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Abstract: Wave energy is an important marine renewable energy source, and one of the key issues in its 
utilization is to improve the energy conversion of wave energy devices efficiency. In this paper, we 
consider the pendulum motion of the float in the wave, firstly, we establish the coordinate system for the 
float system and analyze the forces on the float and the oscillator, establish the initial value system model 
of the second-order coupled ordinary differential equation system about the displacement function of the 
float and the oscillator, and then calculate the displacement and velocity of the float and the oscillator 
under the constant damping coefficient by reducing the order and finite difference. Finally, a single-
objective optimization model with the output power of the PTO system as the objective function is 
established, and the damping coefficients in the cases of constant damping coefficient and variable 
damping coefficient are found out respectively, so as to maximize the power. 

Keywords: Mechanical analysis, finite differences, coupled systems of ordinary differential equations, 
wave energy devices 

1. Introduction 

Wave energy is an important marine renewable energy source, and one of the key issues for its large-
scale utilization is energy conversion using devices. The wave energy device drives the damper to do 
work by the relative motion of the float and the oscillator, and outputs the work done as energy. The 
wave energy device is composed of a float, a vibrator, a center shaft and an energy output system (PTO, 
including a spring and a damper)[1-2]. In which the oscillator, the center shaft and the PTO are sealed 
inside the float; the float consists of a cylindrical shell and a conical shell with uniformly distributed 
masses; the two shells are connected with a compartment that serves as a support surface for mounting 
the center shaft; the oscillator is a cylinder threaded on the center shaft and connected to the center shaft 
base through the PTO system. It is assumed that seawater is an ideal fluid without viscosity and rotation, 
and based on the micro-amplitude wave assumption, the float makes oscillatory motion (vertical and 
longitudinal oscillatory motion) under the action of waves[3-5]. 

In order to establish the equations of motion and obtain the pendular displacement and velocity of the 
float and oscillator, this paper first determines the coordinate system, which is represented by a single 
coordinate system due to the relative motion between the float and oscillator. Assuming that the center 
of gravity of the float is on the base[6], the coordinate system is established with the center of gravity of 
the float as the coordinate origin and the vertical static water surface upward as the positive direction[7]. 
Second, according to the problem, the float and the oscillator are analyzed separately and the initial 
conditions are determined to establish the kinetic coupling equation model. Again, in the process of 
solving the set of coupled equations, the numerical solution of the model is obtained by using finite 
difference and iterative methods[8-9]. 

In order to determine the mathematical model of the optimal damping coefficient of the linear damper, 
so that the average output power of the PTO system is maximized, this paper establishes a single objective 
optimization model with the maximum output power of the PTO system as the objective function[10]. 
The main variables involved in this paper are shown in Table 1. 
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Table 1: Variable descriptions 

Symbol Symbol meaning and description 
m  Oscillator mass 
M  Float mass 
µ  Additional mass 
PTOF  Overall force of the energy output system 
C  Linear damper damping coefficient 

0C  Scaling factor of linear damper damping coefficient 
a  Power index of linear damper damping factor 
k  Spring stiffness 

rx  Relative displacement of float and oscillator 

rx  Relative velocity of float and oscillator 

eF  Wave excitation force 
f  Wave excitation force amplitude 
ω  Wave frequency 
T  Wave period 

hF  Hydrostatic recovery force 
ρ  Seawater density 
g  Gravitational acceleration 
R  Float bottom radius 

cF  Damping force 
D  Damping coefficient 
s  Float pendulum displacement 
s  Float droop velocity 
s Float pendulum acceleration 
x  Oscillator pendulum displacement 
x  Oscillator pendulum velocity 
x Oscillator pendulum acceleration 
l  Original spring length 

0h  Compression of the spring at the equilibrium position at the initial moment 

1h  The height of the oscillator at the equilibrium position at the initial moment 
P  Output power 
W  Total work 
θ  Angular displacement 

eM  Wave excitation moment 
cM  Hydrostatic recovery moment 

2. The establishment and solution of the equations of motion 

2.1 Scenario 1: Damping factor is constant  

2.1.1 Coordinate system establishment 

The center of gravity of the float is assumed to be located at the intersection of the cylindrical shell 
and the cone. Using the position of the float's center of gravity as the coordinate origin and the vertical 
hydrostatic water surface upward as the positive direction, a coordinate system is established as shown 
in Figure 1(a). In the case of static water, the float is in equilibrium, subject to gravity, buoyancy and the 
spring reaction force between the float and the oscillator. At the same time, the oscillator is also in 
equilibrium, subject to gravity and the spring force between the float and the oscillator, as shown in Fig. 
1(b)(c). In equilibrium, the mechanical equations of the float and the oscillator are: 
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When there are waves, the motion of the float and the oscillator oscillate up and down at the 
equilibrium state under the action of the wave excitation force, so except for the initial moment to discuss 
the gravity, and then the oscillation process are no longer considered gravity. 

 
              (a)                       (b)                   (c)    

Figure 1 Composition of wave energy conversion device 

2.1.2 Background: Damped and forced vibrations 

Vibration under the action of repulsive and resistive forces is called damped vibration. The vibration 
of an object under the continuous action of a periodic external force is called forced vibration. The motion 
of the float and the oscillator in this problem belongs to the joint action of damped vibration and forced 
vibration. The equation of motion of an object under the action of elastic force, resistance and driving 
force is 

0 cosmx kx cx F tω= − − + 
  (2) 

where F0 is the amplitude of the driving force and ω is the angular frequency of the driving force. 

let 2
0

k
m

ω = , 2 c
m

δ = . Then the above equation can be written as 

2 0
02 cosFx x x t

m
δ ω ω+ + = 

 

In the case of small damping, the solution of the equation is x = 0
tA e δ− 2 2

0cos( tω δ−  

0 ) cos( )A tφ ω φ′+ + +  
At the beginning of the driving force is a transient process, it is a reduced amplitude vibration. After 

a period of time, the first vibration will be weakened to negligible, and the second one is the equal 
amplitude vibration after the steady state of forced vibration. According to the theoretical calculation, we 
can get 

0
2 2 2 2 2

0( ) (2 )

FA
m ω ω δ ω

=
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0
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ω ω

= −
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(4) 

At steady state, the amplitude of the velocity of the vibrating object is 
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2.1.3 Establishment of the force equation 

The float is subjected to wave excitation, additional inertia, wave damping, hydrostatic recovery and 
the reaction of the PTO system under the action of linear periodic micro-amplitude fluctuations, where 
the wave excitation is the driving force. The oscillator will be subjected to the force of PTO system. The 
mechanical equation of the oscillator. 

PTOmx F=   (6) 

The force of the PTO system on the float and the oscillator is divided into the damping force of the 
linear damper and the elastic force of the spring 

PTO r rF Cx kx= − −   (7) 

Mechanical equations of the float 

( ) e h PTO CM s F F F Fµ+ = − − −

  (8) 

where, from the question, the wave excitation (driving force) is 

coseF f tω=   (9) 

Hydrostatic recovery force refers to the floating body in seawater to do the dangling motion, will 
make the floating body back to the equilibrium position of the force, in fact, the change of buoyancy The 
expression is therefore: 

2
hF gV g R sρ ρ π= =   (10) 

The wave damping force refers to the resistance of the wave to the rocking motion of the floating 
body, and its expression is: 

CF Ds= 
  (11) 

The relative displacement is 

rx x s= −   (12) 

In summary, we establish a coupled system of ordinary differential linear equations 

2( ) cos
PTO

PTO

PTO r r

r

mx F
M s f t g R s F Ds

F Cx kx
x x s

µ ω ρ π
=

 + = − − −
 = − −
 = −



 



 

 

(13) 

The initial condition is derived from expression (1) as 
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In order to discretize the continuous mechanical equation (8) model, the coupling equation is written 
in matrix form. Although the coupled equation is a two-dimensional normally differential linear equation, 

it can be discretized by setting 1 1( ) , ( )x t x s t s= = 、 1 1( ) , ( )x t x s t s= = 

 . Perform a 

step-down. 

1 1
2

1 1

1

1

0 0 0 0
0 0 0 cos
0 0 1 0 1 0 0 0 0
0 0 0 1 0 1 0 0 0

xm c c k k x
sM c c D k k g R s f t
x x
s s
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



  

(15) 

2.1.4 The result of solving the equation 

The time range of the solution is 40 wave periods, and the wave frequency is known to be 1.4005s -
1, so the individual period time is 4.4841s. The total time of 40 periods is divided into equidistant 
intervals of 0.2s steps, and the dip displacement and velocity of the float and oscillator are calculated. 
The dip displacements and velocities of the float and oscillator at 10s, 20s, 40s, 60s, and 100s are shown 
in Table 2 below.  

Table 2: Heave displacement and velocity of float and oscillator in subproblem 1 

Time(s) Float Oscillator 
displacement (m) speed(m/s) displacement (m) speed(m/s) 

10 0.174839 - 0.09038 0.233858 - 0.1911 
20 - 0.20796 - 0.55449 0.20038 - 0.62142 
40 0.290553 0.887672 0.296362 0.972472 
60 - 0.34998 - 0.97848 - 0.368 - 1.07253 

100 - 0.21898 - 0.54935 - 0.2431 - 0.59171 

2.1.5 Scenario 2: Variable damping factor 

The difference between subproblem II and subproblem I is that the damping coefficient of the linear 
damper is proportional to the power of the absolute value of the relative velocities of the float and the 
oscillator, where the scale factor C0 = 10000 and the power exponent is a = 0.5. At this point 

0
a

rC C x= 

  (16) 

At this point the damping coefficient is not constant and the original set of coupling equations 
becomes a nonlinear set of equations. 
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(17) 

Since the damping coefficient contains a relative velocity term, the original equation of motion is a 
nonlinear ordinary differential equation and is considered to solve its numerical solution. Using the 
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relative velocity at the steady state in case I as the initial condition, when the damping coefficient C is 
constant, the steady state solution at this damping coefficient can be obtained by substituting it into the 
iterative format of subproblem I. Substitute the new steady-state relative velocity into C to obtain the 
new damping factor. Repeat several times to set the stopping condition. When satisfied, the calculated 
value of C is the damping factor, a specific value, and the effect of this action is equivalent to 

0
a

rC C x= 

, Substituting C at this point into the iterative format of Subproblem 1, the pendulum 
displacements and velocities of the float and oscillator can be calculated. 

2.1.6 Solution results 

The pendular displacement and velocity of the float and oscillator at 10s, 20s, 40s, 60s and 100s are 
shown in Table 3 below. 

Table 3: Heave displacement and velocity of float and oscillator in subproblem 2 

Time(s) Float Oscillator 
displacement (m) speed(m/s) displacement (m) speed(m/s) 

10 0.043098 - 0.561118 0.431834 - 1.63171 
20 - 0.23252 - 0.393622 - 0.10249 - 2.61335 
40 0.355317 1.303107 0.066932 0.03011 
60 - 0.24011 - 1.40805 - 0.54143 - 0.1641 

100 - 0.30223 - 0.6436 - 0.0944 - 0.55892 

3. Determination of the optimal damping factor 

3.1 Scenario 1: Damping factor is constant   

Determine the mathematical model of the optimal damping system for the linear damper such that 
the average output power of the PTO system is maximized, and the problem is a single objective 
optimization problem. By reviewing the literature, the output power equation for the linear damper is 
derived, which is used as the objective function to find the maximum value, and the constraints are the 
range of values of the damping coefficient. The following single-objective optimization model is 
established. 
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The solution is 

2 2
0( )mC ω ω
ω
−

=  
 

(19) 

Substituting the data to solve for the theoretical values of the optimal damping coefficient is C = 
30741.4N - s/m and P = 194.461657W. In addition to finding the analytical solution, we used the 
numerical solution method, which is needed if the expression of the power is complex or the analytical 
solution cannot be found. Therefore, the analytical solution can be used as a test of the accuracy of the 
numerical solution. Using the variable step search method, the value of C that maximizes P is found in 
the interval [0, 100000]. The algorithmic flow of the variable step search method is shown in Figure 2 
below. 
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Figure 2: Analysis Process 

The numerical solution of the optimal damping coefficient by the variable step search method is C = 
30741.4N-s/m and P = 194.461657128522W.  

Comparing the analytical solutions, it can be seen that the numerical solutions solved by the variable 
step search method are reliable. 

3.2 Scenario 2: Variable damping factor 

The damping coefficient is known to be proportional to the power of the absolute value of the relative 
velocities of the float and the oscillator, with a scale factor in the interval [0, 100000] and a power 
exponent in the interval [0, 1], for a single objective optimization model satisfying the following 
conditions. 
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(20) 

This model is difficult to solve analytically, so only its numerical solution is considered, and the 
variable-step search method is still used. Unlike case 1, there are two constraint variables in case 2, and 
the values of C0 and a are set to an equally spaced grid, and at each grid lattice point, there is a determined 
(C0, a). The output power P corresponding to each grid point data is derived by exhaustive enumeration 
to find the value of C0, a corresponding to the largest P. Next, the search is narrowed down to C0, a and 
the nearby range, re-equalized, and the above process is repeated until the stopping condition holds. It is 
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obtained that P reaches the maximum at a = 0.1 and C0 = 26314.3, which is P = 194.4617W. 

4. Conclusions 

In this paper, based on the motion analysis of float and oscillator in wave energy device, the initial 
value problems of coupled constant coefficient (constant damping coefficient case) and variable 
coefficient (variable damping coefficient case) systems of ordinary differential equations about the 
displacement function and angular displacement function of float and oscillator are established in the 
cases of vertical and oscillating motion, respectively. The continuous equations are discretized by finite 
differences and the results are solved iteratively using the initial conditions. In this paper, a single-
objective optimization model is also developed to solve the optimal variable damping coefficient and 
maximum output power based on the approximate linear, iterative and variable-step search methods 
under univariate and bivariate variables, respectively, are considered. 
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