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Abstract: For each quasi-homogeneous polynomial planar rigid system with weight (2,1), we prove 
that the origin is a center equilibrium when the degree is odd, and we obtain necessary and sufficient 
condition for the origin to be a center when the degree is even. 
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1. Introduction 

A planar differential system is called a rigid system ([4, 7, 10]) if its angular speed is constant. It is 
proved in [11] that each planar polynomial rigid system can be transformed by a non-degenerate linear 
transformation together with a time rescaling into the following form 

�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= −𝑦𝑦 + 𝑥𝑥𝑥𝑥(𝑥𝑥,𝑦𝑦),

𝑑𝑑𝑑𝑑
𝑑𝑑𝑡𝑡

= 𝑥𝑥 + 𝑦𝑦𝑦𝑦(𝑥𝑥,𝑦𝑦),
(1) 

Where 𝐹𝐹(𝑥𝑥,𝑦𝑦) is a polynomial and 𝐹𝐹(0,0) = 0. In the polar coordinates 𝑥𝑥 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑦𝑦 =
𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, system (1) becomes 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑟𝑟(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟),
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 1. 

It follows that the origin is the only equilibrium of system (1) and if it is a center then it is a 
uniformly isochronous center [11], i.e., the center-focus problem of system (1) is equivalent to the 
isochronicity problem. 

So far, the center-focus problem of system (1) has attracted the attention of many authors. In [11], 
the author considered the case 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐻𝐻𝑝𝑝(𝑥𝑥,𝑦𝑦), a homogeneous polynomial of degree p ≥ 0, and 
proved that the origin is always a center when p is odd and the origin is a center if and only if the 
system is time reversible when p is even. It is proved in [5] that the origin is a center of system (1) 
with 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐻𝐻1(𝑥𝑥,𝑦𝑦) + 𝐻𝐻2(𝑥𝑥,𝑦𝑦) if and only if the system is time reversible. The same results are 
also obtained in [2, 3] for system (1) with  𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐻𝐻1(𝑥𝑥,𝑦𝑦) + 𝐻𝐻𝑝𝑝(𝑥𝑥,𝑦𝑦) , 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐻𝐻2(𝑥𝑥,𝑦𝑦) +
𝐻𝐻2𝑝𝑝(𝑥𝑥,𝑦𝑦)  and  𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐻𝐻1(𝑥𝑥,𝑦𝑦) + 𝐻𝐻2(𝑥𝑥,𝑦𝑦) + 𝐻𝐻3(𝑥𝑥,𝑦𝑦) + 𝐻𝐻4(𝑥𝑥,𝑦𝑦) . Authors in [1, 4, 6, 9] 
investigated center-focus problem of system (1) in the case  𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐻𝐻0(𝑥𝑥,𝑦𝑦) + 𝐻𝐻𝑝𝑝(𝑥𝑥,𝑦𝑦) + 𝐻𝐻𝑞𝑞(𝑥𝑥,𝑦𝑦). 
In particular, authors in [8] obtained the center conditions in the case  𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝐻𝐻𝑝𝑝(𝑥𝑥,𝑦𝑦) + 𝐻𝐻2𝑝𝑝(𝑥𝑥,𝑦𝑦) 
for 𝑝𝑝 = 2, 3, 4 and 5. Moreover, a separable polynomial case, i.e., 𝐹𝐹(𝑥𝑥,𝑦𝑦) = 𝑓𝑓(𝑥𝑥)𝑔𝑔(𝑦𝑦) for some 
polynomials 𝑓𝑓(𝑥𝑥) and 𝑔𝑔(𝑦𝑦), is considered in [7]. 

A polynomial 𝑃𝑃(𝑥𝑥,𝑦𝑦) is referred to as a quasi-homogeneous polynomial of degree 𝑛𝑛 with weight 
(𝑠𝑠1, 𝑠𝑠2) if 𝑠𝑠1 and 𝑠𝑠2 are positive coprime integers and P(𝜆𝜆𝑠𝑠1𝑥𝑥, 𝜆𝜆𝑠𝑠2𝑦𝑦) = 𝜆𝜆𝑛𝑛𝑃𝑃(𝑥𝑥,𝑦𝑦). We call system (1) 
a quasi-homogeneous polynomial planar rigid system of degree 𝑛𝑛  with weight (𝑠𝑠1, 𝑠𝑠2)  if the 
polynomial 𝐹𝐹(𝑥𝑥,𝑦𝑦)  given in (1) is a quasi-homogeneous polynomial of degree 𝑛𝑛  with weight 
(𝑠𝑠1, 𝑠𝑠2) . Many authors considered the center-focus problem of quasi-homogeneous polynomial 
differential equations, see [12, 13] for example. However, as far as we known, there are no results 
concerning about the center-focus problem of quasi-homogeneous polynomial rigid system (1). 

In this paper, we consider a quasi-homogeneous polynomial planar rigid system of degree 𝑛𝑛(≥
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1) with weight (2, 1), i.e. the following system 

�

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑋𝑋(𝑥𝑥,𝑦𝑦) ≔ −𝑦𝑦 + 𝑥𝑥𝑄𝑄𝑛𝑛(𝑥𝑥,𝑦𝑦),

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑌𝑌(𝑥𝑥,𝑦𝑦) ≔ 𝑥𝑥 + 𝑦𝑦𝑄𝑄𝑛𝑛(𝑥𝑥,𝑦𝑦),
(2) 

where 

𝑄𝑄𝑛𝑛(𝑥𝑥,𝑦𝑦) ≔ � 𝛼𝛼
𝑖𝑖+𝑗𝑗+1−�𝑛𝑛+12 �

2𝑖𝑖+𝑗𝑗=𝑛𝑛

𝑥𝑥𝑖𝑖𝑦𝑦𝑗𝑗 

and �𝑛𝑛+1
2
� denotes the largest integer being ≤ 𝑛𝑛+1

2
. 

2. Main results 

We discuss the parity of degrees of quasi-homogeneous polynomials with weights (2, 1) separately. 
First consider the case of odd order, and mainly use the principle of symmetry to give the result of its 
center-focus distinction. 

Theorem 1. Equilibrium O: (0,0) of system (2) with odd 𝑛𝑛 is a center. 

Proof. Since 𝑛𝑛 is odd, we assume that 𝑛𝑛 = 2𝑘𝑘 + 1 for an integer k ≥ 0. Then 𝑄𝑄𝑛𝑛(𝑥𝑥,𝑦𝑦) given in 
(2) becomes 

𝑄𝑄2𝑘𝑘+1(𝑥𝑥,𝑦𝑦) = 𝛼𝛼1𝑥𝑥𝑘𝑘𝑦𝑦 + 𝛼𝛼2𝑥𝑥𝑘𝑘−1𝑦𝑦3 + ⋯+ 𝛼𝛼𝑘𝑘𝑥𝑥𝑦𝑦2𝑘𝑘−1 + 𝛼𝛼𝑘𝑘+1𝑦𝑦2𝑘𝑘+1, (3) 

an odd function in 𝑦𝑦. It follows from (2) that X(𝑥𝑥,𝑦𝑦) = −𝑋𝑋(𝑥𝑥,−𝑦𝑦) and Y(𝑥𝑥,𝑦𝑦) = 𝑌𝑌(𝑥𝑥,−𝑦𝑦), i.e., 
the vector field generated by system (2) is symmetric about the 𝑥𝑥-axis. By the symmetry principle 
given in [14], the equilibrium 𝑂𝑂 of system (2) is a center. This completes the proof. 

Theorem 2. Equilibrium 𝑂𝑂: (0,0) of system (2) with even 𝑛𝑛 = 2𝑘𝑘 has the following properties: In 
the case that 𝑘𝑘 is odd, 

(ia) if 𝛼𝛼2 = 𝛼𝛼4 = ⋯ = 𝛼𝛼2(𝑠𝑠−1) = 0 and 𝛼𝛼2𝑠𝑠 < 0 (resp. > 0), then the equilibrium 𝑂𝑂 is a stable 
(resp. unstable) weak focus of order 𝑘𝑘−1

2
+ 𝑠𝑠, where s = 1,2, … , 𝑘𝑘+1

2
; 

(ib) if 𝛼𝛼2 = 𝛼𝛼4 = ⋯ = 𝛼𝛼𝑘𝑘+1 = 0, then the equilibrium 𝑂𝑂 is a center, 

and in the case that 𝑘𝑘 is even, 

(iia) if 𝛼𝛼1 = 𝛼𝛼3 = ⋯ = 𝛼𝛼2𝑠𝑠−1 = 0 and 𝛼𝛼2𝑠𝑠+1 < 0 (resp. > 0), then the equilibrium 𝑂𝑂 is a stable 
(resp. unstable) weak focus of order 𝑘𝑘

2
+ 𝑠𝑠, where s = 0,1, … , 𝑘𝑘

2
; 

(iib) if 𝛼𝛼1 = 𝛼𝛼3 = ⋯ = 𝛼𝛼𝑘𝑘+1 = 0, then the equilibrium 𝑂𝑂 is a center. 

Proof. When 𝑛𝑛 = 2𝑘𝑘, the polynomial 𝑄𝑄𝑛𝑛(𝑥𝑥,𝑦𝑦) given in (2) becomes 

𝑄𝑄2𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝛼𝛼1𝑥𝑥𝑘𝑘 + 𝛼𝛼2𝑥𝑥𝑘𝑘−1𝑦𝑦2 + ⋯+ 𝛼𝛼𝑘𝑘𝑥𝑥𝑦𝑦2𝑘𝑘−2 + 𝛼𝛼𝑘𝑘+1𝑦𝑦2𝑘𝑘. (4) 

Under polar coordinates 𝑥𝑥 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 and 𝑦𝑦 = 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, we can rewrite system (2) as 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝑟𝑟𝑄𝑄2𝑘𝑘(𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, 𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟) = �𝛼𝛼𝑖𝑖𝑟𝑟𝑘𝑘+𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘+1−𝑖𝑖𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠2𝑖𝑖−2𝜃𝜃
𝑘𝑘+1

𝑖𝑖=1

. (5) 

Let 𝑟𝑟(𝜃𝜃, 𝑐𝑐) be the solution of system (5) satisfying that 𝑟𝑟(0, 𝑐𝑐) = 𝑐𝑐. By the analytical dependence 
on initial conditions of solutions, 𝑟𝑟(𝜃𝜃, 𝑐𝑐) can be expanded as 

r(θ, c) = r1(θ)c + r2(θ)c2 + r3(θ)c3 + ⋯ . (6) 

We see from the condition 𝑟𝑟(0, 𝑐𝑐) = 𝑐𝑐 that 𝑟𝑟1(0) = 1 and 𝑟𝑟ℓ(0) = 0 for all ℓ ≥ 2. Substituting 
the power series (6) into equation (5), we obtain 
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𝑑𝑑
𝑑𝑑𝑑𝑑

��𝑟𝑟𝑗𝑗

∞

𝑗𝑗=1

(𝜃𝜃)𝑐𝑐𝑗𝑗� = �𝛼𝛼𝑖𝑖 ��𝑟𝑟𝑗𝑗

∞

𝑗𝑗=1

(𝜃𝜃)𝑐𝑐𝑗𝑗�

𝑘𝑘+𝑖𝑖

𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘+1−𝑖𝑖𝜃𝜃
𝑘𝑘+1

𝑖𝑖=1

𝑠𝑠𝑠𝑠𝑠𝑠2𝑖𝑖−2𝜃𝜃

= � �

⎝

⎜
⎛
𝛼𝛼𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘+1−𝑖𝑖𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠2𝑖𝑖−2𝜃𝜃 � �𝑟𝑟𝜏𝜏ℓ

𝑘𝑘+𝑖𝑖

ℓ=1𝜏𝜏1+𝜏𝜏2+⋯+𝜏𝜏𝑘𝑘+𝑖𝑖=𝑗𝑗
𝜏𝜏1,𝜏𝜏2,…,𝜏𝜏𝑘𝑘+𝑖𝑖≥1

(𝜃𝜃)

⎠

⎟
⎞

𝜎𝜎

𝑖𝑖=1

∞

𝑗𝑗=𝑘𝑘+1

𝑐𝑐𝑗𝑗 . (7)

 

Where 𝜎𝜎 ≔ 𝑚𝑚𝑚𝑚𝑚𝑚{𝑗𝑗 − 𝑘𝑘, 𝑘𝑘 + 1}. Comparing the coefficients of the same degree of 𝑐𝑐 in both sides 
of the above equation, we obtain differential equations 

𝑑𝑑𝑟𝑟1(𝜃𝜃)
𝑑𝑑𝑑𝑑

=
𝑑𝑑𝑟𝑟2(𝜃𝜃)
𝑑𝑑𝑑𝑑

= ⋯ =
𝑑𝑑𝑟𝑟𝑘𝑘(𝜃𝜃)
𝑑𝑑𝑑𝑑

= 0. (8) 

By the initial conditions given just below (6), 

𝑟𝑟1(𝜃𝜃) = 1, 𝑟𝑟2(𝜃𝜃) = 𝑟𝑟3(𝜃𝜃) = ⋯ = 𝑟𝑟𝑘𝑘(𝜃𝜃) = 0. (9) 

On the other hand, 𝑟𝑟𝑘𝑘+1(𝜃𝜃), 𝑟𝑟𝑘𝑘+2(𝜃𝜃), … . , 𝑟𝑟2𝑘𝑘(𝜃𝜃) satisfy that 

𝑑𝑑𝑟𝑟𝑘𝑘+𝑠𝑠(𝜃𝜃)
𝑑𝑑𝑑𝑑

= �𝛼𝛼𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘+1−𝑖𝑖𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠2𝑖𝑖−2𝜃𝜃 � �𝑟𝑟𝜏𝜏ℓ(𝜃𝜃),
𝑘𝑘+𝑖𝑖

ℓ=1𝜏𝜏1+𝜏𝜏2+⋯+𝜏𝜏𝑘𝑘+𝑖𝑖=𝑘𝑘+𝑠𝑠
𝜏𝜏1,𝜏𝜏2,…,𝜏𝜏𝑘𝑘+𝑖𝑖≥1

𝑠𝑠

𝑖𝑖=1

    𝑠𝑠 = 1,2,⋯ , 𝑘𝑘. 

The above equations can be simplified by (9) as 

𝑑𝑑𝑟𝑟𝑘𝑘+𝑠𝑠(𝜃𝜃)
𝑑𝑑𝑑𝑑

= 𝛼𝛼𝑠𝑠𝑐𝑐𝑐𝑐𝑐𝑐𝑘𝑘+1−𝑠𝑠𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠2𝑠𝑠−2𝜃𝜃, 𝑠𝑠 = 1,2, …𝑘𝑘. (10) 

In order to compute the focal values, we need the following two integrals 

� 𝑐𝑐𝑐𝑐𝑐𝑐2𝑝𝑝+1𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠2𝑞𝑞𝜃𝜃
2𝜋𝜋

0
𝑑𝑑𝑑𝑑 = 0, � 𝑐𝑐𝑐𝑐𝑐𝑐2𝑝𝑝𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠2𝑞𝑞𝜃𝜃

2𝜋𝜋

0
𝑑𝑑𝑑𝑑 = 2𝜋𝜋𝐼𝐼𝑝𝑝,𝑞𝑞 , 

Where 𝑝𝑝 and 𝑞𝑞 are nonnegative integers and 

𝐼𝐼𝑝𝑝,𝑞𝑞 ≔�(−1)ℓ �
𝑞𝑞
ℓ
�

𝑞𝑞

ℓ=0

(2(𝑝𝑝 + ℓ) − 1)‼
�2(𝑝𝑝 + ℓ)�‼

. 

In the case that 𝑘𝑘 is odd, we assume that 𝑘𝑘 = 2𝑚𝑚 + 1 for an integer 𝑚𝑚 ≥ 1. Solving differential 
equations (10) with the initial conditions given just below (6) and integrals given just below (10), we 
obtain that 

�
𝑟𝑟2𝑚𝑚+1+𝑠𝑠(2𝜋𝜋) = 2𝜋𝜋𝛼𝛼𝑠𝑠𝐼𝐼𝑚𝑚+1−12𝑠𝑠,𝑠𝑠−1

, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠 ∈ {1,2, … ,2𝑚𝑚 + 1},

𝑟𝑟2𝑚𝑚+1+𝑠𝑠(2𝜋𝜋) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠 ∈ {1,2, … ,2𝑚𝑚 + 1}.
(11) 

Consequently, focal values are given by 

�
𝑔𝑔2𝜌𝜌+1 = 0, 𝜌𝜌 = 1,2, … ,𝑚𝑚,
𝑔𝑔2𝜌𝜌+1 = 𝛼𝛼2(𝜌𝜌−𝑚𝑚)+2𝐼𝐼2𝑚𝑚−𝜌𝜌,2(𝜌𝜌−𝑚𝑚)+1, 𝜌𝜌 = 𝑚𝑚 + 1,𝑚𝑚 + 2, … ,2𝑚𝑚. 

Thus result (ia) holds for all s = 1,2, … . , 𝑘𝑘−1
2

. 

In order to show that result (ia) also holds for s = 𝑘𝑘+1
2

= 𝑚𝑚 + 1, we need to compute the (2𝑚𝑚 +
1)-th focal value, which leads to consider the following equation 

𝑑𝑑𝑑𝑑4𝑚𝑚+3(𝜃𝜃)
𝑑𝑑𝑑𝑑

= � 𝛼𝛼𝑖𝑖𝑐𝑐𝑐𝑐𝑐𝑐2𝑚𝑚+2−𝑖𝑖𝜃𝜃𝑠𝑠𝑠𝑠𝑠𝑠2𝑖𝑖−2𝜃𝜃 � � 𝑟𝑟𝜏𝜏ℓ

2𝑚𝑚+1+𝑖𝑖

ℓ=1𝜏𝜏1+𝜏𝜏2+⋯+𝜏𝜏2𝑚𝑚+1+𝑖𝑖=4𝑚𝑚+3
𝜏𝜏1,𝜏𝜏2,…,𝜏𝜏2𝑚𝑚+1+𝑖𝑖≥1

(𝜃𝜃)
2𝑚𝑚+2

𝑖𝑖=1

, 

obtained from (7). We can further simplify the above equation by (9) as 

𝑑𝑑𝑑𝑑4𝑚𝑚+3(𝜃𝜃)
𝑑𝑑𝑑𝑑

= (2𝑚𝑚 + 2)𝛼𝛼1𝑟𝑟2𝑚𝑚+2(𝜃𝜃)𝑐𝑐𝑐𝑐𝑐𝑐2𝑚𝑚+1𝜃𝜃 + 𝛼𝛼2𝑚𝑚+2𝑠𝑠𝑠𝑠𝑠𝑠4𝑚𝑚+2𝜃𝜃. (12) 
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Using the initial condition 𝑟𝑟4𝑚𝑚+3(0) = 0 given just below (6) and integrals given just below (12), 
we obtain the (2𝑚𝑚 + 1)-th focal value 

𝑔𝑔4𝑚𝑚+3 =
1

2𝜋𝜋
𝑟𝑟4𝑚𝑚+3(2𝜋𝜋) = 𝛼𝛼2𝑚𝑚+2

(4𝑚𝑚 + 1)‼
(4𝑚𝑚 + 2)‼

. 

Thus, result (ia) also holds in the case s = (𝑘𝑘 + 1)/2. 

Next, we turn to prove (ib). If 𝛼𝛼2 = 𝛼𝛼4 = ⋯ = 𝛼𝛼𝑘𝑘+1 = 0, then the polynomial (4) becomes 

𝑄𝑄2𝑘𝑘(𝑥𝑥,𝑦𝑦) = 𝛼𝛼1𝑥𝑥𝑘𝑘 + 𝛼𝛼3𝑥𝑥𝑘𝑘−2𝑦𝑦4 + ⋯+ 𝛼𝛼𝑘𝑘−2𝑥𝑥3𝑦𝑦2𝑘𝑘−6 + 𝛼𝛼𝑘𝑘𝑥𝑥𝑦𝑦2𝑘𝑘−2, (13) 

an odd function in 𝑥𝑥. We see from (2) that X(𝑥𝑥,𝑦𝑦) = 𝑋𝑋(−𝑥𝑥,𝑦𝑦) and Y(𝑥𝑥,𝑦𝑦) = −𝑌𝑌(−𝑥𝑥,𝑦𝑦), i.e., the 
vector field generated by system (2) is symmetric about the 𝑦𝑦-axis. By the symmetry principle given in 
[14], the equilibrium 𝑂𝑂 is a center. 

In the case that 𝑘𝑘 is even, we assume that 𝑘𝑘 = 2𝑚𝑚 for an integer 𝑚𝑚 ≥ 1. Similarly to equalities 
(11) in the above case, we have 

�
𝑟𝑟2𝑚𝑚+𝑠𝑠(2𝜋𝜋) = 0, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒 𝑠𝑠 ∈ {1,2, … ,2𝑚𝑚},
𝑟𝑟2𝑚𝑚+𝑠𝑠(2𝜋𝜋) = 2𝜋𝜋𝛼𝛼𝑠𝑠𝐼𝐼𝑚𝑚+1−𝑠𝑠2 ,𝑠𝑠−1

, 𝑓𝑓𝑓𝑓𝑓𝑓 𝑜𝑜𝑜𝑜𝑜𝑜 𝑠𝑠 ∈ {1,2, … ,2𝑚𝑚} (14) 

and therefore focal values are given by 

�
𝑔𝑔2𝜌𝜌+1 = 0, 𝜌𝜌 = 1,2, … ,𝑚𝑚 − 1,
𝑔𝑔2𝜌𝜌+1 = 𝛼𝛼2(𝜌𝜌−𝑚𝑚)+1𝐼𝐼2𝑚𝑚−𝜌𝜌,2(𝜌𝜌−𝑚𝑚), 𝜌𝜌 = 𝑚𝑚,𝑚𝑚 + 1, … ,2𝑚𝑚 − 1. (15) 

Therefore result (iia) holds for s = 0,1, … , 𝑘𝑘
2
− 1. 

In order to show that result (iia) also holds for s = 𝑘𝑘
2

= 𝑚𝑚, we need to compute the 2𝑚𝑚-th focal 
value. Similarly to (12), we consider the equation 

𝑑𝑑𝑑𝑑4𝑚𝑚+1(𝜃𝜃)
𝑑𝑑𝑑𝑑

= (2𝑚𝑚 + 1)𝛼𝛼1𝑐𝑐𝑐𝑐𝑐𝑐2𝑚𝑚𝜃𝜃𝑟𝑟2𝑚𝑚+1(𝜃𝜃) + 𝛼𝛼2𝑚𝑚+1𝑠𝑠𝑠𝑠𝑠𝑠4𝑚𝑚𝜃𝜃. 

By the assumption that 𝛼𝛼1 = 𝛼𝛼3 = ⋯ = 𝛼𝛼2𝑚𝑚−1 = 0  given in (iia) and the initial condition 
𝑟𝑟4𝑚𝑚+1(0) = 0 given just below (6), we obtain the 2𝑚𝑚-th focal value 

𝑔𝑔4𝑚𝑚+1 =
1

2𝜋𝜋
𝑟𝑟4𝑚𝑚+1(2𝜋𝜋) = 𝛼𝛼2𝑚𝑚+1

(4𝑚𝑚 − 1)‼
(4𝑚𝑚)‼

. 

Then result (iia) also holds in the case s = 𝑘𝑘
2
. 

Finally, the same as case (ib), the vector field generated by system (2) is also symmetric about the 
𝑦𝑦-axis in case (iib), i.e., 𝛼𝛼1 = 𝛼𝛼3 = ⋯ = 𝛼𝛼𝑘𝑘+1 = 0. Thus, the equilibrium 𝑂𝑂 is a center by the 
symmetry principle given in [14] and therefore this theorem is proved. 

3. Conclusion 

In this paper, each quasi-homogeneous polynomial planar rigid system with weights (2,1) is 
studied. The results show that the equilibrium is the center when the degree 𝑛𝑛  of the 
quasi-homogeneous polynomial with weights (2,1) is odd, and the sufficient and necessary condition 
that the origin is the center when the degree 𝑛𝑛 is even. 
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