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Abstract: Accurate railway freight volume prediction can effectively support the dynamic adjustment of 
freight station organization, enhance the service level and competitiveness of railway transportation. 
Considering the impact of railway network relationships on freight volume, this paper proposes a railway 
freight volume prediction method based on Spatiotemporal Graph Convolutional Neural Network 
(STGNN). The spatial convolution module adopts relational graph convolution to explore and integrate 
spatial characteristics of the railway physical network, inter-station relationships based on freight 
volume, and service relationships based on operational plans. In the time series module, a multi-layer 
Gated Recurrent Unit (GRU) is used for multi-step freight volume prediction of freight station groups. 
Using freight volume data along the Xiang-Yue section as the research object, the prediction results 
under different step sizes are compared, showing that STGNN significantly outperforms the baseline 
models. 

Keywords: Railway freight volume prediction; Relational graph convolution; Spatiotemporal graph 
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1. Introduction 

With rapid economic development and the continuous expansion of the railway network, China's 
railway freight volume has shown a generally upward trend year by year. Accurate railway freight 
volume prediction is crucial for railway transportation management, resource optimization, and 
efficiency improvement. Freight volume prediction not only uses historical data to forecast future trends 
but also accurately captures dynamic changes in freight demand in an uncertain market environment, 
guiding actual transportation planning and decision-making. 

In recent years, with the development and application of big data technology, the collection and 
storage of freight volume data have become more convenient, enabling the use of machine learning and 
deep learning in freight volume research. Researchers such as Wu Wei[1], Xie Jianwen[2], and Wang 
Xifu[3] have built BP neural networks for volume prediction. Zhang Guandong proposed a prediction 
method based on multidimensional long short-term memory networks(LSTM), forecasting freight 
volumes for railways, highways, and civil aviation[4]. 

The models mentioned above mainly focus on mining temporal sequence features and do not consider 
the spatial correlations in traffic flow prediction problems. The combination of graph convolutional 
networks (GCN) and recurrent neural networks (RNN) has shown strong capabilities in handling and 
predicting spatio-temporal data, accurately capturing spatial topologies and predicting complex graph-
structured data. From a broad perspective, traffic data is a type of graph-structured data, making GCNs 
more suitable for calculating traffic data than traditional convolutional neural networks. Liu Qidong and 
others proposed a time-aware Transformer model for passenger flow prediction[5]. Xu Li et al.[6] built 
a GC-STGCN model that combines GCN and gated recurrent neural networks for traffic flow prediction. 
Li[7] and other researchers introduced DCRNN to integrate spatial and temporal correlations, achieving 
accurate traffic flow prediction. It can be seen that spatio-temporal correlation prediction models have 
achieved good results in the field of traffic flow. 

This paper comprehensively considers the freight conditions of railway stations and the relationships 
among them, introducing GCN to construct a spatio-temporal correlation prediction model based on 
multiple time series and spatial relationships of railway station groups. Each freight station on the railway 
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line is treated as a node, with historical freight time series data and spatial characteristics among the 
stations studied. The STGNN model is used for short-term railway freight volume prediction. The 
experiment uses railway freight volume data from the Xiang-Yue section, and the results show that the 
model's prediction accuracy has improved compared to the benchmark models, demonstrating the 
effectiveness of the proposed prediction method. 

2. Model Construction 

2.1 Railway Network Spatial Relationships 

In actual transportation organization, railway transportation differs from road transportation. Road 
transportation is a continuous network with fluid characteristics, where the correlation of traffic flow 
between adjacent roads is relatively high and can be represented by an adjacency matrix of physical roads. 
Railway transportation, on the other hand, is based on a physical network, with the transportation time 
and route determined by the train operation plan. Additionally, the interconnection between different 
stations in the railway network affects the flow of freight. Therefore, when analyzing the relationships in 
the railway network, it is necessary to consider both the connectivity structure between physical network 
nodes and more non-Euclidean relational matrices, fully reflecting the spatial correlations in railway 
freight. The Relational Graph Convolutional Network (R-GCN) method is used to extract spatial 
characteristics from the railway service network and station correlations. Three relationships in the 
railway network are analyzed: physical network relationship, service network relationship, and station 
relationship. 

2.1.1 Physical Network Relationships 

Railway physical network , set of freight stations , freight station , set of segments , 
segment, the relationship of the railway physical network is as follows: 

                                                                           (1) 

                                                         (2) 

                                                                         (3) 

                                                                (4) 

After normalization, the railway physical network is as follows: 

                                                                       (5) 

2.1.2 Service Network Relationships 

In the railway network, some freight stations are not physically connected directly, but they are 
directly linked in the service network due to train operation plans. The correlation of freight volumes 
among stations in the railway network does not solely depend on spatial distance but is also closely 
related to the operation plans, meaning that even freight stations that are physically distant may have 
strong correlations. Therefore, based on the physical relationships between freight stations, service 
relationships are comprehensively considered. The train operation plan is broken down into service arcs 
to construct a service network relationship between freight stations, fully exploring spatial correlations. 

The set of service arcs between freight stations is , and a service arc  can be defined as: 

                                                                (6) 

After normalization, the railway service network is as follows: 
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                                                                         (7) 

2.1.3 Station Relationships 

To a certain extent, the cargo volume between railway freight stations can also reflect the correlation 
between them. The greater the cargo volume between stations, the stronger the correlation. The cargo 

volume between freight stations is denoted as . If  is within the top one-quarter of all inter-station 
cargo volumes, the value is retained; otherwise, it is set to 0. 

                  (8) 

After normalization processing, the station relationship network matrix is: 

                                                                      (9) 

2.2 Model Structure 

The STGNN model is used for railway freight volume prediction, aiming to extract spatial 
correlations between freight stations through a spatial convolution module. Since the railway network 
relationships are of multiple types, the Relational Graph Convolutional Network (R-GCN) is introduced 
in the spatial convolution layer to achieve multi-relation graph integration. In the time series module, a 
Recurrent Neural Network (RNN) is employed for freight volume prediction. 

(1) Spatial Convolution Module 

This module considers different types of connections between freight stations, including physical 
network relationships, service network relationships, and station relationships. The Relational Graph 
Convolutional Network (R-GCN) processes the three network relationship matrices to extract and 
integrate spatial features, which are then fed into the time series module. 

(2) Time Series Module 

In traffic flow prediction research, the commonly used time series prediction models are Recurrent 
Neural Networks (RNN), which can learn implicit sequential relationships in historical data. However, 
they may suffer from gradient explosion or vanishing problems during computation. Therefore, improved 
time series prediction models with higher accuracy have been developed based on the RNN structure. 
The time series module in this paper adopts the Gated Recurrent Unit (GRU) to predict the freight volume 
of railway station groups. 

(3) Overall Model Structure 

The STGNN model consists of spatial convolution and time series modules. In the spatial convolution 
phase, the Relational Graph Convolution (R-GCN) processes various spatial relationships in the railway 
network at each time step, extracting spatial correlation features. The outputs of the graph convolution at 
each time step are concatenated into time series data and input into the time series model to capture the 
temporal characteristics of freight volume at each station, ultimately predicting the freight volume at each 
station through a fully connected layer. The STGNN model structure is shown in Figure 1. 

 
Figure 1: STGNN framework structure. 
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3. Case Study and Results Analysis 

3.1 Data Preprocessing 

The original dataset used in this paper comes from the Guangzhou Railway Bureau's Xiang-Yue 
section, including freight data from several railway stations between 2011 and 2017. The data fields 
include shipment date, billing weight, freight rate, etc. 

(1) Removal of Duplicates and Invalid Tickets 

Each freight ticket record has a unique ticket ID and an invalid ticket identifier. During the cleaning 
of the original data, a large number of duplicate ticket records were found. Therefore, only one record 
was retained for records with the same ID and attribute values, while invalid tickets were removed based 
on the identifier. 

(2) Freight Station Selection 

When analyzing the original data of freight stations, it was found that the density of recorded stations 
was high, with many small stations having low freight volume and discontinuous dates. To facilitate 
subsequent spatiotemporal analysis and training of the STGNN model, the freight volume of all stations 
within a prefecture-level city was consolidated at the station with the highest volume. 

(3) Extraction of Valid Freight Information 

The original data contains many attributes, but including all attributes in model training would result 
in high computational cost and potentially affect prediction accuracy. Therefore, only attributes strongly 
related to freight volume prediction, such as date and billing weight, were selected and aggregated by 
date to obtain the daily total freight volume at each station. 

(4) Missing Value Imputation 

Since the original freight data contains a small number of missing values, it is necessary to impute 
the missing data. Given that freight volume changes are relatively stable in the short term, linear 
interpolation is used for missing value imputation. The formula of linear interpolation is as follows: 

                                                  (10) 

(5) Noise Reduction with Isolation Forest 

Due to significant noise in the original data, abnormal samples were detected using the Isolation 
Forest algorithm, and interfering data was removed. For missing values resulting from the removal of 
abnormal samples, linear interpolation was still applied. The part of the freight volume data of Hengyang 
Station after noise reduction is shown in Figure 2. 

 
Figure 2: Some freight data of Hengyang station after noise reduction. 

After preprocessing, over 3,000 records of railway freight data from the Xiang-Yue section are 
retained as the experimental dataset, which is then split into training and testing sets in an 8:2 ratio. 
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3.2 Model Parameters and Evaluation Metrics 

The model is built using the deep learning framework PyTorch, with additional use of libraries such 
as Numpy, Pandas, and Sklearn. The railway freight volume data is standardized using Z-score 
normalization to smooth the training process and improve convergence speed. In the time series module, 
the number of hidden layers in the LSTM is set to 128. The model's optimizer is Adam, the loss function 
is mean squared error (MSE), the activation function is Tanh, the learning rate is set to 0.001, the batch 
size is 64, and the total training epochs are set to 100. 

To provide a more intuitive display of the model's prediction results, root mean square error (RMSE) 
and mean absolute error (MAE) are used as comprehensive evaluation metrics, calculated as follows: 

                                                           (11) 

                                                      (12) 

Where  and  represent the predicted and actual freight volumes at time , represent the predicted 

and actual freight volumes at time  is the total number of data points. 

3.3 Comparison with Other Models 

To validate the performance of the proposed model, common forecasting models are selected for 
comparison. The baseline models are: 

(1) Historical Average (HA), Uses the historical average as the predicted freight volume. 

(2) Support Vector Regression (SVR)[8], Fits the freight volume data to a curve and predicts the next 
time step. 

(3) Random Forest (RF)[9], Constructs multiple decision trees and averages the results for regression 
prediction. The number of decision trees and maximum depth are determined using grid search to find 
the optimal parameters. 

(4) Long Short-Term Memory (LSTM), A variant of recurrent neural networks that better retains 
long-term information. The number of hidden neurons is set to 64, the loss function is MSE, the optimizer 
is Adam, and the number of iterations is set to 100. 

(5) Gated Recurrent Unit (GRU), Another variant of RNNs with a simpler structure than LSTM. The 
parameters are set similarly to those of LSTM. 

(6) Diffusion Convolutional Recurrent Neural Network (DCRNN)[10], Views the convolution 
operation as a diffusion process, using diffusion graph convolution to improve the recurrent unit’s capture 
of spatio-temporal features. The parameters are set similarly to the STGNN model. 

3.4 Experimental Results and Evaluation 

Considering the autocorrelation of freight flow sequences at different freight stations and model 
training time, three forecasting steps are set: 1, 5, and 10 days, to compare model performance at different 
time granularities. The experimental results are shown in Table 1. Overall, the STGNN model 
outperforms traditional models across various time steps and metrics. Among the models, the 
performance of the traditional statistical algorithm HA is the worst, as it only averages historical data 
and fails to learn changes in spatial and temporal features for regression prediction. Random Forest and 
SVR, which are traditional machine learning methods, perform better than LSTM and GRU-based 
sequence prediction methods. However, the prediction accuracy of DCRNN, which incorporates spatial 
correlation, is significantly improved in all forecasting steps, demonstrating the importance of spatial 
correlation. The STGNN model’s graph neural network further integrates multiple types of spatial 
correlations, achieving better performance in one-step and five-step predictions, with MAE reduced by 
8.49% and 4.59%, respectively, compared to DCRNN. Although the MAE of the STGNN model is 
slightly lower than that of DCRNN in ten-step prediction, its RMSE remains superior, indicating that the 
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STGNN model achieves the best overall performance. 

Table 1: Freight volume forecast results 

Step Size Evaluation 
Index 

Prediction Model 
HA SVR RF LSTM GRU DCRNN STGNN 

Single step 
Prediction 

MAE 34.37 29.59 30.19 31.68 30.21 24.67 16.18 
RMSE 55.63 49.21 49.26 52.08 51.81 43.14 35.59 

Five-step 
Prediction 

MAE 37.00 36.57 35.99 36.92 36.23 32.56 27.97 
RMSE 64.10 64.46 62.56 64.34 63.33 53.79 48.95 

Ten-step 
Prediction 

MAE 42.78 39.29 39.13 41.52 40.96 34.17 34.52 
RMSE 71.92 66.84 66.75 70.39 67.57 55.60 54.35 

4. Conclusion 

This paper constructs an STGNN model for railway freight volume prediction. In the spatial 
convolution module, multi-relational graph convolution (R-GCN) is introduced to extract and integrate 
spatial features, while the time module uses multi-layer Gated Recurrent Units to capture temporal 
characteristics for time series prediction. The comparison with other models demonstrates the 
effectiveness of spatial feature analysis, significantly improving prediction accuracy. Future research can 
incorporate more dynamic features to further enhance prediction performance and better serve railway 
transportation organization. 
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