
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-85-

Runtime Probabilistic Model Checking
Based on Incremental Method

Chao He

Information Engineering, Nanjing University of Finance and Economics, Nanjing
210000, China
704218038@qq.com

ABSTRACT. Nowadays, more and more systems change dynamically during their life
cycle, runtime probabilistic model checking is proposed to verify these system. An
important challenge of runtime probabilistic model checking is its performance. It
should be fast enough to respond to runtime requirements and continuously verify
whether the current system meets system requirements when the system changes
dynamically. In this paper, in view of the efficiency of the runtime probabilistic
model checking, we propose a runtime probabilistic model checking based on
incremental method. The method applies the ideal of incremental verification to
reuse the calculated value of the previous model to reduce the number of iterations
and improve their performance. We implement our method in model checking tool
PRISM, and use a benchmark case model to perform model verification on its
reachability properties. The results of the experiments show that the method
proposed in this paper can reduce the system verification time of standard runtime
probabilistic model checking by more than 45% in most of cases.

KEYWORDS: Runtime probabilistic model checking, Incremental verification,
Stochastic system, Discrete-Time Markov Chain

1. Introduction

Computer systems are widely used in our lives, our communication, finance,
transportation, and aerospace fields are inseparable from computer systems. The
widespread use of these systems, combined with their increasing complexity, means
that effective methods to ensure their reliability and performance are essential.
Model checking[1] is an automated formal verification approach that is used to
verify computer systems. In this approach, labeled transition systems are usually
used to model systems and temporal logics are used to specify system’s properties.
Some computer systems have stochastic behaviors. Therefore, we use probabilistic
model checking[2] to analyze their quantitative properties. In this domain, the
Discrete-time Markov Chain (DTMC) is used to model systems with random
behavior Markov. Probabilistic Computation Tree Logic (PCTL) is used to specify

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-86-

system’s properties A main class of PCTL properties is the optimal (maximum or
minimum) reachability probabilities. In most cases, numerical computations are
used to calculate these probabilities [3].

Many computer systems will encounter dynamic changes in their life cycle, these
changes usually occur in the structure and components of the computer system [4],
and lead to the addition, deletion or modification of its components, which requires
us verify the system at runtime. The runtime probabilistic model checking [5] is to
verify whether the system with random behavior meets the system’s properties at
runtime. Figure 1 describes the process of the runtime probabilistic model checking.
With the monitoring of the system [6], the system models are different at different
times. The model checker needs to continuously verify the newly generated models
to check whether the current model meets the system’s properties. This continued
verification at runtime requires a lot of cost.

Figure. 1 Runtime probabilistic model checking with PRISM[7]

In order to improve the efficiency [8] of runtime probabilistic model checking,
we used the idea of incremental verification [10] [11] to improve its verification
efficiency. This paper focuses on the research on the reachability probability [9] of
DTMC model. We change the probability transition value between states in the
model to simulate the changes in the system at runtime, and finally verify the
effectiveness of the proposed method through a benchmark case model in PRISM.
The main contributions of this article are as follows:

1. Analyze the principles of the existing runtime probabilistic model checking,
and summarize the limitations and performance bottlenecks of some verification
methods.

2. Apply the ideal of incremental verification to reuse calculation results of the
initial model probabilistic values as the initial values of iterative calculation for the
changed model.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-87-

After this section, we review the work related to incremental method in Section 2.
In Section 3, we introduce the basic knowledge and theory of probabilistic model
checking. In Section 4, we describe the runtime probabilistic model checking based
on incremental method and the implementation of incremental method. In Section 5,
we selected two types of DTMC models in the PRISM benchmark case to do the
experiments and analyze the experimental results. The last section summarizes this
paper.

2. Related work

Research related to incremental methods, for non-probabilistic systems, an
incremental algorithm is proposed in model checking for the first time in [12]. The
basis of the algorithm is using the changes △ of LTS as input for incremental model
verification. These changes include the addition and deletion of states. The
experimental results show that in the worst case, the time required for the
incremental model checking algorithm is linearly related to the size of the LTS. In
the best case, the time spent is linearly related to the amount of change △. In [13]
and [14], the incremental technique is used to accelerate the generation of state
space or the inspection of functional attributes, but neither quantitative attributes nor
numerical calculations are considered in these works. In the related research on
probabilistic systems, [15] researched incremental model construction when the
number of system components increases. In order to reduce the running time of the
probabilistic model checking, an incremental reduction technology based on strong
connected components (SCC) was proposed in [10]. The SCC-based method [16]
identifies the strongly connected components of the underlying model and calculates
each in sequence. When the model state changes, only needs to recalculate the
reachability probability values of the corresponding SCC. In this paper,.we focus on
the reachability probability of DTMC model. we propose a runtime probabilistic
model checking based on incremental method, which applies the ideal of
incremental verification to reuse the calculated value of the previous model to
reduce the number of iterations and improve their performance.

3. Background

3.1 Discrete time markov chains

Discrete time Markov chains are discrete stochastic processes with Markov
property, according to this process, the probability distribution of future states
depend only on the current state. They are defined as Kraske structures with
probabilistic transitions between states. The states represent the possible
configuration of the system. The transitions between states occur at discrete times
and have related probabilities. DTMC is currently widely used to model the
reliability of systems with different components (services). In particular, they prove
to be useful for early assessment or prediction of reliability.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-88-

A DTMC is defined as where

• is a finite set of states.

• , , represents the probability
that the next state of process will be given that the current state is .

• is a set of initial states.

• is a set of atomic propositions.

• is a labeling function which assigns to each state the set of
atomic propositions which are true in that state.

A state is called the absorbing state if . If a DTMC contains at least
one absorbing state, itself is called absorbing DTMC. In the simple model for
reliability analysis, DTMC will have two absorbing states, representing the correct
completion of the task and the failure of the task. The use of multiple absorbing
states can often be extended to model’s different fault conditions. For example,
different fault states may be associated with different external service calls.

3.2. Probabilistic computation tree logic

PCTL is a probabilistic expansion of the Computation Tree Logic (CTL). The
probabilistic operator quantitatively expands the CTL. PCTL can describe the
quantitative branch time property of DTMC and MDP. The PCTL formula can be
defined as:

PCTL provides the probabilistic operator , where is a probability
bound and . The formula is called a state formula, which can be
evaluated as true or false in each state, and the formula is called a path formula,
and its authenticity will be evaluated for each execution path. stands for next,
stands for until, and their semantics are the same as those of CTL path operators.

 is a variant of , which means that n migrations or less than n
migrations satisfy semantics, where n is a non-negative integer. The PCTL
formula for each state can be defined as:

Each path can be defined as:

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-89-

PCTL is an expressive language that can specify many properties. The most

important one is the reachability probability [17], which is one of the basic problems
of quantitative analysis by system modeled as DTMC. The calculation of the
reachability probability of DTMC can be simplified to the solution of linear
equations [18]. The two main solutions are:

(1) Direct method, calculate the exact solution (within the numerical error range)
in a fixed number of steps, such as Gaussian elimination, L/U decomposition, etc.

(2) Iterative method, which calculates successive approximations of the solution,
and terminates when the solution sequence converges to a predetermined accuracy.
Including Power [19], Jacobi [20] [21] and Gauss-Seidel [22] [23] methods.

3.3 PRISM

PRISM is a probabilistic model checker, which is a tool for formal modeling and
analysis of systems that exhibit random behavior. It analyzes by establishing an
accurate mathematical model of a system, and then formally expresses the property
of the system in temporal logic, and automatically analyzes the constructed model.
PRISM has been used to analyze systems from many different application areas,
including communication and multimedia protocols, random distribution algorithms,
security protocols, biological systems, etc. PRISM can build and analyze several
types of probability models:

• Discrete-time Markov Chain (DTMC)

• Continuous-time Markov Chain (CTMC)

• Markov Decision Process (MDP)

• Probabilistic Automata (PA)

• Probabilistic Timed Automata (PTA)

Models are described using the PRISM language, a simple, state-based language.
PRISM provides support for automated analysis of a wide range of quantitative
properties of these models, e.g. "what is the probability of a failure causing the
system to shut down within 4 hours?", "what is the worst-case probability of the
protocol terminating in error, over all possible initial configurations?", "what is the
expected size of the message queue after 30 minutes?", or "what is the worst-case
expected time taken for the algorithm to terminate?". The property specification
language incorporates the temporal logics PCTL, CSL, LTL and PCTL*.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-90-

4. Runtime probabilistic model checking based on incremental method

4.1 The framework of incremental runtime probabilistic checking

The main goal of this paper is to improve the verification efficiency of the
runtime probabilistic model checking. The research background is based on the fact
that the system model has undergone some changes in the complex and changing
runtime environment and needs to be verified again. This kind of scenario also often
occurs in practical applications. For example, when we need to investigate the
impact of changing model parameters on the overall model performance, and online
monitoring of properties of an existing system at runtime. In most cases, the
migration structure of the model has not changed, but one or several of the state
probability migration values have changed and we need to re-verify the model.

The main feature of the runtime probabilistic model checking based on
incremental method proposed in this paper is introducing the incremental ideal to the
verification process of the runtime probabilistic model checking. Reuse the
reachability probabilistic values from the previous model to accelerate the process of
calculating and improving the efficiency of the runtime probabilistic model checking.

Results P

Initial
value

of s：0

Gauss-Seidel

Results P1

Initial
value

of s：P

Gauss-Seidel

Results P2

Initial
value
of s：

P1

Gauss-Seidel

M0 M1 M2

Figure. 2 Incremental runtime probabilistic checking framework

Figure 2 shows the incremental runtime probabilistic model checking framework
From the figure, it can be seen that our main work is implemented in the model
verification process. M, M1 and M2 indicate that some state probability transition
values have changed during the runtime and thus different system models have been
generated. In the traditional runtime probabilistic model checking, when a new
model is generated, the new model and system requirements will be re-verified.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-91-

When the number of model changes is large and the number of model states is large,
this repetitive work will waste a lot of time and energy. This paper combines
incremental method in the verification process after the model changes, which is
used to reduce the number of numerical iterations in the verification process and
improve the efficiency of verification.

4.2 Incremental value iteration

We have developed an incremental value iteration method during the verification
process of the probabilistic model checking. The method is based on the Gauss-
Seidel iteration method. In the calculation of the reachability properties of stochastic
models, the Gauss-Seidel iterative method is a more commonly used iterative
method. The Gauss-Seidel iteration is a variant of value iteration. Compared with
value iteration, it can improve computing efficiency significantly. The main factor
that affects the efficiency of iterative calculation is the number of iterations in the
calculation process. It is the most effective method to improve the verification
efficiency by reducing the number of iterations. Our method is to reduce the number
of iterations is to reuse the calculated value of the previous model. The standard
Gauss-Seidel iterative methods normally use the zero vector for the first iteration
and iteratively update the vector of values until satisfying the convergence criterion.
From the perspective of linear algebra, we know that any other vector of probability
values can be used for the first iteration if for every Eigen value λ of the DTMC
matrix we have |λ|<1. In this case, the iterative method will converge to the solution
of the reachability probability values. Fortunately, this condition is guaranteed for
every matrix of DTMCs. We use this fact to select better start vector for the Gauss-
Seidel iterative method. In our approach, the computed vector of reachability values
for each version of the model is used as the start vector of values for the new
version(after change).

We use to represent the reachability probability value of a state s in
DTMC M, and to represent the value of the model M1 that needs to be verify
again after some probability transition values change. In our method, when we need
to recalculate , the calculated value (may be a single value or a set of
values) of the model M before the change can be used as the starting vector of
iterative method. We use to represent the iteration initial value of the
iterative method for model M, and to represent the iteration initial value of
the model M1. In the first method, is updating as follow:

5. Experiments

We perform the experiments in a Ubuntu 18.04 LTS system computer, the CPU
is i5 and the memory is 8GB. The experimental tool is the probabilistic model

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-92-

checker PRISM, the version is 4.5, and the basic configuration of PRISM is shown
in Table 1.

Table 1 Configuration of PRISM

Name Parameter
Engine Sparse

Solution Method Gauss-Seidel
Memory 1g

The paper focus on the DTMC model and reachability property, we used Crowds

(Crowds Protocol) model from the PRISM benchmark case. Crowds protocol is an
anonymous communication protocol. By storing and forwarding data at the
application layer, the sender's data reaches the receiver through a routing path
composed of multiple relay nodes, because each node on the path is difficult to
judge Whether the predecessor node is the initial initiator of the message or an
intermediate forwarding node, so as to hide the sender information and achieve
anonymity. The property of Crowds model that needs to be verified is R1: the
probability that the adversary observes the real sender more than once. The property
can be translated into PCTL as shown in Table 2.

Table 2 Properties translation in PCTL

Model Property PCTL
Crowds R1

For each type of model, we complete the four DTMC model experiments by

setting parameters, and record the relevant model information, including the
parameter settings of each model, the number of states and transitions in the model.
As shown in Table 3.

Table 3 Information of models

Model Parameter Values Number of States Number of Transitions

Crowds

TotalRuns=5, Crowdsize=20 2061951 7374951
TotalRuns=6, Crowdsize=10 352535 833015
TotalRuns=6, Crowdsize=15 2464168 7347928
TotalRuns=8, Crowdsize=10 2529567 6030207

In order to verify the effectiveness of our method, we implement the two

methods for each model in PRISM: The standard incremental verification method,
the incremental verification method combining with the incremental value iteration
method. In the experiment, considering the uncertainty of the model change in actual
system, we use the parameter Beta to represent the number of states which transition
values have changed. We have considered Beta=300 in the experiments. In the Table
4. we record the running time of each model, and all recorded times are in seconds.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-93-

Table 4 Time of model checking (Beta=300)

Model Parameter Values Standard runtime method Incremental value iteration

Crowds

TotalRuns=5, Crowdsize=20 7.324 3.678

TotalRuns=6, Crowdsize=10 2.72 1.452
TotalRuns=6, Crowdsize=15 13.658 7.055
TotalRuns=8, Crowdsize=10 25.88 14.28

According to the above experimental results, it can be seen that the incremental

method we proposed can effectively reduce the time of the model checking. For the
Crowds model, in most cases, combining the incremental method reduces the
verification time to less than 56% of the standard method.

6. Conclusion

We have proposed a runtime probabilistic model checking based on incremental
method in the paper. The main work of the paper includes: First, analyze the
principles of the existing runtime probabilistic model checking, and summarize the
limitations of some verification methods. Secondly, introduce the idea of
incremental value iteration and propose the runtime probabilistic model checking
based on incremental method. Finally, we implement the proposed method through a
benchmark case model in PRISM.

References

[1] Baier C, Katoen J P. Principles of model checking [M]. MIT press, 2008.
[2] LIU Yang, LI Xuan-Dong, MA Yan, WANG Lin-Zhang. Survey for stochastic

model checking [J]. Chinese Journal of Computers, 2015, 000 (011): 2145-2162.
[3] Kwiatkowska M, Norman G, Parker D. PRISM 4.0: Verification of probabilistic

real-time systems [C] //International conference on computer aided verification.
Springer, Berlin, Heidelberg, 2011: 585-591.

[4] Dehnert C, Junges S, Katoen J P. A storm is coming: A modern probabilistic
model checker [C] //International Conference on Computer Aided Verification.
Springer, Cham, 2017: 592-600.

[5] Filieri A, Ghezzi C, Tamburrelli G. Run-time efficient probabilistic model
checking [C] //2011 33rd International Conference on Software Engineering
(ICSE). IEEE, 2011: 341-350.

[6] Christoph Prybila,Stefan Schulte,Christoph Hochreiner,Ingo Weber. Runtime
verification for business processes utilizing the Bitcoin blockchain [J]. Future
Generation Computer Systems,2020,107.

[7] Klein J, Baier C, Chrszon P. Advances in probabilistic model checking with
PRISM: variable reordering, quantiles and weak deterministic Büchi automata

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-94-

[J]. International Journal on Software Tools for Technology Transfer, 2018, 20
(2): 179-194.

[8] Abrahám E, Jansen N, Wimmer R. DTMC model checking by SCC reduction
[C] //2010 Seventh International Conference on the Quantitative Evaluation of
Systems. IEEE, 2010: 37-46.

[9] Brázdil T, Chatterjee K, Chmelik M. Verification of Markov decision processes
using learning algorithms [C] //International Symposium on Automated
Technology for Verification and Analysis. Springer, Cham, 2014: 98-114.

[10] Kwiatkowska M, Parker D, Qu H. Incremental quantitative verification for
Markov decision processes [C] //2011 IEEE/IFIP 41st International Conference
on Dependable Systems & Networks (DSN). IEEE, 2011: 359-370.

[11] Forejt V, Kwiatkowska M, Parker D. Incremental runtime verification of
probabilistic systems [C] //International Conference on Runtime Verification.
Springer, Berlin, Heidelberg, 2012: 314-319.

[12] Sokolsky O V, Smolka S A. Incremental model checking in the modal mu-
calculus [C] //International Conference on Computer Aided Verification.
Springer, Berlin, Heidelberg, 1994: 351-363.

[13] Conway C L, Namjoshi K S, Dams D. Incremental algorithms for inter-
procedural analysis of safety properties [C] //International Conference on
Computer Aided Verification. Springer, Berlin, Heidelberg, 2005: 449-461.

[14] Heljanko K, Junttila T, Latvala T. Incremental and complete bounded model
checking for full PLTL [C] //International Conference on Computer Aided
Verification. Springer, Berlin, Heidelberg, 2005: 98-111.

[15] Wongpiromsarn T, Ulusoy A, Belta C. Incremental temporal logic synthesis of
control policies for robots interacting with dynamic agents [C] //2012 IEEE/RSJ
International Conference on Intelligent Robots and Systems. IEEE, 2012: 229-
236.

[16] Abrahám E, Jansen N, Wimmer R. DTMC model checking by SCC reduction
[C] //2010 Seventh International Conference on the Quantitative Evaluation of
Systems. IEEE, 2010: 37-46.

[17] Baier C, Klein J, Leuschner L. Ensuring the reliability of your model checker:
Interval iteration for Markov decision processes [C] //International Conference
on Computer Aided Verification. Springer, Cham, 2017: 160-180.

[18] Katoen J P. The probabilistic model checking landscape [C] //Proceedings of
the 31st Annual ACM/IEEE Symposium on Logic in Computer Science. 2016:
31-45.

[19] Elman H C, Saad Y, Saylor P E. A hybrid Chebyshev Krylov subspace
algorithm for solving nonsymmetric systems of linear equations [J]. SIAM
Journal on Scientific and Statistical Computing, 1986, 7 (3): 840-855.

[20] Sleijpen G L G, Van der Vorst H A. A Jacobi--Davidson iteration method for
linear eigenvalue problems [J]. SIAM review, 2000, 42 (2): 267-293.

[21] Milaszewicz J P. Improving jacobi and gauss-seidel iterations [J]. Linear
Algebra and Its Applications, 1987, 93: 161-170.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 3, Issue 2: 85-95, DOI: 10.25236/AJCIS.2020.030212

Published by Francis Academic Press, UK

-95-

[22] Kohno T, Kotakemori H, Niki H, et al. Improving the modified Gauss-Seidel
method for Z-matrices [J]. Linear Algebra and its Applications, 1997, 267: 113-
123.

[23] Ortega J M, Rheinboldt W C. Monotone iterations for nonlinear equations with
application to Gauss-Seidel methods [J]. SIAM Journal on Numerical Analysis,
1967, 4 (2): 171-190.

	1. Introduction
	2. Related work
	3. Background
	3.1 Discrete time markov chains
	3.2. Probabilistic computation tree logic
	3.3 PRISM

	4. Runtime probabilistic model checking based on incremental method
	4.1 The framework of incremental runtime probabilistic checking
	4.2 Incremental value iteration

	5. Experiments
	6. Conclusion
	References

