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Abstract: Due to the immense amounts of texts on the internet and the qualitative nature of human 
sentiment and the characteristics of machine learning and deep learning algorithms, they are potential 
candidates to be appli-ed in textual sentiment analysis. To compare the effectiveness of different 
algorithms, processed data using TF-IDF is input into different algorithms respectively, and the accuracy 
scores of the trials using the identical data-set are recorded for comparison. It turns out that the Extra 
Trees classifier and the Random Forest classi-fier performed the best among machine learning 
algorithms, suggesting the significance for reducing overfitting in this specific task given that the less 
overfitting-proof Decision Tree has performed worse. LSTM has a better ac-curacy score than CNN, 
though it is to be noted that the former runs significantly slower than the latter, indicating efficiency to 
be a potential topic to be considered. 
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1. Introduction 

The proliferation of the internet has made possible the current availability of social network platforms, 
where those who have access can publish texts that are made public to other users. There exists too many 
of emotion-rich texts such that it is hardly possible for all to be reviewed by other humans. Crucial 
information in these texts is thus likely to be overlooked. Furthermore, emotional value of texts on social 
media platforms is even more difficult for machines to realize also because of the significance of context 
of the texts. With the amount of available data overflowing on the internet, it is thus harder for the 
computer to detect subtle relationships in human language before extracting the correct features. The 
real-life applications of emotion classification include many fields such as healthcare, online education, 
e-commerce, marketing, and sociology. 

Emotion is an important factor of human consciousness, and its subjectivity as well as qualitative 
nature has made it more difficult for rational procedures to detect it successfully. To classify the emotional 
context in texts, NLP, or Natural Language Processing, is an effective tool. Developed with concerns for 
computers to comprehend human language, NLP is a branch of artificial intelligence which combines 
computational linguistics and machine learning to enable computers to perceive the meaning as well as 
sentiment within human speech and text. Understanding the text, to some extent at least, is crucial to 
grasping its sentimental opinion before further classifying them according to more specific branches of 
emotions.  

Past studies on text classification have achieved numerous results on emotion detection. As for the 
representation of text documents before text classification, feature engineering is a frequently used 
method which builds a new set of features that include higher-level concepts such as topics. Some popular 
tools for extracting emotion features, or GPEL’s (general purpose emotion lexicons), would be WordNet-
Affect, EmoSenticNet, NRC word-emotion lexicon, etc. However, GPEL’s detect the emotion in words 
poorly in that the memberships of words in GPEL are binary and contrary to the nature of emotions, 
making them function limitedly in feature extraction for such purposes. The study “Lexicon based feature 
extraction for emotion text classification” by Bandhakavi et.al addresses this weakness by utilizing 
domain specific emotion lexicon, or DSEL, to directly analyze word and phrase-level emotions and 
classify them into classes via machine learning. Furthermore, unigram mixture models are also put into 
use, enabling the ability to quantify both emotionality and neutrality of words and represent texts along 
with their emotional attributes.  

Aside from feature extraction, popular classifiers used would include logistic regression and SVM. 
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“Sentiment analysis of twitter data related to Rinca Island development using Doc2Vec and SVM and 
logistic regression as classifier” by Universitas Indonesia is an example. Logistic regression and SVM 
are used as the classifiers to form an overview of Indonesian Twitter users ’opinions on a controversial 
domestic issue. Comparatively assessing, SVM has a higher accuracy rate than logistic regression overall 
in this study.  

Another frequently used machine learning classifier would be random forests, or RF. “An 
Approximation Method for Fitted Random Forests” by Sai K Popuri points out that its main advantage 
is the reduction in its variance of the forecast. However, the size of the model would vary and, in cases 
with millions of data points and numerous features, the size of fitted RF models might exceed the limits 
of available space. This further obstructs the ability of such models to be downloaded to small devices 
on-demand. Thus, while RF has a high accuracy, there are also challenges to reduce its size without losing 
much trustworthiness of its results. 

CNN, or Convolutional Neural Network, is also a commonly seen architecture used for similar 
purposes. In “TextConvoNet: A Convolutional Neural Network based Architecture for Text 
Classification” by Soni et.al, a CNN specified towards text classification is evaluated. It captures the n-
gram features from the text and the inter-sentence n-gram features, made possible by the alternate input 
representation for the incoming data. As an example of CNN’s, TextConvoNet is proven to be effective 
in its classification for binary and multiple classes. 

2. Method 

2.1. Data Pre-processing 

Prior to training the model with data, it is required for the data to be pre-processed; it needs to be 
converted to a format that fits the required input of the model, and excess data should be cleaned away 
to keep is from affecting the accuracy.  

2.2. Term Frequency-Inverse Document Frequency (TF-IDF)  

Term Frequency-Inverse Document Frequency, or TF-IDF, is the calculation of the relevance of a 
word in a corpus compared to that of a text. The terminology term frequency stands for the number of 
instances which a given word appears in a specific document. Document frequency, on the contrary, tests 
the frequency of the given word not in one document, but a collection of documents which forms the so-
called corpus collection. Upon utilization, the document frequency is used in the form of inverse 
document frequency, which is idf(t) = log ( N

df(t)
), with N being the corpus. TF-IDF combines these two 

calculations and determines the significance of a term t is to a single text d in a larger series N as 

𝑡𝑡𝑡𝑡 − 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡,𝑑𝑑) = 𝑡𝑡𝑡𝑡(𝑡𝑡,𝑑𝑑) × 𝑖𝑖𝑖𝑖𝑖𝑖(𝑡𝑡)                          (1) 

2.3. Conventional Machine learning Classifier 

The Naïve Bayes is based on Bayes Theorem has three methods that are Multinomial, Gaussian and 
Bernoulli Naïve Bayes. In these methods, the Bernoulli Naïve Bayes and the Multinomial Naïve Bayes 
can be applied to discrete variables, and the Gaussian Naïve Bayes can only be applied to continuous 
data. These three strategies can be seen as probabilistic models. 

The Decision Tree Classifier can be classified as ID3, C4.5 and Cart. But Cart is the best method 
among the three. It is using binary trees, however, the others are using multi-way trees. These three 
methods are different due to their different classification ways that are information gain, information gain 
ratio and Gini coefficient.  

The random forest classifier is a supervised machine learning algorithm commonly used for 
classification problems because of its flexibility and convenience in applying. It consists of multiple 
decision trees and makes use of randomness in order to reduce overfitting and increase accuracy. 
Randomness is embedded in that the algorithm creates each tree from a random selection of data and one 
prediction is retrieved from each tree before the best solution is selected by votes among the trees. 

When called, the random forest algorithm first selects a random number of features among all features 
given, and then chooses one most significant feature as the root node according to the highest information 
gain per node. Then, the root node splits into smaller nodes and eventually forms a forest of decision 
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trees. Finally, for classification problems, the result is calculated by choosing the most popular result 
among all trees. For regression problems, on the contrary, the average of all results from the trees is 
calculated to be the final overall result. 

The extra forest is improved on random forest. It is different from random forest because of its ways 
of classification. The extra forest is preciser and more random than random forest. The extra forest uses 
entire datasets to build a tree while the random forest uses a random subset of the entire datasets to 
produce a tree. The extra forest select character randomly from the whole character set and the random 
forest choose character from the subset of all characters. Besides, when the extra forest is built, its branch 
is dividing randomly. 

2.4. Convolutional Neural Network (CNN) 

Convolutional Neural Network, or CNN, is another deep learning architecture that can be applied to 
solving NLP problems. As its name suggests, the crucial operation of the entire algorithm is convolution, 
in which data in a source matrix is passed through a convolution filter, or a kernel. It samples the pixels 
on the source image in specified strides, or step lengths, and sums up the element-wise dot product of the 
values. The formed matrix is then passed down and computed again. 

 
Figure 1: The procedure of CNN. 

CNN is effective due to its property of sensing special relationships. Because kernels often overlap 
with each other during convolution, the pixels in the overlapping parts are included in multiple 
convolution filters, allowing the relationship between similar pixels to be found more easily. 

2.5. Long Short-Term Memory Network (LSTM) 

Long Short-Term Memory Network, or LSTM in short, is a variation of recurrent neural network 
(RNN) which is effective especially in predicting outputs from long sequences of data, such as text inputs 
in the form of sentences and stock price changes over a time period.  

It monitors the chronological sequences of the data and attempts to capture their long-term 
relationships. The main characteristics that enable this feature is its feedback loop and its unique memory 
cells that stores information from earlier layers and puts them into use after a timespan, improving the 
issue faced by traditional RNN’s. This noble improvement in the LSTM allows it to predict outputs using 
long sequences of data without inducing a vanishing gradient, a major weakness in prior RNN models.  

Contrary to the RNN, which stores previous feedback in its memory cells for a short period of time, 
the LSTM preserves earlier output for a longer period and has finer control over the parts of the memory 
for being passed onward or forgotten. LSTM’s hidden layers are consisted of gated cells, which control 
whether the portion of the output gets passed through or discarded.  

3. Materials 

3.1. Constructing Dataset 

The database used to train this system is a collection of posts on the Chinese social media platform 
Weibo, with each post labelled an index number in the front. That is to say, the initial data is in the format 
“label, review”. 

The Python package jieba, which provides text segmentation functions for Chinese words, is used 
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here. Using the jieba.lcut() function, text data is segmented from sentences into words separated by a 
single space. Then, confounding characters are cleansed off by filtering the text according to a list of 
stop-words. To make the process of calling both the text and label separately more convenient, the data 
is reformatted as “label \t review” and written into a new txt file ready to be retrieved.  

The pre-processed text and label are inputted as parameters respectively into the TF-IDF function. 
Prior to calculating the TF-IDF, the text and label data are together separated using train_test_split (text, 
label, test_size=0.02, random_state = 101), calling the train_test_split() function imported from sklearn. 
model_selection. The purpose of this is to allow the test and train data to be retrieved separately for later 
uses, and for training purposes the random_state parameter needs to be defined to keep the data from 
changing every time train_test_split() is called. CountVectorizer ().fit_transform () imported from 
sklearn_feature_ extraction.text converts the text into matrices. Then, using the TfidfTransformer 
(use_idf=True).fit_transform () function from the same package, the transformer is fit using the matrix-
form train and test data. The transformed X returned is then returned from the TF-IDF function, which 
is later retrieved in the main function as train and test data for algorithms including Random Forest, 
Decision Tree, Extra Trees, Logistic Regression, Multinomial Naïve Bayes and Gaussian Naïve Bayes. 

Data preprocessing for CNN and LSTM, on the other hand, requires another step. The data needs to 
be converted to One Hot encoding for the algorithm to process it properly. One Hot encoding is the 
process of converting categorical data variables so they can be provided to machine learning algorithms 
for an improved accuracy in predictions. For training the model, the number labels in the pre-processed 
dataset are also converted into One Hot encoding for better predictions. This is achieved by importing 
OneHotEncoding from sklearn. preprocessing and calling the function OneHotEncoder (sparse=False). 
fit_transform(y). 

3.2. Machine Learning Algorithms 

3.2.1. Random Forest Classifier 

One of the machine learning algorithms applied is the Random Forest Classifier. Upon 
implementation, the algorithm is called via first importing RandomForestClassifier from 
sklearn.ensemble. Then the classifier is created using the RandomForestClassifier function with 
parameters n_estimators=100, max_depth=20, random_state=0. Here, the parameter n_estimators 
represents the number of trees that the classifier uses, and max_depth is the maximal depth for the trees 
to reach during calculation. Clarifying the random_state parameter ensures that the random assignment 
the algorithm generates every time the code is run stays consistently random, which is necessary for the 
results to remain stable. X and y are passed down from prior processing via TfidfTransformer 
(use_idf=True).fit_transform(X). 

After the model is trained and ready, its accuracy is tested through an attempt to predict the y value 
given the test data for X and comparing the predicted y and actual y test. 

3.2.2. Decision Tree Classifier 

The Decision Tree Classifier is another machine learning algorithm used here. The package 
sklearn.tree is imported here, and the classifier is created using the function DecisionTreeClassifier(). It 
is then conveniently trained and tested, returning the predicted score. The accuracy score is calculated 
using this score and returned to the main function. 

3.2.3. Extra Trees Classifier 

The Extra Trees algorithm is imported from sklearn.ensemble and created using the function 
ExtraTreesClassifier(). Similarly, this algorithm is also trained using the processed x and y values passed 
on by the TF-IDF function and returns the accuracy score of its predictions to the main function. 

3.2.4. Logistic Regression Classifier 

The Logistic Regression Classifier with parameter random_state=0 is imported from the package 
sklearn.linear_model and trained using processed data from the TF-IDF function earlier. The predicted 
results are calculated via the predict() function, and the accuracy score of this result is returned to the 
main function. 

3.2.5. Multinomial Naïve Bayes Classifier 

The Multinomial Naïve Bayes Classifier is imported via the sklearn.naive_bayes package and trained 
using process data similarly as in other machine learning algorithms. The difference here, however, is 
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that the y values used are transformed into 1-D using y_train.argmax (axis=1). The reason for this is that 
the y parameter in MultinomialNB () is required to be a set of values instead of the matrix returned by 
the TF-IDF code’s numpy.utils.to_categorical(LabelEncoder().fit_transform() function, which takes 
place during the earlier pre-processing of the data. The output of the predicted y value, or y_pred, on the 
contrary, does not need to be converted into a matric once again upon calculating the accuracy score, 
because it is of the same type as y_test. 

3.2.6. Gaussian Naïve Bayes Classifier 

Another naïve bayes algorithm used is the Gaussian Naïve Bayes Classifier, imported from 
sklearn.naive_bayes. Similarly, this algorithm is created with the GaussianNB() function and then trained 
using the data that has been pre-processed in the TF-IDF function. Here, the x values need to be converted 
into arrays using toarray() because of the input requirements of the Gaussian Naïve Bayes Classifier. 
Similar to that of the Multinomial Naïve Bayes Classi-fier, the y values used for training also need to be 
transformed into 1-D with y_train.argmax (axis=1). The accuracy score of the algorithm, 
sklearn.metrics.accuracy_score(), is then returned to the main function. 

3.2.7. Deep Learning Models 

The two deep learning models used are LSTM and CNN. The package imported are, respectively, 
lstm and cnn. Prior to training the models, the data that is cut earlier is processed again using a different 
approach compared with that of machine learning algorithms. The text is first input into the function 
pd.get_dummies(), during which it forms a data frame of indicator variables from string input. Then the 
data frames are processed by the Tokenizer function imported from 
tensorflow.python.keras.preprocessing.text and are made into sequences according to TF-IDF before 
they are pad as well, which is filling up the blank spaces to make all sequences equal in length. This 
process enables the model to take in the data and train itself. 

 
Figure 2: The structure of CNN. 
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Figure 3: The structure of LSTM. 

The structure of the two models are shown below. The sequence of layers is optimized after multiple 
trials to reach the highest test accuracy. 

4. Result Analysis 

The accuracy score ranking of the 6 machine learning algorithms are shown here. Extra Trees seems 
to have the highest accuracy with Random Forest and Logistic Regression closely behind, while Gaussian 
Bayes has the lowest score. 

One of the possible reason for Extra Trees to outperform the other algorithms is that Extra Trees has 
a decent resistance against overfitting. As its name suggests, Extra Trees is consisted of multiple decision 
trees, and the number of independent trees reduce the significance of overfitting in each one and 
balancing the forest as a whole. Its advantage is due to its characteristic of dropping out random features 
and its bagging method as well, which further keeps the model from overfitting and ensures accuracy. 

 
Figure 4: The comparison of machine learning. 
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This characteristic of Extra Trees is even more randomized compared to that of Random Forest and 
thus reduces variance, a possible reason to why Extra Trees outrun Random Forest in their accuracy. 

Logistic Regression falls closely behind Random Forest by a small difference in their accuracy scores. 
A potential cause for this would be that Logistic Regression classification is specialized to perform 
effectively when the data is linearly separable, or when there exists a variable that can act as the threshold 
between the two outcomes. For this dataset, however, it is unlikely for a single variable that manipulates 
the conclusion of the classification, since the emotion in a sentence usually depends on the entire sentence 
conclusively. The lack of a singular decisive variable might be why Logistic Regression fail to operate 
effectively in this case. 

Gaussian Bayes has a poor performance on this dataset possibly because of the mismatch between 
the distribution of the given data and the desired input for the algorithm. Gaussian Bayes assumes 
Gaussian distributed input data, and performs its predictions based on this assumption. The dataset in 
this case, however, is matrices of numbers that represent sentences. It would be unlikely for this data to 
be distributed the way this algorithm desires.  

Contrary to Gaussian Bayes, Multinomial Bayes has a significantly higher score, though not among 
the highest scores in all algorithms. One possible reason for this would be that Gaussian Bayes demands 
continuous data, whereas Multinomial Bayes does not; in this case, the input data given is discrete. Thus, 
Gaussian Bayes’ requirement for continuity and distribution of input data might be the major factor to 
its accuracy score. 

The deep learning algorithm evaluated are also compared. Though theoretically deep learning 
algorithms are to outperform prior ones, this turns out to not be the case. This might be due to the 
computational abilities of the hardware used, or the lack of artificial optimization to the layers of deep 
learning algorithms. The resulting accuracy scores for the testing dataset, sequentially 0.825 and 0.8625 
for CNN and LSTM, seemingly point out that CNN is slightly less effective than LSTM here. The reason 
for this difference is likely to lie in the structural difference between CNN and LSTM, in that LSTM has 
structures that function to recall data from earlier layers in the current layer whereas CNN does not. In 
other words, LSTM perform better at connecting words within a sentence sequentially.  

 
Figure 5: The accuracy of CNN. 
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Figure 6: The accuracy of LSTM. 

It is important to note that, during the data processing stage, stop words are removed from the input, 
yet the removal was restrained to be a rather small one. The reason for this is that, given the Chinese 
language has the characteristic lack of inflections in singular characters, the context of sentences are 
more dependent on the so-called stop words. Despite in other languages such words would be removed, 
in Chinese they affect the meaning of the sentence. Thus here, LSTM has the advantage of utilizing the 
relationships between words to evaluate the sentimental meaning. It is doubted, however, if LSTM will 
still outrun CNN in similar tasks with other languages.  

Additionally, though LSTM has a higher test accuracy than CNN, it takes much longer for LSTM to 
be trained compared to that of CNN. We would suggest the efficiency and accuracy of the algorithms to 
be again pondered carefully upon application. 

5. Conclusion 

Overall, out of all algorithms, Extra Trees manages to perform the best, with Random Forest being a 
close runner-up. The characteristic decision tree structure might have allowed these two similar 
algorithms to perform well in this task, and the reason why they outrun their fellow Decision Tree is 
likely due to their ability to reduce overfitting via a touch of randomization and dropouts. Gaussian Bayes 
turns out to perform poorly, probably due to the contradicting desired input for the algorithm and the 
given datasets. 

The machine learning algorithms are evaluated independent from the deep learning algorithms due 
to the latter’s on hardware efficiency. Among the two, LSTM seems to perform better, likely due to its 
ability to grasp the connection between words sequentially. 
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