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Abstract: Infrared weak small target detection is a critical component of infrared target detection and 
tracking systems, with extensive applications in maritime rescue and military surveillance. However, the 
task is challenging due to the complex backgrounds and the small size of the targets. Convolutional 
neural networks (CNNs) are proficient at capturing local details but struggle with processing global 
context. In contrast, Transformers excel at handling global information but may not perform well with 
small targets when used alone. Additionally, multiple convolutional layers can lead to the loss of target 
information. To address these challenges, this paper presents a Transformer-based multi-scale attention 
network (MATNet). The model integrates Transformer architecture with CNNs to enhance small target 
features more effectively. It also incorporates a multi-scale pyramid feature fusion module (FPFC) to 
merge features across various levels and mitigate the loss of features due to multi-layer pooling. 
Experimental results demonstrate that MATNet achieves superior performance compared to other 
methods on public datasets. 
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1. Introduction 

Infrared small target detection technology involves identifying small targets amidst cluttered infrared 
backgrounds, and is known for its robust anti-interference imaging capabilities. It has wide applications 
in early warning, maritime rescue, precision guidance, and other fields[1],[2]. Although infrared imaging 
technology has made considerable progress in recent years, the detection process still suffers from issues 
such as false alarms and low target detection accuracy due to the complex background, noise, and clutter 
interference[3]. It is evident that under the influence of these interference factors, infrared target detection 
technology remains a challenging problem[4],[5]. 

The Transformer architecture is known for its strong global feature representation abilities, but its 
performance may be limited when dealing with infrared small targets that have few features. CNNs, on 
the other hand, are highly effective at local feature representation. To leverage the strengths of both, a 
new model called MATNet is proposed. MATNet integrates CNN and Transformer capabilities and 
utilizes framework akin to that of UNet. 

The encoder in MATNet comprises one convolutional module and three ACFT modules. The decoder 
includes three FPFC modules, one skip connection-dilated convolution module, and three convolutional 
modules. Each convolutional module consists of two standard convolutional layers. 

In the ACFT module, the self-attention mechanism is redesigned by incorporating spatial attention 
and dilated convolution based on the Transformer architecture. The attention matrix is computed through 
a dual spatial attention module (DSAM) and integrated with features extracted by spatial attention and 
convolution operations. The FPFC module generates multi-scale feature representations through the 
upsampling of feature pyramids, channel attention mechanisms, and feature fusion. By integrating 
upsampled low-level information with high-level information, the detection performance for small 
targets is significantly enhanced. 

In summary, this paper has several key contributions: 1) The ACFT module, which combines 
Transformer and CNN, effectively enhances target features by integrating local and global features; 2) 
The FPFC module greatly improves the detection performance of small targets by combining upsampled 
low-level feature images with high-level feature images.; 3) Compared to SOTA methods, MATNet 
exhibits superior and more robust performance in complex backgrounds. 
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In Section 2, we present the related work. In Section 3, we illustrate the composition architecture of 
our MATNet. In Section 4, we validated the effectiveness of each module and the entire network of the 
proposed network through experiments. Finally, in Section 5, we draw the conclusion. 

2. Related work 

Currently, various techniques for detecting infrared small targets have been proposed, including early 
traditional model-based approaches such as filtering methods[6]-[10], local contrast-based methods[11]-[15], 
and low-rank-based methods[16]-[21]. However, in complex backgrounds, the detection performance for 
small targets decreases, indicating a lack of robustness. Vision-based methods are mainly suitable for 
scenarios where the target is bright and contrasts well with the background. Low-rank-based methods are 
time-consuming and prone to a high false alarm rate when dealing with infrared images of dark targets. 
The methods mentioned above rely on prior expert knowledge to extract handcrafted features and are not 
very efficient in detecting complex scenes. 

With the advancement of deep learning, numerous data-driven methods have emerged to address the 
limitations of model-driven approaches. MDvsFA uses a generative adversarial network to balance 
missed detections and false alarms[22]. ACM introduces an asymmetric context modulation fusion module 
to combine deep and shallow features[23]. ISNet utilizes Taylor finite differences and bidirectional 
attention aggregation blocks to precisely detect the shape features of infrared targets[24].However, these 
methods lack the capability to capture global information due to their inherent limitations, which might 
result in noise in infrared images being detected as targets. Additionally, because the targets in infrared 
images are small, multiple downsampling operations can easily lead to target loss, affecting the model's 
detection capability. 

Due to the ubiquitous presence of target ambiguity, merely extracting local features is insufficient. 
Therefore, some have introduced hybrid methods by incorporating Transformers into CNN structures, 
combining local and global information to achieve better results. IRSTFormer uses a hierarchical Vision 
Transformer to model long-range dependencies to suppress false alarms, but it does not sufficiently 
emphasize local details[25]. IAANet simply connects the local patch outputs of a simple CNN with the 
original Transformer, resulting in limited feature extraction, especially in blurred scenes[26]. Recently, 
RKformer applied ODE to ISTD tasks, employing the Runge-Kutta method to create coupled CNN-
Transformer blocks that enhance infrared small targets and reduce background interference[27]. However, 
the Runge-Kutta method is a linear single step method that simply concatenates the two methods, 
resulting in poor performance due to the lack of deeper fusion. 

Therefore, we propose MATNet, which integrates CNN and Transformer to enhance the interaction 
between local and global features. Additionally, the feature pyramid is used to fuse low-level and high-
level feature maps, improving the detection performance for small targets. 

3. Method 

3.1. Overall Architecture 

MATNet integrates CNN and Transformer capabilities and utilizes framework akin to that of UNet. 
The encoder in MATNet comprises one convolutional module and three ACFT modules. The decoder 
includes three FPFC modules, one skip connection-dilated convolution module, and three convolutional 
modules. Each convolutional module consists of two standard convolutional layers. 

As illustrated in Figure 1, the skip connection extended convolution module is used as a transition 
layer between the encoder and decoder, while the pointwise convolution layer at the end of the decoder 
processes the resulting image after the first few steps to produce the final result.  

 
Figure 1: Overall Structure of MATNet 
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3.2. Attention Convolution Fusion Transformer 

The Transformer possesses excellent global feature representation capabilities. However, due to the 
limited features of infrared small targets, merely having excellent global feature representation does not 
yield good results. CNN, on the other hand, tends to lose infrared small targets after multiple 
downsampling operations. Therefore, we incorporate the local feature extraction of CNN and combine it 
with Transformer, integrating local and global feature extraction. This led to the design of the ACFT 
module. As illustrated in Figure 2, this module redesigns the self-attention mechanism and consists of 
convolutional layers, dilated convolutional layers, spatial attention, and fully connected layers. The 
following section provides a detailed introduction to the ACFT module. 

 
Figure 2: ACFT module diagram 

Firstly, we introduce the Dual Spatial Attention (DSA) module, whose main function is to calculate 
the attention matrix generated by the spatial attention module. As shown in Fig 2, DSA consists of spatial 
attention, pointwise convolution layers, and fully connected layers. After inputting the features, two new 
features are obtained after passing through two spatial attention layers. These two features are then 
reshaped to obtain 𝑞𝑞 and 𝑘𝑘. Next, both 𝑞𝑞 and 𝑘𝑘 will be computed through a fully connected layer, and 
then the computed 𝑞𝑞 and 𝑘𝑘 will be subjected to matrix multiplication to obtain the attention matrix. Finally, 
perform point by point convolution and softmax processing on the calculated attention matrix to obtain 
the attention matrix we need.Through continuous optimization and learning, the Dual Spatial Attention 
(DSA) module can more effectively perceive the location of the target. 

Since the self-attention structure has been redesigned, it is necessary to calculate the value. In ACFT, 
the value is obtained through three dilated convolution layers and a spatial attention module. The dilation 
rates of the three dilated convolution layers are 2, 3, and 2, respectively. Using spatial attention can 
highlight key regions in an image to extract features from local areas, and the dilated convolution layers, 
due to their larger receptive fields, can capture more information. This compensates for the lack of 
detailed feature detection caused by the smaller receptive field of spatial attention. The combination of 
spatial attention and dilated convolution allows for the extraction of both fine-grained nearby information 
and distant information, resulting in more comprehensive feature acquisition. 

Given an input feature I∈ℝH×W×C, after processing the input feature through spatial attention and 
dilated convolution layers, two new features are obtained Isa∈ℝH×W×C and IDconv∈ℝH×W×C, After adding 
the two newly computed features, a new feature v∈ℝH×W×C is obtained. Finally, multiply the attention 
matrix attention obtained from the dual space attention module with the calculated v to obtain the final 
output Oattention∈ℝH×W×C . The specific computation process of this operation is shown in Equation (1)-
(2). 

v = DC(I) + SA(I)                                  (1) 

Oattention = v × attention                               (2) 
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Here, SA(⋅) represents spatial attention, and DC(⋅) represents dilated convolution. The feature v is 
obtained after processing through spatial attention and dilated convolution layers. After adopting the self-
attention mechanism for modeling, the model inherits the advantages of Transformer and can obtain 
global information of the target, more effectively collecting the features of infrared small targets, which 
is helpful for the detection of target features. 

Finally, the detected local information and global information are fused into features, and the fused 
result is calculated and output through a feedforward layer. By combining CNN with Transformer, the 
model can simultaneously capture local and global information, enhancing the target features and 
reducing the likelihood of target loss. 

3.3. Feature Pyramid Fusion Convolution 

After processing the input feature map through the ACFT module, the target features are enhanced 
and become more distinct. Subsequently, finer information is obtained through the skip connection-
dilated convolution. Although some fine features have been acquired, due to the tendency of infrared 
small target features to disappear, it is necessary to fuse multi-scale features. Therefore, we propose the 
FPFC module. As shown in Figure 3, the FPFC module consists of an upsampling layer, an average 
pooling layer, two fully connected layers, a ReLU activation function, a Sigmoid activation function, a 
feature fusion layer, and a standard convolutional layer.  

 
Figure 3: FPFC module diagram 

The FPFC module fully leverages the advantages of multi-scale feature fusion. It matches deep 
features with shallow features through upsampling. Channel attention is used to assign a weight to each 
channel of the feature map, and these weights are used to adjust the responses of the feature maps. This 
results in a weighted feature representation that better captures target features and improves model 
performance. Finally, the weighted features are fused to obtain a more accurate and refined feature map. 

4. Experiments 

4.1. Experimental setup 

Datasets: Our experiments utilized the publicly available IRSTD1k [24] and NUDT [31] datasets. We 
allocated 80% of the images for training and the remaining 20% for testing in each dataset. 

Evaluation Metrics: We employed standard metrics for semantic segmentation, including 
Intersection over Union (IoU), mean IoU (mIoU), and F1 score (F1), to assess our experiments. Their 
definitions are as follows: 

𝐼𝐼𝑜𝑜𝑜𝑜 = T𝑃𝑃
T𝑃𝑃+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                                   (3) 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚 = 1
𝑁𝑁
∑ 𝐼𝐼𝐼𝐼𝐼𝐼(𝑖𝑖)𝑁𝑁
𝑖𝑖                                 (4) 

𝐹𝐹1 = 2𝑇𝑇𝑇𝑇
2𝑇𝑇𝑃𝑃+𝐹𝐹𝐹𝐹+𝐹𝐹𝐹𝐹

                                   (5) 

where N represents the total number of samples, and TP, FP, and FN denote the counts of true positive, 
false positive, and false negative pixels, respectively. 

4.2. Implement details and compare results 

Implementation Details: We used the AdamW optimizer with a learning rate of 0.0001, a weight 
decay coefficient of 0.01, and a momentum setting of 0.9. The loss function used is SoftIoU. For 
hardware, we trained the model using an NVIDIA RTX 4090 GPU. We compared our method with ACM 
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[23], AGPCNet [29], DNANet [30], ABC [31], IPI [16], RIPT [19], and PSTNN [28]. 

Numerical Evaluation: Our proposed MATNet achieves the best results compared to other methods 
on both the IRSTD1k and NUDT datasets. As shown in Table 1, on the NUDT dataset, our method's IoU 
is 2.0% higher than the second-best, mIoU is 2.12% higher, and F1 score is improved by 1.03%. Some 
traditional methods perform poorly due to the complex background of the dataset, where target features 
are too similar to the background. Deep learning models that use only CNN methods can only detect 
local features, which may lead to target feature loss in deeper detections, resulting in poor performance. 
Although ABC combines Transformer and CNN, it only considers the fusion of local and global features 
without accounting for multi-scale feature fusion, leading to suboptimal performance. Our method 
integrates local and global features, uses attention to enhance these features, and performs multi-scale 
feature fusion. From the results in the Table 1, it can be seen that our proposed model can effectively 
improve performance. 

Table 1: IoU (%), mIoU (%), and F1 (×10⁻²) of different SOTA methods on the IRSTD1K and NUDT 
datasets. 

Model ISTD1k NUDT 
IoU↑ mIoU↑ F1↑ IoU↑ mIoU↑ F1↑ 

IPI 14.98 34.51 26.05 37.49 48.38 54.53 
RIPT 11.33 17.43 20.35 29.17 36.12 45.16 

PSTNN 15.93 32.71 27.48 27.72 39.80 43.41 
ACM 63.39 60.81 77.59 68.48 69.26 81.29 

AGPCNet 68.81 66.18 81.52 88.71 87.48 94.02 
DNANet 68.87 67.53 81.57 92.67 92.09 96.20 

ABC 72.02 68.81 83.73 92.85 92.45 96.29 
MATNet(our) 72.75 69.28 84.19 94.45 94.57 97.32 

4.3. Visual result analysis 

We demonstrated the visualization results of multiple methods on the NUDT dataset. It is evident 
from Fig. 4 that MATNet's visualization results are superior to those of other methods. From the first row 
of the visualizations, it is clear that MATNet demonstrates better target detection capabilities compared 
to existing algorithms. When encountering noise similar to infrared small targets, other methods show 
incorrect detections, indicating that our algorithm has better noise suppression capabilities. The second 
row indicates that, compared to existing algorithms, the proposed network is more accurate in 
segmentation shapes. After feature enhancement with the ACFT module, our method effectively 
increases the probability of detecting the target. Following the FPFC module's fusion of multi-scale 
features, it effectively prevents the loss of very small targets, resulting in more accurate overall detection 
results. 

 
Figure 4: Visualization of various methods on the NUDT dataset. Red boxes indicate correct detections, 

yellow boxes denote incorrect detections, and blue boxes represent missed detections. 
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4.4. Ablation Study 

We conducted ablation experiments on the model to verify the effectiveness of each module, and used 
the most basic UNet network as a benchmark network for ablation research on the NUDT dataset. 

Impact of the ACFT Module: First, we removed the Dual Spatial Attention (DSA) from the ACFT 
module. After removing DSA, the model's local feature detection performance decreased, leading to an 
overall reduction in performance, as shown in Table II. When we removed the dilated convolution from 
the ACFT module, the model's global feature detection capability decreased. Although there was some 
improvement compared to the baseline, the performance was still inferior compared to using the complete 
ACFT module. The last row of Tab 2 indicates that the ACFT module has a significant impact on the 
model's performance, demonstrating that the ACFT module effectively enhances target features and 
improves model detection performance. 

Table 2: Ablation study of the ACFT module in IoU (%) and mIoU (%), F1 (10-2). 

Model IoU↑ mIoU↑ F1↑ 
UNet 88.35 87.43 92.36 

UNet+ACFT(no DSA) 90.61 92.76 95.07 
UNet+ACFT(no DConv) 89.70 93.03 94.57 

UNet+ACFT 93.61 94.19 96.70 

Table 3: Ablation study of the FPFC module in IoU (%) and mIoU (%), F1 (10-2). 

Model IoU↑ mIoU↑ F1↑ 
UNet 88.35 87.43 92.36 

UNet+ACFT 93.61 94.19 96.70 
UNet+FPFC 93.03 93.79 95.38 

UNet+ACFT+FPFC 94.45 94.57 97.32 
Impact of the FPFC Module: we first kept the ACFT module and removed the FPFC module. As 

shown in Table 3, it can be observed that the performance of the module, compared to the baseline, 
significantly improves, indicating the effectiveness of the ACFT module. Then, we removed the ACFT 
module and retained the FPFC module. It is evident that the performance also improves significantly 
compared to the baseline, demonstrating that the FPFC module effectively enhances the detection 
performance of the module. The last row of the table shows that with the addition of both the ACFT and 
FPFC modules, the model's performance reaches its optimal state. This indicates that when both modules 
are present, the model achieves the best detection performance, with no conflict between them and mutual 
supplementation. 

5. Conclusion 

In this paper, we introduced the MATNet model for detecting infrared small targets. This model 
features the ACFT module, which integrates Transformer and CNN technologies to improve performance 
in capturing both local and global features. Additionally, we developed the FPFC module to address 
feature loss of small targets by performing multi-scale pyramid feature fusion, combining deep and 
shallow target features. Experimental results show that MATNet outperforms existing detection methods 
on the IRSTD1k and NUDT datasets. 
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