
Academic Journal of Business & Management 
ISSN 2616-5902 Vol. 7, Issue 9: 73-78, DOI: 10.25236/AJBM.2025.070911 

Published by Francis Academic Press, UK 
-73- 

The MF-DFA Algorithm as a Tool for Testing Market 
Efficiency 

Philipp Sysoev 

Saint-Petersburg State University, Saint-Petersburg, Russia 
philipp.sysoev@mail.ru 

Abstract: This article examines the MF-DFA (Multifractal Detrended Fluctuation Analysis) algorithm 
developed by J. Kantelhardt, a widely used tool for detecting informational inefficiency in the stock 
market. Its ability to identify subsets of data with varying degrees of correlation has linked it to the 
concept of market efficiency, where correlated returns imply inefficiency. However, as demonstrated in 
this study, the algorithm was originally designed for general purposes and does not account for the 
unique characteristics of financial data. One of the key features of financial data is volatility clustering, 
which, by itself, does not violate market efficiency. The article shows that volatility clustering generates 
a significant portion of the multifractal spectrum, often interpreted as a sign of inefficiency. Thus, 
applying the MF-DFA algorithm to financial data fails to distinguish between (a) the multifractal effect 
arising from varying degrees of correlation in price returns, and (b) the multifractal effect induced by 
clustered volatility. Consequently, the multifractal effect detected via MF-DFA analysis cannot serve as 
a definitive criterion for assessing whether a market is efficient or inefficient in the weak-form sense. 
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1. Introduction 

The notion of informational efficiency in financial markets implies that, at any given moment, market 
prices fully reflect all available information accessible to investors [1]. If this holds true, predicting price 
increments becomes impossible, and the corresponding statistical data exhibit no time-dependent 
correlations. The emergence of this hypothesis in the 1960s [2] spurred the development of statistical 
methods aimed at either validating or refuting it. 

The primary mathematical model aligned with this hypothesis was the random walk process [3]. 
Consequently, testing market efficiency essentially involved testing the random walk hypothesis. Initially, 
simple statistical methods were employed for verification (e.g., autocorrelation tests or runs tests). 
However, the analytical toolkit gradually became more sophisticated. Fractal methods, for instance, were 
introduced to study the dimensionality of time series (such as prices) to detect long-term memory in price 
increments. 

Within fractal analysis, the so-called Hurst exponent (𝐻𝐻) is calculated, ranging from 0 to 1. If the data 
exhibit no correlations — neither short- nor long-term — this coefficient equals 0.5. During the 1980s 
and 1990s, empirical estimates of 𝐻𝐻 often significantly exceeded 0.5 (frequently around 0.7), indicating 
strong long-term correlations and persistent trends in market data. Today, however, most developed 
markets exhibit Hurst exponents very close to 0.5, which is widely interpreted as evidence of no memory 
effects — and thus, weak-form market efficiency. 

Nevertheless, methodological advancements have since taken the study of financial data’s statistical 
properties to a new level. Pioneered by Benoit Mandelbrot and his followers, the multifractal market 
hypothesis [4] emerged. This paradigm posits that the statistical properties of financial time series (e.g., 
variance) are not uniformly distributed but instead localized in specific segments. The degree of this 
statistical "inhomogeneity" is quantified by the multifractal spectrum of dimensions. 

Under this framework, a financial time series is no longer viewed as a homogeneous statistical entity 
but rather as a complex assembly of distinct statistical sub-patterns, each governed by different dynamics. 
For example: 

a) Large price fluctuations may follow one statistical law (e.g., exhibiting anti-persistence, H < 0.5, 
with frequent trend reversals); 
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b) Small price fluctuations, conversely, might display persistent behavior (H > 0.5, current trend 
continuation). 

The elegance with which Mandelbrot drew parallels between physical and economic phenomena, 
along with his pioneering use of multifractal methods in financial market analysis, had an unintended 
consequence. Many researchers came to believe that any statistical method examining multifractal 
properties of time series could be automatically applied to financial data without reservation. 

Among the currently most popular tools for studying multifractal properties in stock markets is the 
MF-DFA (Multifractal Detrended Fluctuation Analysis) algorithm, developed by J. Kantelhardt and 
colleagues in 2002 [5]. Notably, this method has been widely adopted to test the Efficient Market 
Hypothesis (EMH) in numerous studies, including [6]-[13]. In such research, the standard methodology 
involves: 

a) Calculating the multifractal spectrum for the original data series; 

b) Computing the spectrum for shuffled/surrogate data (see Fig. 1); 

c) Comparing both spectra 

If a significant difference emerges between the spectra (i.e., region A occupies a substantial portion 
of the spectral range [𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚;  𝛼𝛼𝑚𝑚𝑚𝑚𝑚𝑚]), researchers typically conclude that the data exhibit multifractality, 
implying market inefficiency due to detected long-term memory effects. 

 
Figure 1: Multifractal spectrum for original (solid line) and shuffled (dashed line) data. Description: 
f(α) – multifractal spectrum function; α – Hölder exponent; q – scaling parameter (q > 0: analyzes 
high-variance regions; q < 0: examines low-variance regions). Source: Author's own elaboration. 

However, a critical issue persists: most studies pay scant attention to the actual economic 
interpretation of multifractality. Given that the MF-DFA algorithm wasn't originally designed for 
financial data, its uncritical application often leads to questionable conclusions. As demonstrated below, 
results from the standard MF-DFA implementation cannot reliably support claims about weak-form 
market inefficiency. 

2. The Economic Meaning of Multifractality  

Before examining the MF-DFA algorithm in the context of the Efficient Market Hypothesis (EMH), 
it is essential to clarify the economic interpretation of financial multifractality. The foundation for this 
concept was laid by Benoit Mandelbrot, who introduced the notion of multifractal (or trading) time [4]. 
This pivotal idea is crucial for analyzing financial time series, such as price quotations. The core premise 
is that market time does not flow uniformly like physical time. While physical time progresses at a 
constant rate, trading time is highly non-uniform. Market participants (traders/investors) react to news 
flows, which themselves are irregularly distributed. For example, some periods feature sparse news, 
spread over long physical time intervals. On the other hand, other periods experience bursts of high-
impact news, compressed into short physical time spans, triggering immediate market reactions. 

This time inhomogeneity explains why asset returns (including log returns) almost never follow a 
normal distribution. Instead, financial return distributions exhibit: (a) heavy tails (excess kurtosis) and 
(b) high peaks (leptokurtosis). These properties reflect alternating phases of "slow time" (low volatility, 
minor price changes) and "fast time" (high volatility, large price swings). Such phases can often be 
distinguished by trading volume patterns. 
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Mandelbrot was the first to link trading time inhomogeneity to heavy-tailed return distributions. He 
proposed his own price fluctuation model with non-uniform (or "trading") time [4], terming it as 
multifractal because it simultaneously accounts for: (a) self-similarity of statistical properties, and (b) 
their intrinsic heterogeneity. This statistical heterogeneity was indicative of long-range dependence, but 
was strictly confined to volatility patterns. As Mandelbrot noted, volatility clusters in certain regions — 
periods of large price fluctuations alternate with calmer intervals, exhibiting long memory and 
persistence [14]. His collaborators further clarified: "The multifractal model displays long dependence 
in the absolute value of price increments, while price increments themselves can be uncorrelated" [4, p. 
2]. 

Thus, the MMAR (Multifractal Model of Asset Returns) model proposed by Mandelbrot is essentially 
a scalable analogue of ARCH-type models (which model conditional volatility), as Mandelbrot himself 
emphasized [4, p. 26]. Crucially, Mandelbrot’s use of "multifractality" refers specifically to 
the time/volatility relationship: for monofractal (homogeneous) data volatility scales uniformly across 
all time intervals, whereas for multifractal (heterogeneous) data it scales unevenly — sometimes rapidly, 
sometimes slowly. This non-uniform scaling of volatility (divergent "scaling exponents") generates 
multifractal effects. At this point, it becomes evident that the observed multifractal effect is intrinsically 
linked to volatility clustering. Importantly, this phenomenon is distinct from long-term memory in price 
increments, as later research stresses: "increments of financial time series are well known to be 
uncorrelated (for large enough time lags), while their amplitude (‘local volatilities’) exhibits power-law 
correlations" [15, p. 10]. 

We have previously described the model proposed by Mandelbrot and his students. However, 
currently the majority of works dealing with the concept of a multifractal market and investigating 
multifractal properties of financial time series employ not Mandelbrot's MMAR model, but rather the 
MF-DFA algorithm developed by J. Kantelhardt for analyzing multifractal properties of time series [5]. 
The mathematical tools used by both Kantelhardt and Mandelbrot's followers (the Hurst exponent, 
Hölder exponent, multifractal spectrum, etc.) are identical. Yet paradoxically, Kantelhardt's paper 
contains no references to the works of Mandelbrot or any of his students. This explains why within the 
MF-DFA algorithm, multifractality carries a somewhat different meaning than in Mandelbrot's 
multifractal time paradigm. 

As we have seen, Mandelbrot's school interprets multifractality of time series as time inhomogeneity 
(particularly of trading time) and the associated inhomogeneity in the rate of volatility growth during 
scaling. Thus, in the MMAR model, multifractality is used as a way to model clustered volatility when 
describing price fluctuations. 

At the same time, Kantelhardt's analysis employs the concept of multifractality differently - namely 
as a property of a time series to contain subsets, some of which demonstrate persistent behavior while 
others show anti-persistent behavior. Importantly, Kantelhardt interprets persistence not as stability 
(clustering) of volatility, but precisely as stability of changes in the time series. He interprets persistence 
as "persistent and anti-persistent increments, where a positive increment is likely to be followed by 
another positive or negative increment, respectively" [16, p.8]. Accordingly, multifractal properties 
emerge as a consequence of different correlation dependencies linking such increments: "multifractal 
scaling is observed if the scaling behaviour of small and large fluctuations is different. For example, 
extreme events might be more or less correlated than typical events" [16, p.11]. 

The difference between Mandelbrot's and Kantelhardt's approaches to multifractality can be 
demonstrated with the example of a heavy-tailed fractal random walk. From the perspective of 
Mandelbrot's followers, such a process would be multifractal (since heavy tails are manifestations of time 
inhomogeneity, or multifractality). At the same time, from Kantelhardt's viewpoint, this same process 
would be monofractal, as all increments of this time series are correlated according to a single logic. 

3. The MF-DFA Algorithm as a Tool for Analyzing Market Efficiency  

As previously noted, MF-DFA analysis can detect multifractal effects arising from the presence of 
subsets in price increment time series characterized by diverse correlation dependencies. When such 
statistical heterogeneity exists in the data, the MF-DFA algorithm will indicate multifractal effects. 
Understood in this way, multifractality suggests market inefficiency: "A higher degree of multifractality 
in market price returns indicates more significant inefficiency in that market" [17, p.2]. 

However, such heterogeneity is not the only source of multifractality in the data. Kantelhardt and his 
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followers have repeatedly emphasized that heavy tails in the original data distribution make a substantial 
contribution to the multifractal effect (manifested in the width of the multifractal spectrum) [16, p.11]. 
These two sources of multifractality in financial data have been mentioned in almost every article using 
the MF-DFA algorithm to analyze market efficiency. 

At the same time, as we have shown, Mandelbrot's MMAR model clearly demonstrates the existence 
of another effect - multifractality induced by volatility clustering. This naturally raises the question: can 
volatility clustering contribute to the multifractal effect detected by the MF-DFA algorithm? To test this 
hypothesis, we generated a series of 100,000 normally distributed returns 𝑟𝑟ₜ following a GARCH(1,1) 
process, modeled by the equations: 

𝜎𝜎ₜ² =  𝜔𝜔 +  𝛼𝛼𝛼𝛼ₜ₋₁² +  𝛽𝛽𝛽𝛽ₜ₋₁²                                                (1) 

𝑟𝑟ₜ =  𝜇𝜇 +  𝜎𝜎ₜ𝜀𝜀ₜ, где 𝜀𝜀ₜ ~ 𝑁𝑁(0,1)                                               (2) 

In our example, the parameters were selected as follows: 𝜔𝜔 =  0.1,𝛼𝛼 =  0.09,𝛽𝛽 =  0.9, 𝜇𝜇 =  0. 

For the original return series, we constructed a multifractal spectrum plot following standard 
methodologies used in similar studies (Fig. 2). The lower right portion of the graph shows the multifractal 
spectrum for both the original and shuffled data. A wider spectrum indicates a more pronounced 
multifractal effect. 

 
Figure 2: Multifractal spectrum for both the original and shuffled data. Source: Author's own 

elaboration. 

The presented figure clearly demonstrates that the original data exhibits a relatively broad multifractal 
spectrum with a width of approximately 0.5. However, when the data are shuffled, this width significantly 
narrows to about 0.3. Critically, neither dataset contains "true" multifractality associated with differences 
in return correlations), as such correlations are intentionally excluded during data generation. This 
confirms that the observed spectrum narrowing stems exclusively from eliminated volatility clustering. 
Thus, volatility clustering alone can generate significant multifractal effects under MF-DFA. 

Since real financial data inherently exhibits volatility clustering (as demonstrated by Mandelbrot, 
among others), applying the MF-DFA algorithm to stock market data will systematically detect 
multifractality from this source. We shall refer to this phenomenon as "cluster multifractality." To 
distinguish such statistical artifacts from the "true" multifractality arising from correlation differences in 
price increments (which we shall term "increment multifractality"), preliminary statistical procedures are 
required that remove volatility memory while preserving other types of memory in the data. 

However, since classical MF-DFA analysis cannot distinguish between these two types of memory 
(memory in returns and volatility memory), the algorithm's results cannot provide definitive evidence of 
market inefficiency. This is relevant because, according to the standard definition of weak-form market 
efficiency, two conditions must be met: 1) price increments must be unpredictable, and 2) prices must 
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incorporate all available statistical information. While "increment multifractality" undoubtedly violates 
both principles (being based on long-term memory in price movements) and thus indicates inefficiency, 
"cluster multifractality" stems from volatility clustering - a phenomenon that does not directly contradict 
weak-form EMH requirements.  

Market volatility spikes may simply reflect intensified flows of significant news, with each news item 
being instantly incorporated into prices. In such cases, prices may still fully reflect all available statistical 
(and other) information at every moment, maintaining market efficiency. Therefore, the presence of 
cluster multifractality - evident in most multifractal spectra of stock market behavior – does not constitute 
valid grounds for rejecting the EMH. The algorithm's inability to differentiate between these 
fundamentally distinct sources of multifractality severely limits its usefulness as a tool for assessing 
market efficiency/inefficiency. 

4. Conclusion 

The algorithm proposed by Kantelhardt was not originally designed for analyzing financial data. 
However, its ability to detect long-range dependence effects led researchers to adopt MF-DFA as a tool 
for testing the Efficient Market Hypothesis (EMH). This approach — using MF-DFA to assess market 
efficiency — has gained widespread traction in academic literature. Yet, its uncritical application to 
financial data poses significant challenges, as it conflates two distinct phenomena:  

1) Multifractal volatility (or cluster multifractality), arising from volatility clustering; 

2) Multifractal returns (or true multifractality), which we associate with market inefficiency. 

This reveals the fundamental limitations of the MF-DFA algorithm as a tool for assessing market 
efficiency. If volatility clustering is absent, MF-DFA reliably identifies multifractality (i.e., heterogeneity 
in scaling behavior) in data with long-memory increments. Kantelhardt himself demonstrated that 
applying MF-DFA to standard fractional Brownian motion yields no multifractal effect [5, p. 93]. For 
real financial data, which exhibit both long-range correlations in returns and volatility clustering (as 
demonstrated by Mandelbrot), MF-DFA produces a broad multifractal spectrum even when price 
increments are uncorrelated. This means the algorithm misinterprets cluster multifractality as true 
multifractality. The multifractality detected by MF-DFA in such cases merely reflects volatility clustering 
— a phenomenon compatible with EMH, as it does not imply predictability of price increments (Fama’s 
core criterion for inefficiency). 

Thus, the key findings of our study can be summarized as follows: 

a) Multifractality ≠ Market Inefficiency: volatility clustering (a multifractal trait) does not imply 
predictability of price direction; 

b) MF-DFA Pitfall: standard multifractal analysis (MF-DFA) cannot distinguish between: 

o Long-term memory in increments (violating EMH) 

o Long-term memory in volatility (compatible with EMH); 

c) This distinction is critical for interpreting multifractal spectra in market efficiency studies. 

Therefore, to identify the true multifractality in financial data that could indicate market inefficiency, 
we must first eliminate the clustering effect (i.e., remove cluster-induced multifractality), preserving only 
the component generated by long-term correlations in price increments. The development of such a 
methodology — specifically, the refinement of the MF-DFA algorithm — should become the focus of 
future research. 
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