. The improvement is 1.9 and 2.0 
on AP50 and AP75 results, respectively. The results demonstrate that DSLA also shows good 
performance for mildly congested and multi-category target detection datasets. The visualization results 
of DSLA on the CrowdHuman dataset are shown in Figure. 7. 

As shown by the graph in Figure. 4(b), when our method is trained on the COCO dataset, the model 
converges at the seventeenth epoch, whereas OneNet starts at the twentieth epoch before the model 
gradually begins to converge. Experiments demonstrate that our approach accelerates model convergence 
on the generalized target detection dataset as well, and also improves detector performance. 

Table 8: Experimental results of close-up retrieval 

Model AP(%) AP50(%) AP75(%) 

FCOS[8] 36.7 56.8 39.6 

RetinaNet[9] 37.2 56.7 39.0 

baseline[3] 38.6 56.6 42.2 

Ours + FS 39.1 57.2 42.7 

Ours + DSLA 39.5 58.1 43.8 

Ours+DSLA+FS 40.5(+1.8) 58.7(+1.9) 44.2(+2.0) 

4.7. Visual analysis of Feature Shuffle 

Based on the comparison between the upper and lower parts of Figure. 6, it can be observed that the 
features after Feature Shuffle not only reduce the redundant parts, but also strengthen the network's focus 
on the features. Especially in the case where pedestrians are occluded, after Feature Shuffle, the image 
features mainly focus on the pedestrian aspect. Especially when pedestrians are occluded by objects, after 
Feature Shuffle, the image features of characters are more obvious. 
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Figure 6: Visualization of score map. We use the heat map from to display the features. The upper part 
is the feature map of first-stage of ResNet50. The lower part is the feature map after Feature Shuffle. 

The visualization shows that FS is able to generate representative features. 

 
Figure 7: Visualized detection results on the COCO dataset. The first and second rows are mildly 

crowded scenes, and pedestrians show different postures, and pedestrians and objects are also closely 
connected, and our method is able to detect them well for different targets as well. The third, fourth and 

fifth rows gradually change from light to heavy congestion, with occlusion between pedestrians and 
between pedestrians and object. 

5. Conclusions 

In this paper, we propose Dual Subnet Label Assignment (DSLA) to solve the problem of slow 
convergence of the model. The SLA branch provides the soft anchor to the model so that the model can 
learn more learning signals. DSLA combines the advantages of the SLA branch and the O2O branch to 
accelerate the model convergence and improve the detection performance without bringing extra 
computational resources. DSLA combines the advantages of SLA branch and O2O branch, which can 
accelerate the model convergence and improve the detection performance without bringing extra 
computational resources. Feature Shuffle strengthens the interactions between different feature layers, so 
that the detector can focus more on the target features. Through experiments, we demonstrate that our 
approach not only shows good performance in crowded scenarios, but also improves the performance of 
the detector in generalized scenarios. Further in the future, we hope that DSLA can be adapted to as many 
end-to-end detectors as possible. In addition, how to dynamically adjust the number of soft anchors in 
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SLA branches for different degrees of occlusion is also our future research direction. 
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