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Abstract: Based on the county spatial scale and the 2000-2020 time scale (every 10 years), based on the 
analysis of land use change, this study conducted a study on the spatial-temporal evolution of carbon 
emissions and ecosystem service value, and analyzed the spatial correlation between land use carbon 
emissions and ecosystem service value. The effects of natural environment and social economic factors 
on the value of ecosystem services were discussed in order to provide reference for the scientific use and 
management of national land, the improvement of ecological environment quality and the development 
of low-carbon economy. 
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1. Introduction 

Ecosystem services are the set of natural conditions and functions that ecosystems and their ecological 
processes create to sustain human existence[1]. One category is ecosystem functions that are practically 
guaranteed for human survival and life, which provide supporting services, regulating services and 
cultural services. As the world's largest developing country, China's carbon emissions per unit of product 
are much higher than those of developed countries and most developing countries due to the constraints 
of its extensive mode of economic growth, energy structure, energy technology and equipment, and 
management level. Land use is an important factor contributing to the rapid growth of carbon emissions, 
and also affects the health of land ecosystems by changing the structure and function of land ecosystems, 
and thus plays a decisive role in maintaining the service function of ecosystems. China has also made 
positive and effective efforts to address the current environmental problems of global warming and the 
increase in extreme weather disasters. And in 2012, the 18th CPC National Congress incorporated 
construction of ecological civilization into the Five-sphere Integrated Plan, and wrote ecological 
civilization into the Party constitution. In 2015, the China’s 13th Five-Year Plan(2016-2020) highlighted 
green development. And in 2020, Chinese leader proposed the goal of peaking carbon dioxide emissions 
and going carbon neutral in general debate at the 75th United Nations General Assembly. The Report to 
the 20th National Congress of the Communist Party of China also highlighted the promotion of green 
development, the promotion of harmonious coexistence between humanity and nature, and the 
enhancement of the carbon sink capacity of ecosystem. Therefore, this study has a certain significance 
in guiding the coordinated development of the region and the country, understanding the land use under 
the perspective of ecosystem services, and providing a theoretical basis for the realization of the goal of 
carbon neutrality. 

In the past decade, scholars at home and abroad have carried out a large number of studies on the 
results of carbon emissions from land use, and the research content of the topics involving the ecosystem 
services value has gradually become complete. Most of the relevant domestic research uses methods such 
as land use carbon emission accounting method[2], carbon balance accounting methods[3], and spatial 
measurement models[4] to investigate land use carbon emission accounting, factors influencing carbon 
emissions[5], as well as the relationship between carbon emissions and economic development[6] from 
national[7], provincial[8], urban[9], and watershed scales[10]. In analyzing the relationship between land use 
carbon emissions and ecosystem service value, foreign scholars have not focused on the spatio-temporal 
correlation between the two, but have concentrated on the research of the two from different angles and 
scales[11-12] . In summary, further summarizing the existing literature, it is found that there are fewer 
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studies on the spatio-temporal coupling between land use carbon emissions and ecosystem service value, 
and that the research on counties, as the largest ecological background system and the main 
administrative unit in China, has not yet been carried out completely. 

2. Materials and methods 

2.1 Study area 

According to the Constitution of the People's Republic of China, there are making a total of 2,846 
county-level administrative region. However, due to the lack of energy consumption data in some areas, 
the study area for this project is total of 30 provincial-level administrative districts, 326 prefectural-level 
administrative regions, and 2,732 county-level administrative regions. excluding the Xizang 
Autonomous Region, the Hong Kong Special Administrative Region, the Macao Special Administrative 
Region, and Taiwan Province, (fig1).  

 
Fig. 1 Study area 

2.2 Data sources 

For the purpose of data analysis, comparison and visualization expression, this paper obtains the 
household registered population, GDP, and urbanization rate of counties (districts) from statistical 
yearbooks as well as the reports on the work of the governments of provinces, counties and municipalities. 
To derive the spatio-temporal relationship between carbon emissions from land use and ecosystem 
service value in Chinese counties, this paper uses land use data from Xin Huang's team at Wuhan 
University; the data is based on Landsat data, constructed with spatio-temporal features, and combined 
with the Random Forest classifier to obtain the classification results; based on the 5,463 visually 
deciphered samples, the overall accuracy of the CLCD reaches 80%. The energy consumption data, 
standard coal conversion coefficients, standard coal conversion coefficients of various fossil energy 
sources, and energy consumption data of each province for the years 2000, 2010, and 2020 used in this 
paper are from the China Energy Statistical Yearbook; the carbon emission coefficients of fossil energy 
sources are from the 2006 IPCC Guidelines for National Greenhouse Gas Inventories. 

2.3 Methods 

2.3.1 Carbon emissions estimation 

Carbon emissions in the study area: Based on the area of each type of land use in each county in 
China from 2000 to 2021, this study estimates the carbon emissions of each type of land use in each 
county in China. The specific calculation method is to multiply the area of each type of land in each 
county and the corresponding carbon emission coefficients of each type of land and then sum them up. 
The formula is as follows: 

    𝐸𝐸𝐾𝐾 = ∑𝑒𝑒𝑖𝑖 = ∑𝑆𝑆𝑖𝑖 × 𝛿𝛿𝑖𝑖                            (1) 

In (Eq.(1)), 𝐸𝐸𝐾𝐾denotes direct carbon emissions; 𝑒𝑒𝑖𝑖 denotes the carbon emissions of each site type;𝑆𝑆𝑖𝑖 
and𝛿𝛿𝑖𝑖 denote the area and carbon emission coefficients of the site types, respectively.𝑖𝑖 area and carbon 
emission coefficients, see(Table 1). 
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Table 1 Carbon emission coefficients for land use types 

Land use type Carbon emission coefficient (t/hm2 ) 
Cultivated land  0.422 

Woodland -0.644 
Grass land -0.022 
Water areas -0.253 

Unutilized land -0.005 
Since carbon emission from construction land is the main carbon source, in order to improve the 

accuracy of land use carbon emission, the carbon emission from construction land will be indirectly 
estimated based on the panel data of China's fossil energy consumption from 2000 to 2021 using the 
carbon emission coefficient method. Nine kinds of energy consumption were selected, including raw coal, 
coke, crude oil, gasoline, kerosene, diesel oil, fuel oil, natural gas and electrical power. The energy 
consumption data of China Energy Statistical Yearbook, standard coal conversion coefficient and carbon 
emission coefficient of 2006 IPCC Guidelines for National Greenhouse Gas Inventories were used for 
estimation, see(Table 2). Finally, by summing up the carbon emissions from other land use types and the 
carbon emissions from construction land use, then assigning the values to the map of the study area, the 
spatial-temporal evolution of carbon emissions from land use in the study area can be derived, and the 
carbon sources and sinks of the country can be compared, so as to explore the main direction of China's 
future green and low-carbon routes. 

Table2 Standard coal coefficients and carbon emission coefficients for different energy sources 

Types of energy Standard coal conversion 
coefficient (tec/t) Carbon emission coefficient 

Raw coal 0.7143 0.7559 
Coke 0.9714 0.8550 

Crude oil 1.4248 0.5857 
Gasoline 1.4714 0.5538 
Kerosene 1.4714 0.5714 

Diesel fuel 1.4571 0.5921 
Fuel oil 1.4286 0.6185 

Natural gas 1.2143 0.4483 
Electrical power 0.4040 0.7935 

The formula for calculating carbon emissions from construction land is as follows: 

𝐸𝐸𝑃𝑃 = ∑𝐸𝐸𝑗𝑗 = ∑�𝑒𝑒𝑗𝑗 × 𝜃𝜃𝑗𝑗 × 𝛽𝛽𝑗𝑗�                            (2) 

In (Eq.(2)), 𝐸𝐸𝑃𝑃 is the carbon emission from construction land, and𝐸𝐸𝑗𝑗 is the carbon emissions from 
various fossil energy sources, 𝑒𝑒𝑗𝑗 is the carbon emission from𝑗𝑗 is the consumption of all kinds of fossil 
energy, and𝜃𝜃𝑗𝑗  is the conversion coefficients of various fossil energy sources standard coal in the 
appendix of China Energy Statistical Yearbook.𝛽𝛽𝑗𝑗 is the 𝑗𝑗th fossil energy carbon emission factor in the 
2006 IPCC Guidelines for National Greenhouse Gas Inventories. 

2.3.2 Ecosystem services value 

Table 3 ESI coefficients of various land use types and various ecosystem functions 

Type Subtype Cultivated 
land woodland Grass 

lands wetland Water 
areas 

Construction 
land 

unutilized 
land 

Supplying 
Services 

Food  100.00 33.00 43.00 36.00 53.00 2.00 0.00 
Raw materials 13.00 100.00 12.00 8.00 12.00 1.34 0.00 

Regulating 
services 

Gas regulation 17.00 100.00 35.00 56.00 12.00 1.39 0.00 
Climate 

regulation 7.00 30.00 12.00 100.00 15.00 0.96 0.00 

Water supply 4.00 22.00 8.00 72.00 100.00 0.37 0.00 
Waste treatment 9.00 12.00 9.00 97.00 100.00 1.75 0.00 

Supporting 
Services 

Soil  formation 
retention 37.00 100.00 56.00 50.00 10.00 4.23 0.00 

Biodiversity 
protection 23.00 100.00 41.00 82.00 76.00 8.87 0.00 

Cultural 
service 

Recreation and 
culture 4.00 44.00 19.00 100.00 95.00 5.12 0.00 

This study is based on the purpose of ecological environmental protection, based on the area data of 
land use types in each county in China. And reference to Chen Wanxu and other scholars using the 
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transfer of benefits method to derive the ESI coefficients of each land use type in the county study, see 
(Table 3), based on the area of the land use category were multiplied by the ESI coefficients of the nine 
types of ecosystem functions weighted by the ESI coefficients to calculate the ESV of the counties in 
China. The calculation formulas are as follows: 

       𝑉𝑉𝐸𝐸𝐸𝐸 = ∑ 𝑉𝑉𝐸𝐸𝐸𝐸𝐸𝐸 = ∑ ∑ 𝑊𝑊𝑖𝑖𝑖𝑖
𝑛𝑛
𝑖𝑖=1

𝑚𝑚
𝑗𝑗=1 × 𝐿𝐿𝐿𝐿(𝑖𝑖,𝑡𝑡)

𝑛𝑛
𝑗𝑗=1                               (3) 

In (Eq.(3)), 𝑊𝑊𝑖𝑖𝑖𝑖  is the ESI coefficient of class 𝑗𝑗 ecosystem function of class 𝑖𝑖  land use type, 
𝐿𝐿𝐿𝐿(𝑖𝑖,𝑡𝑡)  is the area of the 𝑖𝑖th land use type at time 𝑡𝑡. 𝑚𝑚 is 9, indicating the number of ecosystem 
functions, 𝑛𝑛 is 7, indicating the number of land use types (wetlands and watersheds are calculated here). 
The ecosystem services value of each county in China from 2000 to 2021 can be calculated, which leads 
to the spatio-temporal relationship of ESV during the 21-year period. 

2.3.3 Spatial autocorrelation analysis 

In this stage, based on the results of the previous land use carbon emission and ESV calculations, 
GeoDa 4.0 will be used to apply global bivariate Moran's I and local bivariate Moran's I research methods 
to these two variables. The global bivariate Moran's I method mainly investigates Whether there is a 
spatial correlation between the two variables and the degree of correlation on the spatial scale of the 
county. while the local bivariate Moran's I method mainly shows the spatial correlation between the two 
variables at the county spatial scale. The formula is as follows: 

      𝐼𝐼 =
∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖−𝑥̅𝑥)�𝑥𝑥𝑗𝑗−𝑥̅𝑥�

𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

𝑆𝑆2 ∑ ∑ 𝑤𝑤𝑖𝑖𝑖𝑖𝑛𝑛
𝑗𝑗=1

𝑛𝑛
𝑖𝑖=1

                              (4) 

          𝐼𝐼𝑖𝑖 =
(𝑥𝑥𝑖𝑖−𝑥̅𝑥)∑ 𝑤𝑤𝑖𝑖𝑖𝑖(𝑥𝑥𝑖𝑖−𝑥̅𝑥)𝑛𝑛

𝑗𝑗=1

𝑆𝑆2
                            (5) 

In (Eq.(4)(5)), The equations 𝐼𝐼 and 𝐼𝐼𝑖𝑖 are the global bivariate Moran's I and local bivariate Moran's 
I for land use carbon emissions and ESV, respectively.𝑛𝑛 is the number of counties and districts in the 
study area.𝑤𝑤𝑖𝑖𝑖𝑖 is an 𝑛𝑛 × 𝑛𝑛 spatial weight matrix. 𝑥𝑥𝑖𝑖 and 𝑥𝑥𝑗𝑗 are the attribute values of the counties and 
districts, and 𝑥̅𝑥 is the mean of the attribute values, and 𝑆𝑆2 is the variance. Based on the calculation of 
local bivariate Moran's I values, this project analyzed the bivariate LISA clustering map with visual local 
spatial correlation using ArcMap10.2, and Finally, the spatial clustering and discrete results between land 
use carbon emissions and ESV are explored, and the spatial autocorrelation relationship between the two 
variables is obtained. 

2.3.4 Polynomial logit regression analysis 

Based on the previous step of LISA agglomeration map to classify the spatial correlation into four 
categories of high - high, high - low, low - high, low - low, in order to explore the influence factors of 
the spatial correlation between land use carbon emissions and ESV, polynomial Logit model to meet the 
research requirements, so this paper constructed a Logit model, the equation is as follows: 

     𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑃𝑃1 𝑃𝑃2⁄ ) = 𝛽𝛽0 + 𝛽𝛽1𝑋𝑋1 + 𝛽𝛽2𝑋𝑋2                       (6) 

In (Eq.(6)), 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑃𝑃1 𝑃𝑃2⁄ ) is the natural logarithm of the probability ratio of any two types; 𝑋𝑋1 is 
the natural environment factor, including slope, precipitation, and temperature; 𝑋𝑋2 is the socio-economic 
factor, including GDP, urbanization rate, and population;𝛽𝛽𝑡𝑡 is the parameter vector, where𝑡𝑡 = 0,1,2. 

Regression equations were constructed to analyze the low ESV-low land use carbon emissions 
analogy as a reference for the high-high, high-low, and low-high types: 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑃𝑃high−high 𝑃𝑃low−low⁄ � = 𝛽𝛽high−high0 + 𝛽𝛽high−high1𝑋𝑋1 + 𝛽𝛽high−high2𝑋𝑋2          (7) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑃𝑃low−high 𝑃𝑃low−low⁄ � = 𝛽𝛽low−high0 + 𝛽𝛽low−high1𝑋𝑋1 + 𝛽𝛽low−high2𝑋𝑋2          (8) 

𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿�𝑃𝑃high−low 𝑃𝑃low−low⁄ � = 𝛽𝛽high−low0 + 𝛽𝛽high−low1𝑋𝑋1 + 𝛽𝛽high−low2𝑋𝑋2          (9) 

3. Analysis of results 

3.1 Spatial-temporal evolution of land use carbon emissions 

This paper utilizes the estimation formula of carbon emission and calculates it by collecting relevant 
data. Finally, the corresponding land use carbon emissions of Chinese counties in the period of 2000-
2020 are derived, and divided into seven intervals, and the temporal and spatial evolution of carbon 
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emissions in Chinese counties during the 20-year period is more intuitively derived by using a graphical 
method (fig 2). The results are as follows: under the effect of land use change, the temporal evolution of 
land use carbon emissions is obvious during 2000-2020. The total land use carbon emissions are 4.81×108 
t, 11.37×108 t and 12.39×108 t in 2000, 2010 and 2020, respectively. And the overall trend is mainly 
showing an increasing trend, but the rate of growth of the total land use carbon emissions shows the 
following pattern The growth rate of total land use carbon emission is characterized by "fast first and 
then slow". The maximum value of carbon emissions from land use in counties increased from 7.34×106 
t in 2000 to 2.99×107 t in 2020, a 4.1-fold increase in 20 years. In spatial comparison, the low values of 
carbon emissions are mostly distributed in the south and northwest of China, and the high values are 
mainly distributed in the northeast of China, where heavy industry is the pillar industry. Again from the 
perspective of space and time, during the 20 years with the economic development, increasing 
urbanization level, and increasing construction land, the county carbon emission reaches in the 1-3 
intervals decreases year by year, and shifts to higher ranges; the number of areas reaches in the 4-5 
intervals increases year by year, and the 2020 is located in the 4-5 intervals the largest number of areas; 
There was a slight increase in reaching the 6-7 range. Furthermore, the area in the 4-7 range presented a 
clumpy distribution, mainly concentrated in densely populated areas. 

 

 
Fig. 2 Spatial-temporal evolution of carbon emissions from county land use in China, 2000-2020 

3.2 Spatial-temporal evolution of ESV 

In order to explore the spatial-temporal evolution of ESV in Chinese counties during the past 20 years, 
this paper applies ESV calculation coefficients and collects land use data into the relevant formula to 
calculate the ESV values of counties, reclassify them into five levels and make graphs to express them 
visually. Analyzing the spatial distribution of ESV, it can be seen that the spatial difference of ESV in 
Chinese counties is obvious (fig 3). In general, ESV in the western region is overall higher than that in 
the eastern region.The regions belonging to the middle, higher, and higher levels of ESV were mainly 
distributed in western Xinjiang, Gansu, and northeast Heilongjiang. The high ESV levels in this type of 
region are mainly due to the spread of woodland and grassland, and relatively little construction land. 
The regions with low ESV and low levels of ESV were mainly distributed in areas with developed 
economies and intensive construction land in the east. Through the calculation of 2000, 2010, 2020, 
three-year The total amount of ESV in 2000, 2010 and 2020 is 2.22×107 yuan/hm2, 2.23×107 yuan/ hm2 
and 2.22×107 yuan/ hm2, respectively. Which indicates that the total amount of ESV in counties in China 
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during the period of 2000-2020 shows a fluctuating change of increasing and then decreasing. The total 
amount of ESV in 2000 is lower than that in 2010, which is associated with the pending development of 
the economy and incomplete function of ecosystem services. The total amount of ESV in 2000 is lower 
than the total amount of ESV in 2010. The total amount of ESV in 2020 is also lower than the total 
amount of ESV in 2010, and it is assumed that it is related to the unreasonable development of the society 
that affects the value of ecological environment. Comparing the distribution of ESV in counties of China 
in 2000, 2010 and 2020, it is found that during the period of 20 years, the number of ESV belonging to 
the low and lower-grade areas has increased year by year, and that the number of medium- and high-
grade areas has decreased year by year, while the change of high-grade areas is not obvious. The change 
of high grade areas is not obvious. 

 

 
Fig. 3 Spatial-temporal evolution of ESV in Chinese counties, 2000-2020 

3.3 Spatial correlation of land use carbon emissions and ESV 

Based on the bivariate spatial autocorrelation model, the spatial correlation law between the pre-
calculated county land use carbon emissions and ESV was analyzed by using GeoDa4.0 (Table 4). It is 
concluded that there is a negative spatial correlation between land use carbon emission domain ESV, and 
Moran's I is negative in all years, and the P value is less than 0.001, which indicates that ESV gradually 
decreases with the increase of land use carbon emission, and the Moran's I index decreases year by year, 
which indicates that the spatial correlation between the two is weakened. 

Table 4 Results of spatial autocorrelation between land use carbon emissions and ESV 

Year Moran's I 
exponents P-value Z-score 

2000 -0.266 <0.001 -27.9669 
2010 -0.234 <0.001 -32.625 
2020 -0.200 <0.001 -21.2387 

The LISA cluster diagram of land use carbon emissions and ESV is then compared and analyzed (fig. 
4), in which the yellow area indicates that the local ecosystem service value and land use carbon 
emissions are both low; the large blue area indicates that the county's ecosystem service value is high, 
but the land use carbon emissions are low; the green area indicates that the county's ecosystem service 
value is low, but the land use carbon emissions are high; and the red area indicates that the county has 
high land use carbon emission and high ecosystem service value. After analysis, the spatial correlation 
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pattern between county land use carbon emissions and ESV is as follows: First, the high ESV low carbon 
emission aggregation areas are stably distributed in the southeast of China, Qinghai, Sichuan, Yunnan, 
northeast Heilongjiang and other regions during the period of 2000-2020, and the high - low aggregation 
areas are mainly concentrated in the mountainous, plateau, hilly and other terrain uneven areas. Second, 
the low - low aggregation areas are sporadically distributed in the high and low concentration areas, 
probably due to the impact of human activities, which led to the destruction of the ecological environment 
and thus the reduction of ESV. Third, the high and high concentration areas were fragmentedly distributed 
in Inner Mongolia and the eastern coastal areas during the past 20 years, of which the high and high 
concentration areas in Inner Mongolia showed a small-scale diffusion phenomenon during the past 20 
years, which was mainly due to the influence of the Yellow River Basin in the region and the sparse land 
area, with relatively few human activities. Fourthly, low-high agglomeration areas were mainly 
distributed in clusters in regions with high levels of urbanization and developed economies, such as the 
Guangdong-Hong Kong-Macao Greater Bay Area, the Yangtze River Delta urban agglomeration, and the 
Beijing-Tianjin-Hebei urban agglomeration. 

 

 
Fig. 4 LISA clustering of land use carbon emissions and ESV in Chinese counties, 2000-2020 

3.4 Factors influencing spatial correlation 

3.4.1 Statistical analysis based on spatial clustering results 

There are many factors affecting the spatial correlation between land use carbon emissions and ESV. 
In the study of factors influencing the spatial differentiation of ESV, Geng Tianwei[13] mainly selected 12 
variables, namely, topographic relief, closed forest area, average annual precipitation, average annual 
temperature, GDP, per capita GDP, per capita income of urban and rural residents, total retail sales of 
social consumer goods, per capita cultivated land area, land reclamation rate, total population, population 
density. Li Zijian [14] mainly selected from the elevation, slope, precipitation, air temperature, NDVI, 
HAI, land average GDP, population density, road density and other 9 driving factors. In the study of the 
influencing factors of land use carbon emissions, Wang Tao[15] mainly carried out regression analysis 
from two variables, namely, total population and GDP. Feng Jie[16] mainly carried out regression analysis 
from five variables, namely, output value of the first, second and tertiary industries, fixed assets 
investment volume, and the number of population. In the selection of influencing factors, this paper fully 
drew on the above literature, and selected variables that may influence the spatial correlation between 
land use carbon emissions and ESV. Four natural variables containing elevation, temperature, 
precipitation, and slope, and five socio-economic variables containing output value of the secondary 
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industry, output value of the tertiary industry, population, urbanization rate, and GDP were finally 
selected. Considering the availability of the data, the above data were obtained from the 2020 Statistical 
Yearbook of China's Counties, as well as the 2020 governmental work reports, statistical bulletins of the 
counties. Therefore, these six factors are only relevant to the value of land use carbon emissions and 
ecosystem services in 2020,see (Table5). 

Table 5 Description of Explanatory Variables for Impact Factors 

 Explanatory 
variable Unit Average value Standard 

deviation 

Natural dimension 

Elevation m 937.38 1064.49 
Temperature ℃ 11.47 6.12 

Measured quantity 
of rain mm 1063.57 486.52 

Slope ° 13.97 7.84 

Socio-economic 
dimension 

Output value of the 
secondary industry ten thousand yuan 1988140 7269325.68 

Output value of the 
Tertiary industry ten thousand yuan 3383120 14903641.4 

Population ten thousand 48.90 60.16 
Urbanization % 59.50 23.36 

GDP billions 466.23 1550.41 
Only significant variables are statistically analyzed below. Classify the urbanization rate of counties 

and districts into five intervals: <20%, 20%-40%, 40%-60%, 60%-80%, and 80%-100% (Table 6). The 
number of counties and districts in each interval is 13, 156, 328, 152, and 195, respectively. Each 
accounting for 1.54%, 18.48%, 38.86%, 18.01%, and 23.10% of the total. The urbanization rates of 
counties and districts of the high-high type, low-low type, and low-high type are mostly >40%, 
accounting for 86.36%, 82.81%, and 98.51% of the counties and districts of this type, respectively. While 
the urbanization rates of the high-low type are mostly in the range of 20%-60%, accounting for 82.78% 
of the counties in this type. The population size of counties was divided into five intervals: <200,000, 
200,000-600,000, 600,000-1,000,000, 1,000,000-1,400,000, and >1,400,000 (Table 6), with the number 
of counties in each of these five intervals accounting for 26.66%, 47.51%, 17.18%, 4.85%, and 3.79% of 
the total. The high - high type, low - low type, and high - low type counties and districts have a majority 
of populations of less than 600,000 people; while the low - high type counties and districts have a 
majority of populations between 200,000 and 1,000,000 people. 

Table 6 The counties in different levels of population and urbanization rate 

Population 
/10,000 people 

High-
high 

Low-
low 

Low-
high 

High 
- low 

Urbanization 
rate/% 

High-
high 

Low-
low 

Low-
high 

High 
- low 

<20 10 52 15 148 <20 0 3 2 8 
20-60 7 66 97 231 20-40 3 19 2 132 
60-100 5 9 93 38 40-60 10 57 42 219 

100-140 0 0 35 6 60-80 8 29 64 51 
>140 0 1 30 1 80-100 1 20 160 14 

The average annual temperatures of counties were divided into five intervals of <0℃, 0-6℃, 6-12℃, 
12-18℃ and >18℃ (Table 7), and the numbers of counties and districts within these five intervals of 
area were 41, 126, 173, 370 and 134, respectively. Which accounted for 4.86%, 14.93%, 20.50%, 43.84% 
and 15.88% of the total number of counties and districts, respectively. Most of the low-low type and 
high-low type counties had temperatures >6℃; all of the low-high type counties had mean 
temperatures >0℃; and most of the high-high type counties had mean temperatures distributed in the 6-
12℃range. The average annual precipitation of counties was divided into five intervals of <450 mm, 
450-900 mm, 900-1350 mm, 1350-1800 mm, and >1800 mm (Table 7), and the numbers of counties and 
districts within these five intervals of area were 63, 291, 226, 199, and 65, respectively. Which each 
accounted for 7.46, 34.48, 34.48, and 23.58 percent of the total number of counties and districts, 
respectively. 26.78%, 23.58%, and 7.70%. The distribution of areas with low precipitation is mainly in 
the high-high type of counties; while the average precipitation in the low-high type and high-low type of 
counties is mostly distributed in the range of 450-1800 mm; and the distribution of the low-low type of 
counties in the various temperature zones is relatively more balanced. 
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Table 7 Distribution of county types within different temperature and precipitation ranges 

Temperature/°
C 

High-
High 

Low-
Low 

Low-
high 

High - 
low 

Precipitation/
mm 

High-
High 

Low-
Low 

Low-
high 

High 
- low 

<0 0 2 0 39 <450 16 2 33 12 
0-6 4 25 10 87 450-900 3 42 116 130 

6-12 15 20 75 63 900-1350 2 28 80 116 
12-18 2 57 150 161 1350-1800 0 42 24 133 
>18 1 24 35 74 >1800 1 14 17 33 

The GDP of counties and districts was divided into five intervals: <10 billion yuan, 10-20 billion 
yuan, 20-30 billion yuan, 30-40 billion yuan, and >40 billion yuan (Table 8), with the number of counties 
in each interval accounting for 36.49%, 24.29%, 9.60%, 5.81%, and 23.82% of the total. The high - high 
type, low - low type, and high - low type of counties and districts have a predominantly <$20 billion 
GDP, accounting for 50%, 79.69%, and 84.43% of the counties and districts of this type, respectively. 
The majority of the low - high type of counties and districts have a GDP of > 30 billion dollars, accounting 
for 74.81% of the counties of this type. 

Table 8 Distribution of county types within different GDP levels and slopes 

GDP 
/billion 
dollars 

High-
High 

Low-
Low 

Low-
high 

High - 
low 

elevation 
/° 

High-
High 

Low-
Low 

Low-
high 

High - 
low 

<100 4 71 12 221 <5 8 1 139 0 
100-200 7 31 30 137 5-10 9 12 93 46 
200-300 2 14 26 39 10-15 3 27 33 65 
300-400 3 6 24 16 15-25 2 83 5 251 

>400 6 6 178 11 >25 0 5 0 62 
Topography is an important factor in natural geography that affects ecological values, and slope is an 

important factor that affects spatial pattern. The slope is categorized into five ranges, including <5°, 5°-
10°, 10°-15°, 15°-25°, and >25° (Table 8). The number of counties and districts whose slopes are in the 
range of 0-15° is 436, accounting for 51.66% of the total. The number of counties and districts whose 
slopes are in the range of 15° or more accounts for 48.34% of the total. 

3.4.2 Analysis of factors influencing spatial clustering of land use carbon emissions and ESV 

The polynomial Logit regression model was used to analyze the factors influencing the spatial 
correlation between land use carbon emissions and ESV (Table 9). In terms of the goodness of fit of the 
polynomial Logit regression model, the model chi-square statistic was 1027.47, which was significant at 
the 1% level, indicating that the model fit was good. 

Table 9 Logit regression results for polynomials referenced to low ESV versus low land use carbon 
emissions 

variant Low-high type High-low type High-High Type 
Secondary value added 5.02e-08 2.01e-07 2.43e-07 
Tertiary value added 1.16e-07 -6.77e-07* -6.32e-07 

GDP 8.39e-07*** 4.00e-07** 1.06e-07*** 
Urbanization rate 0.002 -0.040*** -0.064*** 

Demographic -0.015 0.020** -0.024 
Altitude -0.0004 -0.0001 0.0005 

Elevation -0.255*** 0.053* -0.328*** 
Precipitation -0.006*** 0.002*** -0.004*** 
Temperatures 0.310*** -0.198*** 0.142* 

N 844 
Pseudo R2 0.575 

Chi2 1057.99 
Note: *, **, and *** indicate significant at the 10%, 5%, and 1% statistical levels, respectively. 

According to the results of the above table, using the low-low category model as a control, in the low-
high category model, there are four variables of GDP, slope, precipitation, and temperature that are 
significant, and the regression coefficients are 8.39×10-7, -0.255, -0.006, and 0.310, respectively. Among 
them, GDP and temperature are significantly and positively correlated with the model of the low- high 
agglomeration area, slope and precipitation are significantly and negatively correlated with the model of 
the low- high agglomeration area, and the urbanization rate, population are not correlated with the low-
high aggregation area. This proves that when located in the low ESV area at the same time, if the local 
GDP grows and the temperature changes to high temperature, the land use carbon emissions in this type 
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of area increase, because the GDP growth means the local economic development and the intensification 
of human activities. The increase in temperature symbolizes the ecological destruction and land use 
carbon emission increase climate warming. Conversely, an increase in slope, which is detrimental to local 
economic development and urban sprawl, decreases land use carbon emissions in this category. An 
increase in average precipitation favors local water conservation as well as the growth of green vegetation, 
creating a good ecological environment. 

In the high - low type model there are six variables of tertiary value-added, GDP, urbanization rate, 
population, slope, precipitation, and temperature are significant, and the regression coefficients are -
6.77×10-7, -4.00×10-7, -0.04, 0.02, 0.053, 0.002, and -0.198, respectively. Among them, population, slope, 
and precipitation are significantly positively correlated with the model of high-low agglomerated area, 
and urbanization rate, temperature are significantly negatively correlated with the high-low 
agglomeration area model, and GDP is not correlated with the distribution of high-low agglomeration 
area. When also located in low land use carbon emission areas, areas with higher ESV values have higher 
slopes and greater average precipitation. For each unit increase in county urbanization rate, the ratio of 
the occurrence of high - low category areas relative to low - low category areas is exp(-0.04) = 0.96 times. 
It indicates that areas with higher ecosystem service value and lower land use carbon emissions are 
among the areas with slower urbanization. When also located in high ecosystem service value areas, 
areas with higher land use carbon emissions have faster urbanization and higher temperatures, creating a 
climate conducive to local economic development, resulting in greater land use change and higher carbon 
emissions. 

In the high-high type model, there are five significant variables, GDP, urbanization rate, slope, 
precipitation, and temperature, with regression coefficients of 1.06×10-7, -0.064, -0.328, -0.004, and 
0.142, respectively. Among them, GDP and temperature are significantly positively correlated with the 
model of high-high agglomerated areas. And urbanization rate, population, slope, and precipitation are 
significantly negatively correlated with the model of high-high agglomerated areas. By calculating the 
county urbanization rate, population, slope, and precipitation increase by one unit, respectively. The ratio 
of the occurrence of high - high category areas relative to low - low category areas is 0.94, 0.72, and 0.99 
times, respectively. It indicates that the correlation between ecosystem service value and land use carbon 
emission is lower in areas with higher urbanization rate, higher slope, and higher precipitation, which is 
due to the rational use of natural factors for development in the area. When simultaneously located in 
areas with higher ESV values, the higher the GDP, the greater the land use change and the increase in its 
carbon emissions. 

4. Results and analysis 

The results show that: (1) the total amount of carbon emissions in the past 20 years showed a trend 
of "fast and then slow" growth, with a spatial pattern of high in the northeast and low in the south and 
northwest, and from a spatial-temporal point of view, the areas in the 1-3 intervals were shifted to higher 
ranges year by year, and the areas with high carbon emissions showed a cluster-like distribution and were 
mainly concentrated in the densely populated areas. (2) During the period of 2000-2020, the spatial 
difference of ESV in Chinese counties is obvious, in general, ESV in western region is higher than that 
in eastern region, and the total amount of ESV shows the fluctuation change of increasing and then 
decreasing. And during the period of 20 years, the number of ESV belonging to the low and lower ranked 
areas is increasing year by year, the number of middle and higher ranked areas is decreasing year by year, 
and the change of the high ranked areas is not obvious. (3) There is a negative correlation between carbon 
emissions and ESV, and the spatial correlation between the two is weakening. In terms of spatial 
distribution, during the past 20 years, the high-low aggregation area is stably distributed in the southeast, 
west and northeast Heilongjiang and other regions of China, the low-low aggregation area is sporadically 
distributed in the vicinity of the high-low aggregation area. the high-high aggregation area is 
fragmentedly distributed in Inner Mongolia and the eastern coastal areas, and the high-high aggregation 
area in Inner Mongolia has seen a small-scale diffusion phenomenon during the past 20 years. The low-
high aggregation areas are mainly located in highly urbanized and economically developed areas, and 
are distributed in clusters. (4) When located in low ESV areas, land use carbon emissions increased in 
areas with higher GDP growth and higher average temperature. when located in low land use carbon 
emission areas, areas with higher ESV values had higher slopes and higher average precipitation. The 
correlation between the value of ecosystem services and land use carbon emissions was lower in areas 
with higher urbanization rates, larger populations, higher slopes, and higher precipitation. 

The dual-carbon target and ecological issues have been hotly debated by all walks of life. In this paper, 
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based on the value of land use carbon emissions and ecosystem services at the county level, reached the 
spatial-temporal evolution characteristics, spatial correlation. And divided into four types of areas, the 
launch of energy-saving emission reduction policies can be based on this partition, to develop a more 
refined, more appropriate strategy. It can promote the development of green economy and at the same 
time provide scientific support for the proposal of ecological and environmental protection policies. For 
high-high type regions, local carbon emissions were reduced through the transformation and upgrading 
of energy consumption structures or the introduction of low carbon industrial technology. For high-low 
type regions, local resources should be used to develop a green economy and effectively protect the 
ecological environment. For low-high type regions, more attention should be paid to exploring the causes 
of environmental damage and restoration of the local ecological environment. However, there are still 
some shortcomings in this paper, such as in the analysis of the spatial-temporal evolution of carbon 
emissions and ESV, not more detailed from the point of view of the temporal evolution of land use, and 
the impact of changes in the type of land use on the two and the law to be grasped. Secondly, due to the 
missing values in the statistical data and the estimation method, the accuracy of the calculation of carbon 
emissions and ESV needs to be improved, and the study area needs to be expanded. The factors affecting 
carbon emissions and ESV need to be further explored. In the future, we will continue to optimize these 
aspects. 
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