
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 10: 16-23, DOI: 10.25236/AJCIS.2024.071003

Published by Francis Academic Press, UK
-16-

Analysis and Comparison of Exchange Sorting
Algorithms

Xu Dan1,a,*, Zhao Haomin2,b

1Department of Information Technology and Engineering, Guangzhou College of Commerce,
Guangzhou, China
2Modern Information Industry Department, Guangzhou College of Commerce, Guangzhou, China
a20220063@gcc.edu.cn, b20230218@gcc.edu.cn
*Corresponding author

Abstract: This article delves into Bubble Sorting and Quick Sorting in exchange sorting algorithms, and
implements and tests their performance on different datasets using the Java programming language. This
article provides a detailed analysis of the time and space complexity of two algorithms using a randomly
generated dataset, and compares their advantages and disadvantages in practical applications. The
experimental results indicate that Quick Sorting has higher efficiency in most cases, especially when
dealing with large-scale datasets. However, Bubble Sorting can also demonstrate good performance in
specific scenarios, such as when the data is essentially ordered.

Keywords: Bubble Sorting; Quick Sorting; Space Complexity; Time Complexity

1. Introduction

In the era of information explosion, data is everywhere, and sorting, as the foundation and key step
of data processing, plays an irreplaceable role in improving data processing efficiency, optimizing
resource allocation, and accelerating information retrieval. Firstly, sorting algorithms are the foundation
of many advanced algorithms and data structures. Secondly, with the continuous development of
information technology, the scale and complexity of data are constantly increasing, and the performance
requirements for sorting algorithms are also becoming higher and higher. In addition, sorting algorithms
also involve multiple aspects such as algorithm design, algorithm analysis, and algorithm optimization,
which are of great significance for the development of computer science and information technology. By
studying and applying sorting algorithms, we can promote the in-depth development of algorithm theory,
improve the performance of computer systems, and promote the widespread application and
popularization of information technology.

2. Definition and classification of sorting algorithms

2.1. Definition of Sorting Algorithm

Sorting algorithm, also known as sorting, is an important operation in computer programming. Its
function is to rearrange any sequence of data elements (or records) into a keyword ordered sequence.
Specifically, sorting is the operation of arranging a string of records in ascending or descending order
based on the size of one or more keywords within it. The sorting algorithm reorders one or more sets of
data according to a predetermined pattern through specific algorithmic factors. This new sequence
follows certain rules and reflects certain patterns, making it easier to filter and calculate, greatly
improving computational efficiency[1].

2.2. Classification of Sorting Algorithms

Sorting algorithms can be classified according to different criteria[2],as shown in Table 1 below. Here
are some common classification methods.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 10: 16-23, DOI: 10.25236/AJCIS.2024.071003

Published by Francis Academic Press, UK
-17-

Table 1: Classification of Sorting Algorithms.

Algorithm name
Classification method

stability Stable Sorting Insertion Sorting Bubble Sorting Merge Sorting
Unstable Sorting Selection Sorting Quick Sorting

in-place or not
In-place Sorting Bubble Sorting Selection Sorting Insertion Sorting

Non in-place

Sorting Merge Sorting Quick Sorting

basic ideas

Insertion Sorting Direct Insertion
Sorting Hill Sorting

Exchange
Sorting Bubble Sorting Quick Sorting

Selection Sorting Simple Selection
Sorting Heap Sorting

Merge Sorting
Balance Two-
Way Merging

Sorting

Quick Sorting
three Ways

Allocation
Sorting Count Sorting Cardinality

Sorting Bucket Sorting

time complexity
O (n ^ 2) Bubble Sorting Selection Sorting Insertion Sorting
O (nlogn) Merge Sorting Quick Sorting Heap Sorting

O (n) Count Sorting Bucket sorting

2.2.1. Classified by stability

Stable Sorting: If the relative position of two equal elements remains unchanged before and after
sorting, the sorting algorithm is considered stable. For example, Insertion Sort, Bubble Sort, Merge Sort,
etc. are all stable sorting algorithms.

Unstable Sorting: If two equal elements may appear in different positions after sorting, the sorting
algorithm is called unstable. For example, Selecting Sorting, Quick Sorting, etc. can disrupt the stability
of elements in certain situations.

2.2.2. Classified by in-place or not

In-place Sorting: During the sorting process, no extra storage space is requested, and only the storage
space used to store the data to be sorted is used for comparison and exchange. For example, Bubble Sort,
Selection Sort, Insertion Sort, etc. are all in place sorting algorithms.

Non in-place Sorting: Additional arrays are required to assist with sorting. For example, Merge Sort,
Quick Sort (in some implementations), etc. may require additional storage space to assist with the sorting
process.

2.2.3. Classify according to basic ideas

Insertion Sorting: Based on a sorted subset of records, each step sequentially inserts the next record
to be sorted into the sorted subset of records until all the records to be sorted are inserted. The main
algorithms include Direct Insertion Sorting and Hill Sorting.

Exchange Sorting: a method of sorting by swapping a series of elements in reverse order. For example,
Bubble Sort, Quick Sort. Bubble Sort: Repeatedly scanning the sequence of records to be sorted,
comparing the sizes of adjacent elements in sequence during the scanning process, and swapping
positions if reversed. Quick Sorting: By selecting a benchmark element (pivot), the records to be sorted
are divided into two independent parts, where all records in one part are smaller than those in the other
part. Then, these two parts of the records can be sorted separately to achieve the goal of the entire
sequence being ordered.

Selection Sorting: Based on the idea of "selection", that is, to find the smallest (or largest) element in
the unsorted sequence, store it at the beginning of the sorted sequence, and then continue to find the
smallest (or largest) element from the remaining unsorted elements, and then place it at the end of the
sorted sequence. Repeat this process until all elements are sorted. For example, Simple Selection Sorting
and Heap Sorting.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 10: 16-23, DOI: 10.25236/AJCIS.2024.071003

Published by Francis Academic Press, UK
-18-

Merge Sorting: It is an effective sorting algorithm based on merge operations. This algorithm is a
very typical application of Divide and Conquer. Merge the ordered subsequences to obtain a completely
ordered sequence; First, make each subsequence orderly, and then make the subsequence segments
orderly.

Allocation Sorting: It is a special type of sorting algorithm, whose main feature is that the sorting
process does not require comparing keywords to determine the order of elements, but rather achieves
sorting through two processes: "allocation" and "collection". For example, Count Sorting, Cardinality
Sorting, and Bucket Sorting.

2.2.4. Classified by time complexity

The time complexity is O (n ^ 2): algorithms such as Bubble Sorting, Selection Sorting, Insertion
Sorting (in the worst case), etc. have high time complexity and are suitable for sorting small-scale data.

The time complexity is O (nlogn): algorithms such as Merge Sorting, Quick Sorting, Heap Sorting,
etc. have low time complexity and are suitable for sorting large-scale data.

The time complexity is O (n): algorithms such as Count Sorting, Bucket sorting (under specific
conditions), etc. can achieve linear time complexity in specific situations.

It should be noted that the classification method shown in Figure 1 is not absolute, and some
algorithms may belong to multiple categories at the same time. In addition, with the development of
computer science and technology, new sorting algorithms are constantly emerging, and these
classification methods are also constantly being updated and improved.

3. Ideas and Implementation of Exchange Sorting Algorithm

3.1. The idea and Implementation of Bubble Sorting

The basic idea of Bubble Sorting is to start from the first element of the sequence, compare adjacent
elements, and swap their positions if the previous element is greater than the next element. This process
will continue until the last element of the sequence. After one round of comparison, the largest element
will be moved to the last position[3] .Next, repeat the above process for the remaining elements until the
entire sequence is completely ordered.

The steps of Bubble Sorting algorithm can be summarized as follows: the first step is to compare
adjacent elements, and if the first one is larger than the second one, swap them. The second step is to
perform the same task on each pair of adjacent elements, from the first pair at the beginning to the last
pair at the end. After completing this step, the final element will be the largest number. The third step is
to repeat the above steps for all elements, except for the last one. The fourth step is to repeat the above
steps for fewer and fewer elements each time until there are no pairs of numbers to compare.

Figure 1 illustrates the detailed steps of Bubble Sorting with a concrete example.

Figure 1: Steps for Bubble Sorting

In Figure 1, there are two equal elements 50. In order to distinguish them, the last 50 in the original
data is represented as 50 '. From the final result, it can be seen that the relative positions of 50 and 50'
have not changed. Therefore, it can be concluded that Bubble Sorting is a stable sorting algorithm.

In this example, there are a total of 8 records to be sorted, but the algorithm did not perform element
swapping in the 6th sorting process. Therefore, when implementing the Bubble Sorting algorithm in a
computer programming language, a flag can be set to distinguish whether there is element swapping in a
certain round. If not, the loop can be terminated early to improve the efficiency of the Bubble Sorting

Raw data: 50, 39, 66, 98, 77, 14, 28, 50’
Round 1: 39, 50, 66, 77, 14, 28, 50’, 98
Round 2: 39, 50, 66, 14, 28, 50’, 77, 98
Round 3: 39, 50, 14, 28, 50’, 66, 77, 98

Round 4: 39, 14, 28, 50, 50’, 66, 77, 98
Round 5: 14, 28, 39, 50, 50’, 66, 77, 98
Round 6: 14, 28, 39, 50, 50’, 66, 77, 98
Round 7: 14, 28, 39, 50, 50’, 66, 77, 98

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 10: 16-23, DOI: 10.25236/AJCIS.2024.071003

Published by Francis Academic Press, UK
-19-

algorithm. Figure 2 shows the core code of Bubble Sorting implemented in JAVA language.

Figure 2: Implementing Bubble Sorting in JAVA Code

3.2. The idea and Implementation of Quick Sorting

Quick Sorting is an efficient sorting algorithm proposed by British computer scientist Tony Hoare in
1960s[4]. It adopts a divide and conquer strategy, recursively dividing the array to be sorted into smaller
parts and finally merging them to obtain a fully sorted result. The core idea of quicksort is to select a
"pivot" from the array to be sorted, dividing the array into two parts, where all elements in one part are
not greater than the pivot, and all elements in the other part are greater than the pivot. This process is
called partitioning. Then recursively continue sorting these two parts.

The steps of the Quick Sorting can be summarized as follows: the step 1 is to select a benchmark:
choose an element from the array as the benchmark value. Step 2 partitioning operation: Move all
elements smaller than the baseline to the front of the baseline, and all elements larger than the baseline
to the back of the baseline. At this point, the benchmark is in its final sorting position. Step 3 recursive
call: recursively sort the subarrays on the left and right sides quickly.

As shown in Figure 3, a specific example illustrates the detailed steps of Quick Sorting.

Figure 3: Steps for Quick Sorting

Figure 4 shows the core code for implementing Quick Sorting in JAVA language. In this
implementation, the quick Sort method is the entry point for quicksort, which accepts an array and the
start and end indices of the array to be sorted. It first checks if the starting index is smaller than the ending
index, and if so, calls the partition method to partition the array and recursively sorts the subarrays before
and after the partition. The partition method is responsible for dividing the array into two parts, one
containing all elements less than or equal to the pivot, and the other containing all elements greater than
the pivot. The pivot element is placed in the correct position of the partition and returns the index of that
position. Then, quicksort recursively sorts these two subarrays.

Raw data: 50, 39, 66, 98, 77, 14, 28, 50’
Round 1: {28, 39, 14}, 50, {77, 98, 66,50’}

Round 2: {14}, 28, {39},50,{ 77, 98, 66,50’}
Round 3: 14, 28, 39, 50, {50’, 66}, 77, {98}
Round 4: 14, 28, 39, 50, 50’, {66}, 77, 98

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 10: 16-23, DOI: 10.25236/AJCIS.2024.071003

Published by Francis Academic Press, UK
-20-

Figure 4: Implementing Quick Sorting in JAVA Code

4. Comparison of Efficiency of Exchange Sorting Algorithms

4.1. Experimental Design

Implement Bubble Sorting and Quick Sorting algorithms using the Java programming language, and
test the performance of these two algorithms by randomly generating integer datasets of different sizes
(n=100, 1000, 10000, 100000). The testing environment is a standard PC, operating system is Windows
11, processor is Intel Core i5-12500H, CPU is 16GB, and the integrated development environment is
IDEA from Jetbrains.

The main code for randomly generating data and testing is shown in Figure 5.

Figure 5: Test code

The experimental results are shown in Figure 6.

Figure 6: Experimental operation test results

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 10: 16-23, DOI: 10.25236/AJCIS.2024.071003

Published by Francis Academic Press, UK
-21-

The experimental results show that there is not much difference in the time consumption between
Bubble Sorting and Quick Sorting when processing small-scale datasets (n=100, 1000). However, as the
size of the dataset increases, the advantages of Quick Sorting gradually become apparent, and its sorting
time is significantly less than Bubble Sorting. Especially when dealing with large-scale datasets
(n=100000), the efficiency of Quick Sorting is much higher than that of Bubble Sorting.

4.2. Space Complexity

Space complexity is a measure of the additional space required for an analysis algorithm to run. The
'extra space' referred to here refers to the space used by the algorithm during execution, in addition to the
space occupied by the input data[5]. It typically includes the storage space occupied by all data structures
created by the algorithm during execution, as well as the space required for storing temporary variables,
recursive call stacks, and so on. The calculation of space complexity generally considers the worst-case
space requirements of the algorithm, as this ensures that the algorithm will not exceed this space limit in
any situation. Overall, spatial complexity is an important indicator for evaluating algorithm performance,
especially when dealing with large-scale datasets. The level of spatial complexity directly affects the
actual application effectiveness of the algorithm.

4.2.1. The Space Complexity of Bubble Sorting

From the above analysis and experimental results, it can be seen that the space complexity of Bubble
Sorting is O (1). During the execution of Bubble Sorting algorithm, no additional storage space is used
except for the input array itself. All operations such as comparing and swapping elements are performed
on the original array, without using additional data structures such as stacks, queues, hash tables, etc. to
store data, so its space complexity is at a constant level, i.e. O (1). This is an advantage of Bubble Sorting,
especially when dealing with large amounts of data, there is no need to worry about the issue of
insufficient memory due to the use of extra space.

4.2.2. The Space Complexity of Quick Sorting

Quick Sorting needs to be discussed on a case by case basis. In most cases, Quick Sorting is an in
place sort, which means that no additional storage space is required except for the space required for
recursive calling of the stack. Therefore, its spatial complexity mainly depends on the depth of recursive
calls. In the best case scenario, where each partition can divide the array into two equally sized parts, the
space complexity is O (log n); But in the worst case, where only one element can be reduced per partition,
the space complexity will degrade to O (n). In summary, the space complexity of Quick Sorting is O (n)
in the worst case and O (log n) on average. Considering the recursive call stack, but if the space of the
recursive call stack is not considered, the additional space complexity is O (1). In practical applications,
due to its excellent average performance and the ability to avoid worst-case scenarios through methods
such as randomly selecting benchmark values, Quick Sorting remains a highly efficient sorting algorithm.

4.3. Time Complexity

Time complexity is an important concept in algorithm analysis, used to describe the rate at which the
execution time of an algorithm increases with the size of the input. It represents the relationship between
algorithm execution time and input data size, usually represented using Big O notation[6]. The calculation
of time complexity is usually based on the number of executions of basic operations in the algorithm,
such as comparison, assignment, arithmetic operations, etc. These basic operations are considered as the
fundamental units of algorithm execution time. By calculating the number of executions of basic
operations at different input scales, the time complexity of the algorithm can be obtained.

4.3.1. The Time Complexity of Bubble Sorting

The time complexity of Bubble Sorting mainly depends on the initial state of the array and the number
of elements that need to be sorted.

Best case time complexity: If the array is already completely ordered, that is, arranged from small to
large or from large to small, Bubble Sorting only needs to traverse the array once to end, because it will
find that there are no elements that need to be swapped after the first traversal. Therefore, the optimal
time complexity is O (n), where n is the length of the array.

Worst case time complexity: If the array is in reverse order, meaning the order of elements is
completely opposite to the sorted order, Bubble Sorting requires (n-1) iterations because the i-th iteration
can determine the i-th largest element at its final position, while the last element can be considered the

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 10: 16-23, DOI: 10.25236/AJCIS.2024.071003

Published by Francis Academic Press, UK
-22-

largest without traversal, and each iteration requires comparing adjacent elements and performing
possible swaps. Therefore, the worst-case time complexity is O (n ^ 2).

Average time complexity: The average time complexity is also approximated by O (n^2).

In summary, the time complexity of Bubble Sorting is usually O (n ^ 2), because its basic operations
such as comparison and swapping are performed in nested loops, resulting in the execution time of the
algorithm being proportional to the square of the array length. This makes bubble sort less efficient in
processing large datasets and is generally not recommended for sorting tasks that require high
performance in actual production environments. However, due to its simple implementation and ease of
understanding, Bubble Sorting is still often used as a teaching example or for sorting on small-scale
datasets.

4.3.2. The Time Complexity of Quick Sorting

The time complexity of the Quick Sorting algorithm depends on several factors, mainly the quality
of partitioning and the depth of recursion. Quick Sorting uses a divide and conquer strategy to divide an
array into smaller parts, and then recursively sorts these parts.

Best case scenario: When each partition operation can divide the array into two roughly equal sized
parts, the depth of recursion will be log n, where n is the length of the array, as each partition halves the
size of the problem. In this case, the time complexity is O (n*logn) because each partitioning operation
requires O (n) of time to traverse the array and partition, and requires log n partitions to achieve the basic
situation where the size of the subarray is 1 or 0.

Worst case scenario: When each partition operation selects the largest or smallest element in the array
as the baseline, it will result in one subarray being empty and the other containing all remaining elements.
In this way, the depth of recursion will be n, as each partition only reduces one element. In this case, the
time complexity will degrade to O (n ^ 2) because each partition operation still requires O (n) of time,
but it takes n partitions to reach the baseline.

On average, each partition operation can divide the array into two relatively balanced parts, but not
completely equal. However, due to the random selection of benchmark values or the use of other
optimization techniques, such as taking the middle of three numbers, the likelihood of the worst-case
scenario occurring can be significantly reduced. On average, the time complexity is still O (n log n).

It should be noted that the actual performance of Quick Sorting is also affected by other factors, such
as the distribution of input data, the selection strategy of benchmark values, the overhead of recursive
calls, and system cache and memory bandwidth. However, in most cases, the average performance of
Quick Sorting is very excellent, so it is widely used in various sorting tasks.

5. Conclusion

On average, each partition operation can divide the array into two relatively balanced parts, but not
completely equal. However, due to the random selection of benchmark values or the use of other
optimization techniques, such as taking the middle of three numbers, the likelihood of the worst-case
scenario occurring can be significantly reduced. On average, the time complexity is still O (n log n).

Through detailed analysis and experimental testing of Bubble Sorting and Quick Sorting, the
following conclusions can be drawn: Firstly, time complexity: Quick Sorting has an average time
complexity of O (n*log n), which is better than Bubble Sorting's O (n^2), but with appropriate
optimization strategies, it can maintain its efficiency. Secondly, space complexity: The space complexity
of Bubble Sorting is O (1), while the space complexity of quicksort depends on the depth of the recursive
stack, and in the worst case, it is O (n). However, in practical applications, the spatial complexity of
Quick Sorting is usually much lower than O (n). Thirdly, applicability: Quick Sorting is the preferred
sorting algorithm in most cases due to its efficient average performance. Bubble Sorting, on the other
hand, is suitable for small-scale datasets or situations where data is basically ordered due to its simple
implementation.

References

[1] Cormen T H, Leiserson C E, Rivest R L, et al. Introduction to Algorithms (3rd ed.)[M]. MIT Press.
2009.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 10: 16-23, DOI: 10.25236/AJCIS.2024.071003

Published by Francis Academic Press, UK
-23-

[2] Yan Weimin, Li Dongmei, Wu Weimin. Data Structures (C Language Version, 2nd Edition) [M].
Tsinghua University Press, 2022.
[3] Smith J, Johnson M. Enhanced Bubble Sort Algorithm with Adaptive Thresholding[J]. Journal of
Advanced Computing Research, 2022, 15(3): 234-246.
[4] Hoare, C. A. R. Algorithm 64: Quicksort[J]. Communications of the ACM, 1961,4(7): 321-322.
[5] Bayardo R J , Miranker D P . A Complexity Analysis of Space-Bounded Learning Algorithms for the
Constraint Satisfaction Problem[J].AAAI Press, 1996, 2(03): 15-24.
[6] Huang H, Su J, Zhang Y, et al. An experimental method to estimate running time of evolutionary
algorithms for continuous optimization[J]. IEEE Transactions on Evolutionary Computation, 2023,
27(4), 1234-1245.

	2.1. Definition of Sorting Algorithm
	2.2. Classification of Sorting Algorithms
	3.1. The idea and Implementation of Bubble Sorting
	3.2. The idea and Implementation of Quick Sorting
	4.1. Experimental Design
	4.2. Space Complexity
	4.3. Time Complexity

