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Abstract: This study aims to determine if integrating machine learning (ML) approaches with power 
analysis for correlated covariates enhances predictive performance in modeling. Two drugs were 
selected to apply population pharmacokinetics methodology. Parameter-covariate relationships were 
estimated using stepwise covariate modeling (SCM). Power analysis identified correlated true 
covariates for each parameter chosen by SCM. If correlated true covariates were identified, ML 
methods further selected the most significant covariate. The calibrated model utilizing this significant 
covariate was compared to the SCM model, evaluating performance using relative error. Non-
compartment analysis (NCA) calculated individual reference AUC, enabling comparison of AUCs from 
calibrated and SCM models with the reference AUC to assess predictive performance. Results showed 
that calibrated models outperformed SCM models, with R² values exceeding 80%. Overall, the 
calibrated models predicted AUC more accurately than the SCM models. Power analysis helped 
eliminate false covariates among correlated ones, while ML methods provided criteria for selecting 
covariates from the identified true covariates. Thus, combining these methods can enhance population 
pharmacokinetic model predictions. 
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1. Introduction 

Model Informed Drug Discovery and Development (MID3) aims to enhance the quality, efficiency, 

and cost-effectiveness of decision-making through a predictive and extrapolative quantitative 

framework[1]. Within this context, the population pharmacokinetic model is pivotal in the research and 

development of new drugs[2]. Identifying parameter-covariate relationships is crucial for elucidating 

inter-individual variability, thereby improving the predictive performance of the population 

pharmacokinetic model[3]. To date, potential covariates have primarily been identified using a stepwise 

forward-addition and backward-deletion strategy, which relies on pre-specified P-values as criteria for 

inclusion and exclusion. However, a significant limitation of this approach is the selection bias inherent 

in choosing covariates, which may overstate the importance of the selected variables, particularly in 

cases of high correlation among covariates[4]. Consequently, addressing the issue of correlated 

covariates has emerged as a pressing challenge that necessitates resolution. 

In certain instances, a spurious but strongly correlated covariate may substitute for the true 

covariate, thereby increasing the risk of a type II error (failing to select a true covariate)[5]. While 

stringent criteria (p<0.05 or p<0.01) are implemented to mitigate type I error, a fundamental drawback 

of the stepwise covariate modeling (SCM) method is its inability to effectively reduce type II error in 

statistical analyses. Therefore, it is essential to employ effective methodologies to reduce type II error 

in the covariate model. Power analysis of covariates provides robust algorithms for this purpose. The 

parametric power estimation (PPE) algorithm uses Monte Carlo simulation principles to compute the 

unknown non-centrality parameter from a limited dataset[6]. Meanwhile, the Fisher information matrix-

based power calculation (FIM-PC) generates the power curve based on the expected information matrix 

and the Wald test[7,8]. Lastly, the Monte Carlo Mapped Power (MCMP) method offers a simulation-

based approach for power calculation using the likelihood ratio test[9,10]. 

In this study, stepwise covariate modeling (SCM) was employed to estimate the relationships 
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between parameters and covariates. The SCM operates as a stepwise procedure, which is iteratively 

applied based on likelihood ratio tests to evaluate the advantages of incorporating additional 

covariates[11]. The parameter-covariate relationships of correlated covariates identified through the 

SCM method were further examined through power analysis. This power analysis of correlated 

covariates was conducted using Monolix and Python software, following the principles of the MCMP 

method. 

The power analysis of covariates offers the advantage of mitigating the inclusion of spurious 

covariates arising from correlated covariates[5]. However, it is important to note that the analysis cannot 

address correlated true covariates. Tang et al. reported that machine learning (ML) models are capable 

of assessing significant covariates[12]. Consequently, the ML approach can provide a comprehensive 

array of algorithms for estimating the impact of covariates on parameters. 

ML is increasingly used in the medical field for regression and classification tasks[13]. Multi-

classification challenges, for example, are becoming more common in disease diagnosis, high-

throughput virtual screening for drug discovery[14], and identifying targeted biomarkers for specific 

diseases[15]. An artificial neural network model outperforms the population pharmacokinetic model 

developed via structural equation modeling (SCM) in predictive performance[16]. ML can bridge the 

gap between big data and pharmacometrics, enabling the development of models for parameter 

estimation and analysis of correlated true covariates[17]. 

In this study, we employed the ML method to construct our model. Traditional feature importance 

metrics indicate the significance of covariates but only highlight important ones. In contrast, the SHAP 

(Shapley Additive explanation) method clearly shows how each feature affects the ML model's output 

and is recognized as the most consistent approach for feature attribution[18]. Additionally, permutation 

importance assesses feature significance by permuting the response vector multiple times to evaluate 

the relevance of all features[19]. 

Research on power analysis of correlated covariates has shown it can effectively exclude false 

covariates. However, a key challenge is selecting the right covariate from correlated true covariates. 

ML analysis offers an advantage by identifying the most relevant true covariate among these. Therefore, 

this study aims to investigate whether combining power analysis with ML analysis can enhance the 

predictive performance of the population pharmacokinetic model. 

2. Methods 

The study was conducted in four distinct phases: the initial screening of covariates utilizing the 

SCM method, conducting a power analysis for correlated covariates, performing an ML analysis of 

correlated true covariates, and a comparative assessment of predictive performance. Key information 

pertaining to each phase has been encapsulated in Figure 1. 

 

Fig. 1 The different steps of this study for both two drugs. PK pharmacokinetics, AUC area under the 
plasma concentration-time curve, NCA non-compartment analysis. 
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2.1 Data 

Pharmacokinetic data were sourced from Open-TCI and categorized into two distinct datasets: one 

for propofol and another for remifentanil. These pharmacokinetic data have already been utilized in 

pharmacokinetic studies[20-22]. For remifentanil, ideal body weight (IBW) was calculated by 2.396 ×
exp(0.01863 × HT) in children[23], and by 45.4 + 0.89 × (HT[cm] − 152.4) + 4.5(if male)  in 

adult[24], for which HT was height of subject.  Adjusted body weight (ABW) was calculated by 

IBW + 0.4 ∗ (TBW − IBW), for which TBW was total body weight[24]. For propofol, the IBW, ABW, 

and TBW were calculated as propofol, and they were also calculated by 2.396 × exp(0.01863 × HT) 

if the HT was less than 152.4. The propofol data from Schnider et al on Open-TCI had 24 subjects, 

each were measured on two occasions. Therefore, the analysis did treat the separate occasions as new 

subjects, and only the infusion data were collected. Subject characteristics and previous studies using 

these data were presented in Supplementary Material. 

2.2 Population Pharmacokinetic Analysis 

For propofol, the dataset integrated multiple study data, so the sampling methods (artery or vein) 

and physical condition (healthy or patients) were analyzed as binary covariate. For remifentanil, the 

physical condition ((healthy or patients) were also analyzed as binary covariate. Covariate analysis 

followed a standard forward and backward selection process. The categorical covariates were evaluated 

by θ
i

= θ
 
× ecati

 
, and the continuous covariates were evaluated by θ

i
= θ

 
× econi, where the θ

i
 

represents the individual parameter value, θ represents the typical individual parameter value, and the 

covariate WT was converted by WT/70. In this study, during the forward-addition process, only 

covariates that demonstrated significant changes in the objective function value (OFV) were retained, 

adhering to a predefined significance threshold of p<0.05. Correspondingly, in the backward-addition 

phase, only covariates that resulted in significant changes in the OFV were retained, with a predefined 

significance level of p<0.01. These criteria were established within the SCM methodology for the 

purpose of covariate screening. 

2.2.1 True covariates selecting 

Several covariates associated with the same parameter, as identified through the SCM method, 

exhibited a high degree of correlation. Consequently, power analysis was employed to evaluate these 

correlated covariates for each parameter, with the aim of selecting those covariates that demonstrated 

significant power values. The power analysis utilized a substantial simulation dataset generated via 

Simulx software, based on a predefined model and effect size. A total of 1,000 individuals were 

simulated for this study. 

The principle of the MCMP approach involved substituting the overall OFV with the summation of 

individual objective function values (iOFV). By employing both a comprehensive model (incorporating 

one covariate) and a reduced model (excluding the covariate), a substantial pool of iOFVfull and 

iOFVReduced values could be derived from the extensive simulation dataset. The summation of the 

differences between iOFVfull and iOFVReduced (∑ΔiOFV) for each individual was utilized in lieu of 

the overall ΔOFV for statistical inference in the likelihood ratio test (LRT). To delineate the 

relationship between power and sample size comprehensively, we randomly sampled the ΔiOFV 1,000 

times, subsequently calculating the sum of ΔiOFV for comparison against the critical χ2 OFV for each 

sample size. 

In this study, considering that the covariates included first could affect the inclusion of later 

covariates, the iOFVfull was calculated by a full model, which included only one covariate at a time. 

This was to explore which covariate has a more significant impact on the parameter without covariate 

influence. With the increase of the sample size, if the power value can reach more than 90%, the 

covariate would be regarded as a true covariate. On the contrary, if the power value was always at a 

very low level, the covariate would be regarded as a false covariate. 

2.2.2 Covariate selecting 

After analyzing the correlated covariates, we found that some parameters still exhibited high 

correlation. To address this, we employed machine learning techniques to select a single covariate from 

the correlated true covariates, including gradient boosting regressor (GB), decision tree regressor (DT), 

extra trees regressor (ET), ada boost regressor (AB), and random forest regressor (RF), developing ML 
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models that utilized k-fold cross-validation. 

Kamiński B reported using a directed graph G = (V, E), E ∈ V2, to construct a decision tree model, 

for which nodes V represents three disjoint sets (decision, chance, and terminal nodes). And for each 

edge e ∈ E, the first element (e1 ∈ V ) denote its parent node, the second element (e2 ∈ V ) denote its 

child node. The decision tree model uses feature to split the parent node into child nodes based on 

minimizing the mean-square error or Gini Coefficient. We used the covariate and mean-square error to 

develop decision tree regression model (Figure 2). Besides the decision tree regression model, RF was 

also considered. The RF is an ensemble learning method consisted of n decision tree. Svetnik V et al[26] 

reported given a dataset, D = {(X1, Y1), … , (Xn, Yn)} , bootstrap n sample sets, where Xi (i =
1, 2, 3, … , n) is a vector of descriptors, and Yi (i = 1, 2, 3, … , n) is the corresponding labels. For each 

bootstrap sample grow a decision tree. In regression, outputs of all trees are aggregated to produce one 

average prediction (average of the individual tree predictions) presented in Figure 2. For the AB 

algorithm, firstly, imputing the training dataset D whose samples had equal weight to obtain the weak 

learner 1. Similarly, the error rate (e1)  and learner coefficient (α
1
) were calculated to update weight 

which was used to weight the training dataset D to train the model again. Secondly, according to the 

weight calculated by the e1 and α
1
 , the weak learner 2 can be developed, and then the e2 and α

2
 

were calculated to update the weight again which was also used to weight the training dataset D to 

obtain the weak learner 3. Based on the above process, n weak learner can be developed and integrated 

into a strong learner (Figure S1). For the GB algorithm, developing the first decision tree (T1(x) ) to 

calculate residual error (r1,i), then developing the second decision tree (T2(x) ) to fit the r1,i, and 

calculate the r2,i. Commonly, the third decision tree (T3(x) ) was developed to fit the  r2,i and 

calculate the r3,i. Finally, n decision trees were developed to integrate into a strong learner (Figure S2). 

For the ET algorithm, the algorithm is similar to the RF algorithm, the difference is that the ET 

algorithm uses same training dataset D to train each decision tree and randomly split the parent node 

into child nodes. 

 

Fig. 2 Illustrating decision tree (DT) and random forest (RF). 

Permutation importance can identify significant covariates among correlated true covariates, while 

SHAP values gauge their influence on parameter predictions. This study applied permutation 

importance to assess covariate significance and calculated SHAP values to determine which covariate 

had a greater impact. The SHAP method identified a covariate with a stronger influence, which was 

then validated by permutation importance. Ultimately, the covariate with the highest importance and 

SHAP value was integrated into the model. Both SHAP value and permutation importance 

computations were conducted using the same machine learning model. 

2.2.3 Calibrated model 

Following the screening of covariates using the SCM methodology, a calibrated model was 

developed through the application of power analysis and machine learning techniques to select a 

covariate from the correlated covariates. Conversely, the SCM model was formulated by intentionally 

excluding a covariate that was disregarded in the power analysis and machine learning processes from 

the set of correlated covariates. The calibrated covariate model demonstrates not only a reduced 

likelihood of Type I error but also a diminished probability of Type II error. 
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2.3 Comparison 

In this section, we conducted a comparative analysis of the predictive performances of the SCM and 

the calibrated model, focusing on two key aspects.  

Firstly, we examined the predicted plasma drug concentrations. The dataset was partitioned into 

training and test datasets in an 80:20 ratio. The training datasets were utilized to perform power 

analysis, machine learning analysis, and to develop population pharmacokinetic models. The plasma 

concentrations predicted from the test datasets were subsequently employed to calculate the mean 

square error (MSE) and the coefficient of determination (R²), which facilitate the evaluation of model 

performance. 

Secondly, we assessed the area under the plasma concentration-time curve (AUC). For propofol and 

remifentanil, individual AUC estimates were derived from the population pharmacokinetic models, and 

non-compartmental analysis (NCA) was applied to compute the AUC for each individual, designated as 

the "reference AUC." The goodness-of-fit plots of AUCprediction and AUCreference were presented to 

distinguish the performance of these models. And these ratios of AUCprediction to AUCreference for 

each individual were presented as scatter plots to compare predictive performance. 

Finally, the impact of correlated true covariates on inter-individual Variability (IIV) was estimated 

to compare which covariate was more able to reduce the IIV. 

2.4 Software 

The Monolix software (version 2021R1) was employed to develop the population pharmacokinetic 

model. The machine learning component was implemented using Python (version 3.7) in conjunction 

with the scikit-learn library for model development. The mean squared errors (MSE) and R-squared (R²) 

values were computed using R and RStudio (version 4.1.2). 

3. Results 

3.1 Population Pharmacokinetic Analysis 

A total of 151 individuals contributed to the analysis, resulting in 3,335 sampling points for 

propofol. Additionally, 97 individuals were included for remifentanil, yielding 2,167 sample points. 

The base model utilized for covariate screening was a three-compartment model characterized by zero-

order absorption from the depot to the central compartment, combined with linear elimination from the 

central compartment for both drugs. Exponential models were used to account for IIV in the structural 

parameters of two drugs. And combined 1 (y=f+(a+bfc)ε) was selected to residual model in propofol; 

combined 2 (y=f+√a2 + b2(f c)2ε) was selected to residual model in remifentanil. 

3.1.1 Screening results of covariates 

For propofol, the covariate related to clearance of the central (CL) was covariate WT screened by 

the SCM method. The volume of the central (V1) was not included any covariate. The covariates ABW, 

BSA, and WT were related to the highly perfused compartment (Q2), the covariates ABW and BSA 

were related to the scarcely perfused compartment (Q3), and the covariate AGE was related to the 

highly perfused compartment (V2). For remifentanil, the covariates AGE and WT were related to the 

parameter CL, the covariates ABW and BSA were related to parameter V1, the covariates AGE and WT 

were related to the covariate Q2, the covariate WT was related to the parameter V2, and the covariate 

AGE was related to the covariate Q3. 

3.1.2 Correlation analysis 

In this study, Kendall's tau-b correlation coefficients were calculated between the main continuous 

covariates. Table S2 showed the correlation between the main covariates of propofol. The covariates 

BSA, ABW, and WT showed a high correlation, and the covariates ABW, BSA, and HT also showed a 

high correlation. So only one covariate should be selected for the parameters Q2 and Q3. Table S3 

showed the correlation between the main covariates of remifentanil. The covariates ABW and BSA also 

had a high correlation, so only one covariate should be selected on the parameter V1. 
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3.1.3 Power analysis of highly correlated covariates 

Figure 3 showed the power value of correlated covariates of propofol and remifentanil. Figures 3A, 

3B, and 3C showed the power value of the covariates WT, ABW, and BSA included in the model of the 

parameter Q2 was more than 90% with the increase of the sample size, so the covariates WT, BSA, and 

ABW should not be excluded. While with the increase of the sample size, the power of the covariate 

HT included in the model of the parameter Q3 was less than 20%, so the covariate HT should be 

excluded. However, the power value of the covariates ABW and BSA included in the model of the 

parameter Q3 was more than 90%, so they both should be included (Figures 3E and 3F). Similarly, with 

the increase of the sample size, the power of the covariate BSA and ABW included in the model of the 

parameter V1 was up to 90%, so the covariates BSA and ABW should be included. 

3.1.4 ML analysis of correlated true covariates 

In this section, the correlated true covariates and parameters obtained by including correlated true 

covariates were used to develop ML models. Five ML methods were used and the SHAP values and 

permutation importance were calculated based on the same model. The performance of five ML models 

was presented in Table 2. For the parameters Q2 and V1, the GB model had a better performance. 

Figure S3 showed that a covariate was selected by the SHAP method from these correlated true 

covariates. For the GB model of the parameter Q2 in propofol, the covariate ABW had a more 

significant impact on model output in original data. Therefore, the covariate ABW should be selected 

from correlated true covariates, and then be included in the pharmacokinetic model of the parameter Q2. 

Similarly, based on a more significant impact on the GB model output of the parameter Q3, the 

covariate ABW should be selected from correlated true covariates, and then be included in the 

pharmacokinetic model of the parameter Q3 in propofol. For remifentanil, the covariate BSA should be 

selected as a more significant covariate to be included in the pharmacokinetic model of the parameter 

V1. Similarly, the DT, ET, and RF models showed the same result of selecting the more significant 

covariate presented in Supplementary Material. However, the SHAP values can’t be obtained by the AB 

model in this study.  

The permutation importance was applied to verify the selected results of the SHAP method, and the 

result were presented in Supplementary Material. The selected results of the correlated true covariates 

gained by the permutation importance method were similar to the SHAP method for all machine 

learning models. 

3.1.5 Final model 

Based on the power analysis and ML analysis, for the calibrated model, the included finally 

covariates were: WT on CL, ABW on Q2, AGE on V2, ABW on Q3 of propofol; AGE and WT on CL, 

BSA on V1, AGE and WT on Q2, WT on V2, AGE on Q3 of remifentanil. 

To prove the performance of the calibrated model, the covariates excluded by the ML analysis from 

correlated true covariates were used to develop the SCM models. Therefore, the finally included 

covariates of propofol were: WT on CL, BSA on Q2, AGE on V2, BSA on Q3 (SCM model1); WT on 

CL, WT on Q2, AGE on V2, BSA on Q3 (SCM model 2). Similarly, the finally included covariates of 

remifentanil were: AGE and WT on CL, ABW on V1, AGE and WT on Q2, WT on V2, AGE on Q3 

(SCM model) 

Following the power and ML analysis, the parameters of the calibrated models were evaluated. The 

parameters of the SCM models were also assessed, as detailed in the same table. Goodness of fit plots 

and residual scatter plots for the final models of both drugs are included in the Supplementary Material. 

These plots demonstrate that all final models align well with the observed data, showing no systematic 

bias. Furthermore, residual scatter plots confirm the absence of systematic bias in the training datasets. 

The supplementary material similarly presents these plots for the test datasets. Compared to the 

calibrated remifentanil model, the SCM model shows a more pronounced deviation in the goodness of 

fit plots for the test dataset. 

3.2 Comparison of Predictive Performance 

3.2.1 Predictive Plasma Drug Concentration 

The performance of the various models was rigorously evaluated, with the results summarized in 

Table 3. In the training datasets, the calibrated model for propofol demonstrated superior performance 

compared to SCM model 1 and SCM model 2. The R² values derived from population predictions and 
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observations for these models exceeded 80%. Similarly, the calibrated models for remifentanil also 

outperformed the SCM model, with R² values surpassing 90%. In the test datasets, both for propofol 

and remifentanil, the Mean Squared Error (MSE) and R² values indicated that the calibrated models 

exhibited enhanced predictive performance relative to the SCM model. 

3.2.2 Predictive AUC 

All final models were employed to predict the Area Under the Curve (AUC) for each individual, 

with the goodness-of-fit results for both drugs illustrated as scatter plots in Figure 4. For propofol, the 

calibrated model achieved reliable predictions of individual AUC. Likewise, for remifentanil, the 

calibrated models also yielded accurate predictions of individual AUC.  

The AUCprediction/AUCreference was calculated and the results were presented in figure S9. 

Figure S9A showed that most of the AUCprediction/AUCreference of three propofol models were 

between 0.8 and 1.2. Figure S9B also showed that most of the AUCprediction/AUCreference of two 

remifentanil models were between 0.8 and 1.2, but the bias of the SCM model was larger. 

3.3 The influence of highly correlated covariates on inter-individual Variability 

Compared with the SCM model 1 and model 2, the calibrated model had lower IIV for the 

parameter Q2 and the same IIV for the parameter Q3 of remifentanil, which means that the covariate 

ABW on the parameters Q2 and Q3 were beneficial to explaining IIV. 

To better understand which covariate of correlated true covariates can better explain IIV, the 

covariate was changed on the parameters Q2 or Q3 based on the calibrated model. The result was 

presented in Supplementary Material. For propofol, inclusion of the covariate ABW can decrease the 

IIV in Q2 by about 13.16%. This was a better covariate than BSA and WT, which were 10.53% and 

13.16%, respectively. Inclusion of the covariates BSA and ABW can decrease the IIV in Q3 by about 

7.55% and 7.55%, respectively. Therefore, inclusion of the covariate BSA was better than ABW. For 

remifentanil, inclusion of the covariate BSA and ABW can decrease the IIV in V1 by about 73.4% and 

68.5%, so the BSA was a better covariate than ABW. 

4. Discussion  

To enhance the development of a robust population pharmacokinetic model, it is essential to 

conduct a power analysis of correlated covariates. This analysis aims to identify true correlated 

covariates while minimizing the risk of including spurious covariates. In the present study, several 

covariates associated with the same parameter, as identified through the SCM method, exhibited high 

correlation, necessitating confirmation regarding the inclusion of any false covariates. Consequently, a 

power analysis was imperative for the selection of true covariates. The MCMP method was employed 

in this study to facilitate the power analysis of covariates. Notably, the computational time required by 

the MCMP method to yield relevant power information was less than 1% of that required by the SSE 

method, while also providing a precise prediction of the relationship between power and sample size[10]. 

In contrast, the power calculation based on the Fisher information matrix (FIM-PC) involved a more 

intricate process than that of the MCMP method [10, 27]. 

For propofol, the covariates ABW, BSA, and HT on the parameter Q3 were selected by the SCM 

method. However, the power analysis showed that less than 20% power value was maintained of the 

covariate HT, as the sample size increased. This means that the covariate HT had a low power value to 

be included in the pharmacokinetic model without the influence of other covariates. Therefore, the 

covariate HT should be viewed as a false covariate. The covariates ABW, WT, and BSA have been 

identified as significant covariates for the parameter Q2 through the SCM method. Power analysis 

supports their classification as true covariates. In the case of remifentanil, the covariates ABW and BSA 

for the parameter V1 should also be considered true covariates, as the power exceeded 90% with an 

increasing sample size. 

To determine a more effective covariate, it is essential to analyze the correlated true covariates 

pertaining to the same parameter. The ML method offers a robust criterion for covariate selection. The 

ML models employed for vancomycin, latamoxef, cefepime, azlocillin, ceftazidime, and amoxicillin 

have demonstrated substantial predictive accuracy in forecasting individual clearance[12]. Additionally, 

the application of artificial neural network analysis for predicting the plasma drug concentration of 

remifentanil has yielded high predictive performance[16]. 
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Regarding propofol, the covariates WT, BSA, and ABW concerning the parameter Q2 were 

identified as true covariates. However, both SHAP and permutation importance methods consistently 

indicated that the covariate ABW is more critical and exerts a more significant influence on the 

prediction of parameter Q2 across all ML models. Similarly, the covariate ABW had a more significant 

impact and importance on the parameter Q3 than the covariate BSA. For remifentanil, the covariates 

ABW and BSA on the parameter V1 were viewed as true covariates, and the covariate BSA was viewed 

as more important based on the SHAP and permutation importance methods. 

For propofol, the Schnider model[22] was used to calculate the range of parameters according to the 

range of covariates, which was within the range of 2.5%-97.5% of predicted parameters obtained by the 

calibrated model. Similarly, for remifentanil, the Minto model[28] was also used to calculate the range of 

parameters, which was also within the range of 2.5%-97.5% of predicted parameters obtained by the 

calibrated model. Therefore, the calibrated models had no distortion. 

According to MSE and R2, the calibrated models had a better prediction performance than the SCM 

models. Similarly, the goodness-of-fit results of AUCprediction and AUCreference showed that the 

calibrated models had a better performance than the SCM models. And these 

AUCprediction/AUCreference were in the range of 0.8-1.25 for all models, but for remifentanil, 

several AUCprediction/AUCreference of the SCM model were mor than 1.6 or less than 0.7.  

The ML method used to analyze correlated covariates had a drawback in that the significant 

covariate selected by the SHAP value or permutation importance may be not of clinical interest. 

However, the drawback may be offset by using the power analysis to exclude false covariate or 

excluding clinically unrelated covariate in advance. 

In conclusion, the calibrated models had a better predictive performance than the SCM models. 

Similarly, the analysis of IIV also showed that the covariate selected to include in the pharmacokinetic 

model by all the ML models had more ability to decrease IIV. Therefore, combining the power analysis 

and ML method to analyze correlated covariates was beneficial to improving predictive performance. 
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