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Abstract: It is crucial to undertake thorough study and data mining on factors that determine the 

occurrence of geohazards to prevent and anticipate their occurrence. A small-sample learning method 

with a strong theoretical underpinning, the classical support vector machine model provides 

considerable expressive power in dealing with the interaction of nonlinear characteristics and lessens 

reliance on the entire data set. However, its excellent generalization capabilities result in an excessively 

large optimal search space, which impacts the search for kernel parameters and reduces the model’s 

accuracy. The particle swarm algorithm, which has a robust search capability, is thus introduced to 

improve it. This paper's research area is Chian Town, China. The prediction study of geological hazard 

susceptibility in Chian town was validated using Gaofen 2 remote sensing imagery in conjunction with 

a support vector machine regression model enhanced by the particle swarm algorithm. The findings show 

that the high-risk zone comprises 17% of the overall area and has an 88.88% prediction accuracy. The 

results imply that integrating high-resolution remote sensing imagery-based and optimized machine 

learning algorithm models has prospective applications in investigating geological hazard susceptibility 

with small samples, numerous feature factors, and large-scale data. 
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1. Introduction 

Geological hazards are events or phenomena that threaten human life, property, or the environment. 

The pattern of change in its spatial distribution is frequently the result of the interaction of human and 

natural multi-class elements, subject to the natural environment and human actions. Even though 

domestic and international scholars have conducted numerous studies in this field [1-11], the complexity 

and variety of geological and environmental variables make it difficult for accuracy, efficiency, and 

practicability to coexist. It is crucial to prevent and control geological hazards from a practical aspect to 

study a more excellent and precise way of prediction. Chian Town, Zhejiang Province, is situated in a 

hilly coastal region of southeast China. Due to geographical and geological conditions and human 

engineering activity, geological dangers are common. Using 0.8 resolution Gaofen-2 satellite (GF-2) 

remote sensing image data, the influencing variables of geological risks in the research region are 

retrieved and examined in this work. Combining historical geohazard locations, quantifying data, and 

studying the relationship between various variables and the incidence of geohazards are all components 

of this research.Based on the river network water system, Chian Town is divided into 44,654 slope units 

as the evaluation units for this geological hazard susceptibility evaluation. The evaluation units are 

coupled with quantitative data of various parameters, and the data are normalized using the mapminmax 

function to get the 44654*N data table. A parameter search for the support vector machine regression 

model is conducted utilizing the Particle Swarm Optimization algorithm, which may quickly approximate 

the optimal solution for optimizing system parameters. The trained Particle Swarm Optimization- 

Support vector machine regression model is then applied to partial data tables for initial training modeling. 

The geohazard susceptibility index (GSI) is added for validation. Input all data tables into the validated 

model for the second global test to forecast Chian Town's sensitivity to geological hazards. The 

geological hazard susceptibility index was calculated for all 44654 slope units in the region. Lastly, the 

results' correctness was confirmed using the hierarchically graded susceptibility index ratio R and the 

ROC curve. 
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2. Overview of the study area 

2.1. Overview of the region 

The study area is in Chian Town, Zhejiang Province, China, and is defined by latitude 29°02′12′′ 

29°10′49″N and longitude 119°53′31′′120°05′19′′E. The town has a 149.98 square kilometer area. It is 

located in southeast China's hilly coastline region and is at risk from typhoons and torrential downpours. 

The region is a part of the South China stratigraphic zone and is situated on the southern side of the Jiang 

Shao collocation zone. The stratigraphic lithology in the area is diverse and tectonically complex, with 

the distribution of Cretaceous volcanic rocks, clastic rocks, and a large area of exposed Chen Cai Group 

gneisses of the Meso-proterozoic Era, with several rock stratigraphic units exposed. The bedrock is 

widely covered with residual slope deposits, and the vegetation coverage is high. It is densely populated, 

and artificial excavation of slopes is joint. The overall geomorphology is mainly low hills, with the terrain 

surrounded by mountains on the north, west, and south and slightly lower in the middle, and the mountain 

range running northeast. From 1999 to 2020, the area recorded 57 historical disaster sites. 2021 has 

identified 48 geological hazard sites through remote sensing data interpretation and field verification, 

mainly located around the foot of the slope of the low hills, on both sides of the highway, and near 

residential areas. 

2.2. Sources of research 

This research uses a mix of data collecting and field surveys to get precise data on the geohazard-

inducing environment of Chian Town and to ensure the precision of the model prediction. The data 

sources mainly include: (1)GF-2 satellite remote sensing image two scenes (2021-09-27) for analyzing 

surface information such as linear structure, water system distribution, human engineering activities, and 

geological hazard point distribution, show in Figure 1; (2) 30M resolution digital terrain model (Dem) of 

Chian Town for extracting topographic and geomorphological information such as slope, slope aspect, 

elevation, and curvature; (3) a Chian Town 1:100000 geological map for extracting geological 

information such as stratigraphic lithology; and (4) historical geological disaster archives and field survey 

data for historical geohazard interpretation and spatial positioning.  

 

Figure 1: Preprocessed dummy color composite map of a remote sensing satellite image of Chian 

Town. 

2.3. Analysis of the regional geohazards survey 

Multiple sources influence the genesis and evolution of geological risks. Based on remote sensing 

photos of Chian Town, DEM elevation data, geological maps, and geographical analysis of unique 

regional geological dangers. As influence variables for analyzing the geological hazard susceptibility 

assessment in Chian Town, the eight categories of the slope, slope aspect, elevation, curvature, 

stratigraphic lithology, fault, road, and water system were selected and extracted. 

To ease quantitative analysis, the eight-factor layers were resampled into 59854 grid cells by 

50m*50m and categorized using the natural intermittent point method. The 105 geological disaster points 
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were superimposed on each classification of the eight types of variables, and their distribution densities 

were computed. The correlation analysis table between impact factor classification classes and historical 

geohazards has been obtained. The association is stronger the larger the ratio's r-value, as shown in Table 

1.  

Table 1: Correlation analysis of geological hazard impact factors and disasters in Chian Town. 

 
Among these, (1) slope, slope aspect, and slope curvature are crucial elements influencing slope 

stability. 91% of the geohazards occur on gently sloping slopes below 43°, and the accumulation of 

residual slope deposits in this area provides rich material sources for the occurrence of geohazards. The 

geological hazards show a gradually increasing trend from E, SE, and S in the slope direction ratio and 
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reach 1.8 in the S ratio. The eastern typhoon and solar radiation illumination strongly influence this 

partition. The curvature indicates the complexity of the terrain. The curvature values >0 are classified as 

convex slopes, <0 are classified as concave slopes, and it can be seen that 90% of the geological hazards 

occur on open slopes. The rate of landslide occurrence in this area of curvature from-28 to-7 reaches 2.3. 

(2) Geologic elevation influences the scope of human activities, mound distribution, and vegetation. 88% 

of the geologic hazards are located below 435m, among which the rate is close to 2.6 in the classification 

area of 169~298. (3) The stratigraphic lithology affects the material basis of disaster development. The 

Xitoushan Group, Gaowu Group, and Dashuang Group, with a ratio greater than 1, are dominated by 

tuffs, which are complex and dense and have a solid overall resistance to weathering, making it easy to 

form high and steep hills. While the Chennai Group Formation of the Meso-proterozoic Erathem, with a 

ratio of 1, is dominated by gneisses with weak weathering resistance, fissure development, and large 

thickness of weathered layers. (4) Tectonic conditions are a significant constraint to the occurrence of 

geological hazards, and the ratio within 200 meters of the fault is greater than 1. (5) Road slope-cutting 

works are the primary type of mountainous geological hazards induced by human activities. 50% of the 

geological hazard points are distributed within 25m of the road, corresponding to a ratio of 3, reaching 

the highest value of 8 types of evaluation factors classification ratio. (6) In the distance range of 150 m 

from the water system, the ratio shows a trend of gradually decreasing with increasing distance, which 

indicates that the surface water system has a specific hollowing effect on the slope angle and makes it 

less stable. 

The above analysis demonstrates that the eight influencing factors have a high correlation with the 

geological dangers of Chian Town. Simultaneously, all elements are interconnected and need to be 

considered comprehensively in practical prediction. Therefore, we inputted the aforementioned eight 

indicative factors into the PSO-SVR model with strong learning generalization capacity and good 

"robustness." to analyze the susceptibility of geohazards. 

3. Prediction and validation of PSO-SVR-based geohazard susceptibility evaluation 

3.1. Evaluation unit division 

The evaluation unit is the smallest spatial map element for geological hazard susceptibility evaluation, 

and its unit can be a regular or irregular map element [12]. Considering that the development stages of 

rivers and valleys have an apparent integrated control on the conditions of geological hazard formation 
[13]. This paper used the slope units of the ridge and river network division based on GIS data to evaluate 

this prediction. The unreasonable units were checked and modified by manual visual inspection. Finally, 

98 slope units containing 105 historical geological hazard points and 44,556 general slope units were 

obtained. The extracted eight types of evaluation factors corresponding to the conditional attributes were 

combined with 44,654 slope units. The initial data set of 44556 rows*8 columns is formed.  

3.2. PSO-SVR Principle 

3.2.1. Support vector machine model 

Support vector machine model [14,15](SVM) is a machine learning method based on statistical learning 

theory, VC dimensional theory, and the structural risk minimization principle, which was first proposed 

by Vapink et al. in 1995 [16]. The core idea is to transform the sample into a high-dimensional feature 

space by selecting a kernel function to solve a convex quadratic optimization problem to ensure that the 

extreme value solution found is the optimal global solution. A small number of small samples determine 

the final decision. The kernel parameter g, which transfers the samples from one dimension to an 

unlimited number of dimensions, and the search speed for the penalty parameter c, which controls the 

training speed and precision, are the determinants of the search for the optimal hyperplane. However, the 

conventional support vector machine only provides algorithms for two-class classification. In contrast, 

the classification problem of many classes is typically resolved through data mining for real-world 

applications of geohazard prediction. As a result, the branch of support vector machines utilized for 

regression prediction will be used in this work. The great generalizability of the support vector machine 

regression model (SVR). However, the robust generalization capability of SVR results in an excessively 

large optimal search space, which makes the model susceptible to prematurely interpreting the local 

optimum as the global optimum. To improve the support vector machine regression model, the PSO 

algorithm's robust global search capability was introduced. 
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3.2.2. Particle swarm optimization algorithm 

The Particle Swarm Optimization (PSO) algorithm is a computational method for global optimization 

based on population intelligence that Kennedy and RCEberhart proposed in 1995. It was inspired by the 

simulation of bird predation behavior [17,18]. In an iteration, the particles update themselves by following 

two optimal solutions: the individual particle extremum best and the particle population extremum best. 

The approach is widely utilized in function optimization [19,20]because of its rapid convergence, few 

parameters, and straightforward implementation. In this research, we will use the robust global search 

capacity of PSO to search for the optimal kernel parameter g and penalty parameter c of the SVR model 

to practice the usefulness of the optimizing machine algorithm model in forecasting the susceptibility of 

geohazards.  

3.3. Prediction of the PSO-SVR model 

3.3.1. Configuring the PSO algorithm initialization parameters[21,22], as shown in Table 2. 

Table 2: Initial PSO-SVR algorithm parameter settings. 

 
Based on parameters such as the number of iterations and population size, the optimal kernel 

parameter g and penalty parameter c for the SVR model was determined to be Bestg=0.067013 and 

Bestc=15,1117, as shown in Figure 2. The average fitness value shows the goodness and convergence of 

the entire population. In contrast, the proximity of the average fitness curve to the optimal fitness curve 

indicates how near each individual is to the optimal solution. 

 

Figure 2: Graph of the adaptation curve (PSO method). 

3.3.2. SVR model training and testing 

To reduce the effect of the difference in values of the eight types of evaluation factors, the 

mapminmax function was used to normalize the values to the interval from 0 to 1. From the initial data 

set, 130 slope cells were extracted and utilized as input for the first test of the POS-SVR model. This 

includes 98 slope cells containing 105 known hazards and 32 normal slope cells. 80% are selected 

randomly as training data for the model, while the remaining 20% are utilized as accuracy check samples. 

Set the value of the geohazard Susceptibility Index (GSI) between 0 and 1, which served as the output 

for training and validating the SVR model. Figure 3 depicts the training outcomes of the predicted values 

versus the expected values.  
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Figure 3: Comparison of predicted and expected values of the PSO-SVR model test set. 

The prediction results showed that the maximum value of GSI was 1.2306, and the minimum value 

was 0.5445 for a sample of 98 slope cells containing known historical hazards. The maximum value of 

GSI was 0.1813, and the minimum value was-0.0808 for an example of 32 normal slope cells. This 

finding suggests that the POS-SVR model, based on the combination of Bestg = 0.067013 and Bestc = 

15.1117is reasonably practicable for assessing the susceptibility of Chian Town to geological hazards. 

3.3.3. Prediction of Chian Town's geological hazard susceptibility 

Based on the established PSO-SVR model and input of the complete initial data set, a second training 

was performed on a sample of 44,564 slope units in the Chian Town area. After one-by-one prediction, 

the GSI values for each slope unit were acquired. The minimum value is -0.2015, and the maximum 

value is 1.4121. To visualize the degree of geohazard susceptibility of each point in the region, all the 

GSI values of slope units are converted to the remote sensing data map of Chian Town. According to the 

principle of equal distance, the normalized GSI values are split into five regional groups: low, lower, 

medium, higher, and high geohazard susceptibility.  The geological hazard susceptibility rating map for 

Chian Town was acquired (see Figure 4).  

 

Figure 4: Geological hazard susceptibility grading chart for Chian Town. 

To differentiate the degree of geological hazard susceptibility among the five region classes and assess 
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the evaluation results’ validity. The area of different susceptibility areas A/m2 as determined by statistics; 

the ratio AR% of the total area of Chian Town (excluding the water area) corresponding to this area; the 

number of historical geohazard points distributed in each of the five regions B; and the ratio BR% of the 

geohazard points contained in each area to the total historical geohazard points. Lastly, the hierarchically 

graded susceptibility index ratio R(R=BR/AR) of geological risks occurring in each class zone's units is 

calculated. The greater the R-value, the greater the susceptibility to geological hazards. See Table 3.  

The R-values of the low, low, and medium susceptibility regions exhibit a little upward trend, whereas 

the total value is low (less than 0.545). In contrast, the R-values of the high and high susceptibility regions 

grow significantly from the preceding level, reaching a maximum of 1.8266. This demonstrates that the 

PSO-SVR-based forecast of geological hazards in Chian Town is reasonable and accurate.  

Table3: PSO-SVR model geological hazard susceptibility evaluation grading prediction results. 

 

3.4. Prediction of the PSO-SVR model 

To further quantitatively evaluate the accuracy of the PSO-SVR model, the Receiver Operating 

Characteristic (ROC)[23,24] curve was introduced here. Chian Town's absolute cumulative frequency 

(percent) of geohazard occurrence-GSI (percent) curve was plotted by dividing the GSI value into 100 

equal horizontal coordinates and replacing the actual distribution of known historical geohazard sites as 

vertical coordinates (Figure 5). The area of the entire mapped area is regarded to be 1.0, and the closer 

the Area Under Curve (AUC)[23] is to this number, the more accurate the forecast is portrayed. Figure 5's 

AUC = 0.8888 indicates that the accuracy of the prediction is 88.88%. 

 

Figure 5: Actual cumulative frequency of geological hazards (%)-(GSI) (%) Graph. 

4. Conclusion 

4.1. Evaluation unit division 

Based on high-resolution remote sensing images, multi-source historical data, and optimized trained 

intelligent algorithms, this paper conducted a large-scale, high-precision, and high-time-effective study 

on the geological hazard susceptibility of Chian Town; Eight evaluation factors of geological hazard 
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susceptibility were extracted, and two evaluation units were used.  It includes the quantitative analysis 

of the correlation and importance of the extracted influence factors by using the easy-to-calculate grid 

units and the prediction of the susceptibility by using the slope unit input model, which is closely related 

to the geological, environmental conditions based on the above work, the susceptibility evaluation of the 

geological risks in Chian Town has been finished. 

This study yielded the following tentative understanding:  

The advantages of high-resolution remote sensing images in terms of high accuracy, timeliness, and 

comprehensive coverage can effectively overcome the disadvantages of a time-consuming and limited 

range of traditional field exploration methods, and their data selection rationality and numerical accuracy 

have promising practical applications in the precise prevention of regional geological hazards.  

With a full global search capacity, the POS optimization algorithm enables a quick search for the 

ideal SVR parameters. It allows the PSO-SVR model to demonstrate powerful learning and 

generalization capabilities in the integrated handling of complex, diverse, and highly correlated 

geohazard impact factors as well as small samples (97 slope cells containing known historical geohazards) 

with a large prediction volume (44,556 slope cells of unknown susceptibility).  

Geological risks originate and evolve as a result of the interaction of numerous contributing variables. 

The R-value of the correlation analysis indicates that topography and geomorphology, geological 

structure, and human engineering activities are the three main categories, among which artificial slope 

cutting due to road construction is the main triggering factor of geological hazards. 

The emergence of geological risks is a complicated process. Although a high level of prediction 

accuracy was achieved in this study, there are still certain issues that require additional investigation: ① 

The applicability of the PSO-SVR model to a larger study region. ② Extraction of the respective effect 

factors for various regional situations.  ③ The feasibility of multi-class optimization algorithms for 

optimizing the accuracy of the SVR model.   
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