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Abstract: This research created and tested a digital twin model system for patients with acute ischemic 
stroke (AIS). The study was conducted in three comprehensive stroke units and included 200 patients with 
AIS, followed for one year. The model incorporates AI algorithms to optimize treatment strategies via 
continuous pain monitoring and real-time integration of multimodal neuroimaging and clinical data. 
Findings included improvements when compared to standard care for patient outcomes using a digital 
twin guided approach: The proportion of patients who made good functional recovery (mRS≤2) on day 
90 after the stroke increased by 16.2 percentage points (with 95% credibility interval, CI: 12.7-19.7% 
p<0.001) whereas in-hospital mortality risk was reduced by a 35% (relative risk ratio 0.65, 95% CI: 
0.52-0.81, p<0.001). The ability of the model to predict the progression of the disease was also good 
attaining ROC AUC of 0.89 (95% CI: 0.85-0.93). The system had great integration capabilities as the 
average latency time was only 87ms and 98.5% data capture completeness. This work confirms the 
important value of digital twin technology in managing acute stroke patient and it also opens new 
avenues for achieving personalized medicine. This technology offers improvements in healthcare delivery 
by enabling data-driven continuous decision support for patient care during hospital admission. 
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1. Introduction 

Acute ischemic stroke also known as AIS is quite frequently seen as a prevalent leading cause of 
extending disability and mortality risk factors throughout the globe. This poses tough questions when it 
comes to availability of appropriate health care management options considering the complex 
pathophysiology and time constraints regarding medical interventions. The most common notion of 
thinking about managing the stroke risk factors is very traditional and is often clinically set and medico 
centric but in practice often tends to ignore the dynamic progression of the stroke disease and suffers 
from diverse inter patient variability which often leads to mediocrity in results. In recent years, digital 
twin technology has shown promising potential for personalized treatment and healthcare system 
improvement [1, 2]. 

As a virtual representation of physical objects digital twins have gained the ability for distinct real 
time data gathering simulation and optimization and therefore great potential in the medical sector among 
a wide range of industries. This technology has emerged from being used solely in factories industries to 
become a well established viable option in today’s field of medicine by creating new pathways of treating 
patients with diseases [3, 4]. In the case of stroke management, digital twins are able to assimilate various 
data sets such as clinical data, imaging data and physiological data to develop a unique stroke model that 
progresses in synchronicity with the respective patient [5]. 

Recent research demonstrates that the technology of digital twin has been successfully implemented 
in a number of medical areas, including cardiology, oncology, and neurology[6,7,8]. Such implementations 
were associated with better predictive accuracy, more efficient treatment algorithms, and improved 
outcomes for patients. In particular, construction of digital twins of patients with cardiovascular 
pathologies has been applied to model hemodyanamic conditions and forecast disease progression with 
a fair degree of success [9,10]. On the other hand, despite the potential of this technology to tackle important 
problems in stroke management, its field of application to date has been underutilized in the context of 
the management of patients with acute ischemic stroke. 

The combination of Artificial Intelligence and Machine learning algorithms with the digital twin 
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provided an even greater possibility for predicting the course of the disease and the management of the 
patient[11,12]. These computational techniques are much more advanced as they allow working with 
complex streams of multimodal data and making clinical recommendations. In addition, the 
characteristics of digital twins that enable constant observation and real-time analysis suit the stroke 
management which is a time-sensitive treatment[13,14]. 

Even with such advancement, many issues continue to be a barrier to the creation and introduction of 
digital twin models for stroke patients. This includes integrated standardized protocols, the ability to 
process their implementation in real time, and the validation of the accuracy of models in a clinical setting 
[15,16]. Also, issues regarding the use of AI recommendations in practice, and that of AI in health 
institutions in general as it relates to data privacy rights of the patient require emphasis [17]. 

This research addresses these issues through the construction and verification of a digital twin model 
for patients with acute ischemic stroke. The model integrates real-time monitoring, predictive analytics, 
and treatment optimization within a comprehensive framework. Through individualized intervention 
techniques, this approach seeks to improve patient outcomes while optimizing healthcare resource 
utilization, advancing the management of acute ischemic stroke through personalized care methods. 

2. Materials and Methods 

2.1 Study Design and Participants 

This study was designed as a prospective observational cohort study and was approved and carried 
out at three universities stroke centers (Center A; 1186 beds, Center B; 782 beds and Center C; 1025 
beds) between January 2023 and December 2023. The study protocol was designed following the 
STROBE (Strengthening the Reporting of Observational Studies of Epidemiology) statement. In our 
study, adult patients aged eighteen years and older presenting with acute ischemic stroke within six hours 
of symptom onset confirmed on CT or MRI scans were included. All the patients enrolled in the study 
had a National Institutes of Health Stroke Scale (NIHSS) score greater than or equal to four and a 
modified Rankin scale (mRS) score less than or equal to two before the onset of the stroke. ASPECTS 
was greater than or equal to six on initial images. 

Exclusion criteria were those who had a pregnancy status, a high degree of preexisting disability, a 
life-threatening condition that made their life span not more than six months, the presence of an 
hemorrhagic stroke or any form of intracranial bleeding, among other disqualifying factors. Furthermore, 
patients who presented missing data greater than 20% or had contraindications to stroke therapy also 
were disqualified from participation in the experiment. Using G* Power 3.1 software, the sample size 
was measured at 200 considering the factors of possible drop outs and missing data with a power of 90%, 
an alpha level of 0.05, and a moderate Cohen’s d factor of 0.5, thus the possibility of a significant 
achievement being measured at 172 patients. 

The population for the study was categorized into two groups, one of the groups possessed the first 
70% of enrolled patients, a total of 140 and was dedicated for model development and internal validation, 
whereas the second group had the remaining 30% of the study participants, a total of 60 people and was 
allocated for interventions and experimentations. Also, all the eligible patients were consecutively 
enrolled for the study to reduce the risk of biasness during selection of the patients. All the clinical 
evaluations were done by qualified and certified stroke neurologists who didn’t know about the results 
of the digital twin and a dedicated clinical committee was in charge of any adverse events and clinical 
outcomes. 

The acquisition of patient data was done according to specific procedures, with initial screening and 
enrollment occurring within two hours of admission. The baseline data may include demographic factors, 
medical history as well as clinical examinations, and an assessment performed every day during 
hospitalization and one final assessment made at 90 (±7) days after the stroke. The study had a follow up 
assessment in 95% of the cases and details of all other missing data and protocol deviations were well 
described. 

Approval from various ethical committees was required from all the participating centers. All patients 
or their legal representatives provided written informed consent. The study was in accordance with 
principles outlined in the Declaration of Helsinki and also Good Clinical Practice guidelines. 
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2.2 Digital Twin Model Architecture 

The structure of the proposed digital twin model has been thought as a set of the system’s 
architectures combined into one which can be used for the management of the acute ischemic stroke. As 
illustrated in Figure 1, the architecture integrates four hierarchical functional layers which work together 
to give the user real-time clinical monitoring and predictive analytics functionalities[18]. Each layer was 
constructed in accordance with defined healthcare interoperability specifications and was authenticated 
through standardised tests[19]. 

 
Figure 1. Architecture of the Digital Twin Model for Acute Ischemic Stroke Management 

The data acquisition layer forms the foundation of the architecture, incorporating three primary data 
streams: structured clinical data, multimodal imaging data, and continuous physiological monitoring. 
Clinical data encompasses demographic information, medical history, medication records, and laboratory 
results, collected through standardized electronic health record interfaces. Imaging data includes CT, 
MRI, and perfusion studies, processed through DICOM-compliant systems with automated feature 
extraction capabilities. Real-time monitoring data is acquired through FDA-approved bedside monitors, 
capturing vital signs at one-minute intervals and neurological parameters at customizable frequencies [15]. 

The digital twin model structure follows the architectural framework while incorporating specific 
mathematical representations for patient monitoring and prediction. The model integrates clinical 
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parameters through three core components. 

First, the patient state monitoring component processes real-time clinical data. The state vector ( )tx  
includes key parameters such as NIHSS Score, GCS Score, vital signs, and laboratory data. The state 
evolution is modeled as: 

 ( )( 1) ( ), ( ), ( )t f t t t+ =x x u w  (1) 

where ( )tu  represents clinical interventions and ( )tw  accounts for variability in patient response. 

Second, the measurement integration component processes and validates the incoming data streams. 
The measurement process is represented as: 

 ( )( ) ( ), ( )t h t t=y x v  (2) 

where ( )ty  encompasses the clinical parameters with their corresponding sampling frequencies, 
and ( )tv  represents measurement uncertainty in the data collection process. 

Third, the prediction component utilizes these integrated measurements to provide clinical decision 
support. The risk assessment function evaluates patient status: 

 ( )( ) ( ),R t g t= x θ  (3) 

where ( )tx  represents the estimated patient state and θ  includes model parameters. The state 
synchronization between physical and digital representations is achieved through: 

   ( )( 1) ( ) ( ) ( ) ( )t t t t h t + = + − x x K y x  (4) 

where ( )tK  represents the gain matrix that optimizes the update between the predicted state and 

new measurements, ( )( ) ( )t h t−y x  is the measurement residual comparing actual measurements with 

predicted measurements. 

2.3 Data Collection and Processing 

The design of the data processing architecture was based on a distributed computing structure that 
would allow large scale and able to process data in real-time. Up to this time the raw data passes through 
a three-step processing pipeline: first it is the standardization phase, second - the integration phase and 
the third – the quality control phase. In the standardization phase during the image transfer HL7 FHIR 
(Health Level 7 Fast Healthcare Interoperability Resources) protocols for clinical data and DICOM 
standards for imaging data are implemented which enhances transfer and interconnectivity of different 
health care systems [20]. 

A great amount of data quality is assured by the verification algorithms which detect irregularities 
and the omission of certain data, in real time. For effective utilization of a data dictionary, particular 
variable definitions and their units of measurement were reconciled among the centers involved in the 
study. Table 1 provides detailed data element specifications as they were set within the model built. 

Table 1. Comprehensive Data Element Specifications for Digital Twin Model 

Data Category Parameters Sampling 
Frequency 

Quality Metrics Processing 
Method 

Clinical 
Parameters 

NIHSS Score Every 4h Inter-rater reliability >0.85 Standardized 
assessment 

 GCS Score Every 2h Completion rate >95% Digital capture 
 Motor Function Every 6h Validation rate >98% Structured 

assessment 
Vital Signs Blood Pressure Continuous 

(1/min) 
Signal quality index >90% Artifact removal 

 Heart Rate Continuous Data integrity >95% Wavelet filtering 
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(1/min) 
 SpO2 Continuous 

(1/min) 
Missing data <5% Interpolation 

Laboratory 
Data 

Complete Blood 
Count 

Daily CV <15% Automated 
analysis 

 Coagulation Profile Every 12h Quality control pass >98% Standard 
protocols 

 Biochemistry Daily Reference range validation Automated 
flagging 

Imaging Data CT Perfusion Admission, 24h Resolution >512x512 Automated 
processing 

 MRI Sequences Protocol-based SNR >20dB Standardized 
protocols 

 Angiography As indicated Contrast-to-noise >4 Digital 
enhancement 

Medication 
Data 

Anticoagulation Real-time Verification rate 100% Double-entry 
system 

 Thrombolysis Real-time Documentation rate >99% Automated 
tracking 

 Antiplatelets Real-time Reconciliation rate >95% Pharmacist 
review 

2.4 Model Development and Validation 

The digital twin model was developed using a hybrid approach that combines physics-based modeling 
with advanced machine learning techniques. The core prediction engine utilizes an ensemble of 
algorithms, including long short-term memory (LSTM) networks for temporal sequence prediction, 
random forests for risk stratification, and gradient boosting machines for outcome prediction [11]. The 
model architecture was optimized through cross-validation on the development cohort, with 
hyperparameter tuning performed using Bayesian optimization techniques. 

The training process incorporated a stratified 5-fold cross-validation scheme to ensure robust model 
performance across different patient subgroups. Model performance was evaluated using a 
comprehensive set of metrics, including area under the receiver operating characteristic curve (AUROC), 
sensitivity, specificity, and calibration plots. Furthermore, quantification of uncertainty catered for the 
intervals of confidence in all predictions made by the model. 

2.5 Real-time Implementation and Clinical Integration 

The implementation phase engaged in well-defined activities involving, technical installation, 
integration of the clinical processes and user training. This phase took place on a geographically 
distributed cloud hosting that was HIPAA compliant and was equipped with redundant back up systems 
with automated failover capabilities. Real time data processing was achieved by employing a parallel 
processing computing architecture that effectively regulates latency for critical variables to under one 
hundred milliseconds. 

Integration of the clinical workflow was crafted and executed in a manner that all pre-existing 
workflows would only be disrupted minimally but would allow for the optimized utility of the model’s 
job. Three tiers of alerts are currently set and each depends on the model’s prediction and other clinically 
relevant features. The three tiers are yellow for advisory, orange for urgent and red for critical. A clinical 
protocol for each alert was established in conjunction with senior stroke physician. 

2.6 Statistical Analysis 

For statistical computations R version 4.1.2 (R Foundation for Statistical Computing, Vienna, Austria) 
and Python 3.8.5 with scikit-learn 0.24.2 were employed. Normalcy of continuous variables was 
evaluated using the Shapiro-Wilk test, and appropriate measures were presented as mean ± standard 
deviation, or median (interquartile range). Categorical variables were reported as proportions and 
percentages. Metrics of model performance were calculated with confidence intervals of 95% using 
bootstrap resampling with 1000 iterations. Kaplan-Meier methods along with Cox proportional hazards 
models were used for time to event analyses. Schoenfeld residuals were utilized to test the proportional 
hazards assumption. The Benjamini–Hochberg procedure was used with false discovery rate of 0.05 for 
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the multiple comparison corrections. 

3. Results 

3.1 Model Performance Metrics 

3.1.1 Overall Performance Assessment 

The digital twin model functioned exceptionally well in both the development and validation cohorts. 
The initial part of the validation demonstrated that there is a high level of accuracy in estimating patterns 
associated with the progression of strokes with an AUROC of 0.89 (95% CI: 0.857–0.928) for the 
primary outcome. The model performed admirably during the early stages of a patient’s neurological 
deterioration, with the model being 92% sensitive and 88% specific. For 90-day mRS prediction, the 
model was informative enough to reach an accuracy of 85.6% (95% CI: 82.1-89.1%), which is much 
better than modern prediction methods [1, 2]. 

3.1.2 Subgroup Analysis Performance 

Across different clinical scenarios, the model showed similar predictive performance. These are the 
estimates, in the elderly subgroup greater than 75 years of age AUROC=0.87 (95% CI: 0.82-0.92) was 
achieved, in those with diabetes 0.88 (95% CI: 0.83-0.93), and in severe stroke patients NIHSS>15 0.90 
(95% CI: 0.86-0.94) In terms of inter-subgroup variation, this level of accuracy was achieved in all 
subpopulations. Similar subpopulation accuracy of the model confirms its reliability and wider 
applicability. 

 
Figure 2. Digital Twin Model Performance Assessment Framework. 

In the report presented in Figure 2, the structure of the optimization model and its validation 
methodology is presented, highlighting the incorporation of various layers of verification and evaluation 
of the metrics of the model. The flow of information from the input layer through the process of the 
output layer shows the flow of information throughout the cycle including the assessment of internal and 
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external validation metrics. 

3.2 Clinical Outcomes Assessment 

3.2.1 Primary Outcome Analysis  

Managed through the use of a digital twin, the approach employed in this study was able to perform 
significantly better than standard care in a few parameters. A greater number of patients managed with 
the aid of a digital twin were able to achieve mRS > 2 at 90 days, 68.5% compared to 52.3% with a p 
value of < 0.001, from the control group. There was a thirty-five percent reduction in the relative risk for 
in the in- hospital mortality in patients using digital twin technology compared to the control group 
(relative risk ratio 0.65, 95%CI: 0.52-0.81, p<0.001) The relevant clinical outcomes in between groups 
are well captured in the Table 2. 

Table 2. Comparison of Clinical Outcomes Between Digital Twin-Guided and Standard Care Groups 
Outcome Measure Digital Twin 

Group (n=100) 
Standard Care 
Group (n=100) 

P-value Effect Size (95% 
CI) 

Risk Ratio 

90-day mRS≤2 (%) 68.5 52.3 <0.001 0.72 (0.58-0.86) 1.31 (1.18-1.45) 
In-hospital Mortality (%) 8.2 12.6 <0.001 0.85 (0.71-0.99) 0.65 (0.52-0.81) 
Symptomatic ICH (%) 3.1 5.8 0.002 0.91 (0.77-1.05) 0.53 (0.36-0.78) 
Early Neurological 
Deterioration (%) 

15.3 24.7 <0.001 0.78 (0.64-0.92) 0.62 (0.51-0.75) 

Hospital-acquired 
Pneumonia (%) 

9.8 16.4 <0.001 0.83 (0.69-0.97) 0.60 (0.48-0.75) 

90-day All-cause Mortality 
(%) 

10.5 15.8 <0.001 0.80 (0.66-0.94) 0.66 (0.54-0.81) 

3.2.2 Secondary Outcomes and Process Metrics  

With regard to other outcomes, the gains made by the digital twin group were notable. Time to 
treatment decision made was reduced by 13.3 minutes (95%CI: 10.817.8 minutes, p<0.001) and their 
average hospital stay was decreased by 3.2 days (days: 2.5-3.9 days, p<0.001). The neurology improved 
for 16.2 percentage points (95% CI: 12.7-19.7%, p<0.001). 

3.3 Predictive Accuracy and Model Reliability 

3.3.1 Temporal Prediction Performance  

The model has shown superior prediction sophistication especially in predicting and diagnosing the 
early signs of progression of a stroke. The prediction system is of utmost importance in among other 
things combining various aspects of data and predicting real time putting it to great use for early 
intervention [9, 10]. Meanwhile, this here is a reapparisal of prediction correctness over certain time frames. 

 
Figure 3. Temporal Analysis of Model Predictive Performance. 

Figure 3 shows the flexibility of the aforementioned parameters of the digital twin model accuracy, 
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sensitivity, specificity, and positive predictive value in the post admission phase. The accuracy of the 
model picks significantly during the early period (0-24 hours) followed by a slow drop in accuracy over 
the period. 

3.3.2 Model Reliability Assessment  

The model demonstrated exceptional reliability during the 72-hour continuous monitoring period. 
System uptime reached 99.7%, with data capture completeness at 98.5%. The average latency for real-
time predictions was only 87 milliseconds (range: 65-110 milliseconds), well below the threshold 
required for clinical practice [12]. 

3.4 Implementation Outcomes and System Integration 

3.4.1 Clinical Workflow Integration  

Performance enhancement in regard to resource allocation and decision making efficiency was noted 
once the digital twin model was integrated into the existing practices. The time taken to make crucial 
decisions decreased by 42% with an additional noticeable 35% decrease in time spent on allocating 
resources. For critical parameter updates, the operating range and average retention time for real time 
data transferred was 87 milliseconds. 

3.4.2 AI Component Performance  

The self-learning aspects of AI embedded within the digital twin structure increased significantly 
increasing the models' capabilities self-learning algorithms. As a result, this extensive model ended up 
drastically boosting the adaptation specific treatment and prediction strategies for the patients. The 
systems' ability of self-learning facilitated in improving overall prediction rate by 8.3 percentage after a 
time span of three months. 

3.5 Safety and Clinical Validation 

3.5.1 Safety Analysis  

Comprehensive safety analysis revealed no adverse events directly attributable to the digital twin 
system implementation. The model demonstrated high reliability in identifying potential complications, 
with a false positive rate of 3.2% and a false negative rate of 2.8%. These findings support the safety 
profile of digital twin technology in acute care settings [17]. 

3.5.2 Clinical Validation Results  

Clinical validation studies confirmed the model's effectiveness across diverse patient populations, 
with consistent performance across different age groups, comorbidity profiles, and stroke severity levels. 
The system's ability to maintain high accuracy levels across these subgroups supports its potential for 
broad clinical application. Notably, the model showed comparable predictive accuracy in elderly patients 
(>75 years) and those with multiple comorbidities as in younger patients (AUROC difference <0.05). 

3.5.3 Long-term Follow-up Data  

Twelve-month follow-up data demonstrated sustained advantages of the digital twin-guided treatment 
strategy in long-term outcomes. One-year survival rates improved by 12.5 percentage points in the digital 
twin group (95% CI: 8.9-16.1%, p<0.001), and functional independence (mRS≤2) rates increased by 
15.8 percentage points (95% CI: 11.2-20.4%, p<0.001) [6, 31]. These long-term results further validate 
the technology's effectiveness in improving stroke patient outcomes. 

4. Discussion 

This research offers a detailed analysis of how the technology of digital twin improved the clinical 
outcomes and the processes of decision making during the management of acute ischemic stroke, giving 
strong evidence for the implementation of such technology. The constructed model of digital twin 
demonstrated exceptionally good abilities in different classes of patients and provided perspectives on 
the evolution of stroke treatment in the context of using digital technologies. 
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4.1 Clinical Implementation and Model Performance 

The digital twin framework developed in this study is more efficient than existing methods; an 
accuracy AUROC of 0.89 was calculated for primary outcomes. This goes further than existing predictive 
models and constitutes a step in the realm of the developing digital health technologies [1, 2]. One of the 
features of the model is the ability to outperform all other models in predicting outcomes in patients 
belonging to a broad range of sociodemographic groups especially the older populations and the 
comorbid patients as these strengthen the existing management systems for stroke. The step forward, in 
Allen et al.[5], concerning the modeling of disease‐progression with the aid of parallel virtual worlds 
and the creation of new applications for precision medicine, in Hernandez-Boussard et al.[7], was covered 
by this robustness. 

The combination of real-time monitoring and the ability to predict outcomes is a stepping stone in 
stroke care as compared to the older protocols. The system’s data accuracy with them being able to 
process various streams of data showcases the need of having thorough digital health implementations, 
especially within the scope of acute care. This achievement is consistent with theoretical frameworks 
formulated by Liu et al.[18], and is augmented by the application of such frameworks to real clinical 
activities. 

4.2 Integration with Existing Healthcare Systems 

The ability to incorporate the digital twin within the existing clinical workflows is a remarkable 
achievement in the context of the digitalization of the healthcare enterprise. Nevertheless, the attained 
system reliability indicators, especially the 99.7% uptime and 87-millisecond delay for real time 
predictions have been outstanding and exceed the performance parameters reported in the previous 
studies of healthcare digital twins [15, 21]. The above NP being at that level is important in stroke care 
where quick turnaround times for decisions need to be made due to NP relevance. Their compatibility 
with previously stated clinical protocols facilitates standardization frameworks proposed by Cosío-Leó
n et al. [19] and the implementation challenges outlined by Fuller et al. [15]. 

Critical interventions that have reduced the time to make decisions by 42% add to operational 
efficiency as improved figures do in fact reveal the deprescriptive advantages. This claim on efficiency 
gains from operations is indeed in line with what Croatti et al. [13] proposed in terms of the advantages of 
improving the efficiency of digital twins in the health care delivery system. On the other hand, successful 
implementation shows the consistency with architectural approaches proposed by Rivera et al. [20] in 
regard to continuous patient monitoring and integration of real time data. 

4.3 Clinical Impact and Patient Outcomes 

In this study, there was a notable drop in mortality rates while the functional outcomes improved 
greatly which suggests that the stroke care can greatly benefit from digital twin technology. The in-
hospital mortality was lower by 35% while the functional recovery rates improved by 16.2%, which is 
significantly better than what has been seen from other mobile health applications [13, 14]. These 
enhancements are consistent with the concept of personalized medicine expounded by Cellina and 
others[4] and confirm the optimism around personalized medicine supported by the digital twin 
technology opined by Björnsson et al. [3]. 

The reported progress in increasing efficiency of treatment and more rapid resource deployment attest 
to the usefulness of virtual dynamic modeling of patients in real time.[24] Along with the decreased 
prevalence of pneumonia occurring in hospitals and symptomatic intracranial bleeding, the system’s 
ability to prevent and anticipate difficulties further substantiates Fagherazzi’s [24] argument concerning 
the effectiveness of deep digital phenotyping in precision health. 

4.4 Ethical and Implementation Considerations 

Even though the research offers strong advantages, there are ethical aspects surrounding the privacy 
of patient data, the transparency of the algorithms, and the clinical decision support that need to be 
resolved, as Bruynseels et al. [17] have pointed out. These differences in data standardization as well as 
data integration are also common challenges observable in other digital twin applications. These tensions 
are appropriately resolved by robust data governance frameworks and standardized protocols which 
Wright and Davidson [16] model validation and verification concerns are strongly addressed. 
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Elsewhere, the ethical issues pertaining to the application of AI supported decision making systems 
in critical care need to be given constant vigilance and scrutiny. The approach taken by the study, of 
moderating the use of higher order prediction with suitable human intervention is in accordance with the 
views of Sun et al. [1] regarding the need for caution in the use of digital health technologies. This techno-
human interplay offers a middle scenario for regulating future applications of digital twins in medicine. 

4.5 Technological Innovation and Future Applications 

A significant merging in the field of advanced healthcare technology is the fusion of AI elements and 
digital twins. It was displayed how continuous learning can improve prediction accuracy by 8.3 
percentage points, which has also been reported in the case of applications in the healthcare sphere [11,12]. 
Taking into account the model’s capability to assimilate and accurately interpret multiple real time data 
streams, the model offers great potential for use in other acute care settings, as outlined by Zhang et al. 
[21] 

The prosperity of this particular twin model application paves a way for new possibilities in research 
into and development of personalized medicine. According to the aforementioned Soltani et al. [2], future 
work should aim at extending the range of biological and imaging parameters included in the construction 
of the model. It also deserves attention the prospect of the combination of this technology with other 
advancing healthcare technologies, such as the ones reported by El Saddik [23]. Equally noteworthy is the 
use of digital twin technology for preventive and rehabilitation services, which is part of the broader 
scope of research objectives pursued by Voigt et al. [8]. 

4.6 Limitations and Future Directions 

There are several key limitations of this study that need to be highlighted even as this study points to 
important findings. One, although the multi-center approach improves external validity, the study was 
conducted only in advanced stroke centers’ and this might affect the translation of findings to other health 
environments. Two, although the sample is adequate and the N is low, the one-year follow-up period 
might miss important longer-term effects of digital twin-guided interventions. Integration of data from 
several sources had challenges in standardization and harmonization for imaging data with the 
observations of Wright and Davidson [16] on difficulties in implementing digital twins. 

Jones et al.[22] noted that quantifying the effect of each component in the individual systems towards 
outcome achievement is a significant challenge and this was another of the challenges faced by the study. 
Our model did exhibit good performance, but some of the AI components are not fully interpretable 
which is a limitation. In addition however, we demonstrated reducing resource use is an improvement 
but a complete cost effectiveness of the analysis was out of this particular study. 

Going forward, combining artificial intelligence components with the digital twin framework is a 
major step in the development of the adaptive healthcare technology. This improvement observed during 
the study is consistent with recent trends in prediction accuracy improvement via continuous learning 
application of machine learning techniques in solving machine learning problems for the healthcare 
sector. Next studies are recommended to enhance the model by adding more biomarkers and imaging 
parameters as it was suggested by Sun et al.[2]There is a need to investigate further the feasibility and 
possibility for the modernization of this technology to other new paradigm shifts in the healthcare 
systems as the ones described by Zhang et al. [21] 

The above discussion suggests that digital twin technology can contribute to post-stroke care 
management by supporting patient-centered care processes through data-driven approaches and decision 
support tools. The results encourage further investigation and experimentation in potential new areas of 
this fast developing digital health technology, but they also emphasize the need to consider ethical issues 
and context specific problems arising from its deployment in practice. 

5. Conclusions 

Digital twin technology offers a systematic approach in acute ischemic stroke management, providing 
opportunities for personalized care and improved patient outcomes. This study has demonstrated that the 
integration of digital twin models into clinical practice is not only feasible but can significantly enhance 
the quality and efficiency of stroke care delivery. The demonstrated improvements in clinical outcomes, 
particularly in mortality reduction and functional recovery, underscore the potential of this technology to 
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revolutionize acute stroke care. Our findings suggest that digital twin systems can successfully bridge 
the gap between traditional standardized care approaches and the need for personalized treatment 
strategies. The robust performance across diverse patient populations indicates the broad applicability of 
this technology in real-world clinical settings. 

From a practical perspective, the successful implementation and integration of the digital twin system 
within existing clinical workflows provides a blueprint for future adoptions in healthcare settings. The 
ability to process and analyze complex, multimodal data streams in real-time while maintaining high 
reliability demonstrates the maturity of this technology for clinical applications. 

Looking ahead, this research opens new avenues for the advancement of precision medicine in stroke 
care and potentially other acute medical conditions. As healthcare continues to evolve toward more 
personalized approaches, digital twin technology stands poised to play a pivotal role in shaping the future 
of medical care delivery. 

We recommend continued investment in digital twin technology development and implementation, 
with particular focus on expanding its applications and enhancing its capabilities. Additionally, 
establishing standardized protocols for implementation and validation will be crucial for broader 
adoption across healthcare systems. The insights gained from this study provide a strong foundation for 
future developments in this rapidly evolving field, ultimately working toward the goal of more precise, 
personalized, and effective patient care. 
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