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Abstract: Supervised learning approaches for deep learning-based epilepsy detection from 

Electroencephalogram (EEG) signals face significant limitations, including poor generalization across 

patients and a heavy reliance on large-scale labeled datasets. The acquisition of such datasets is highly 

labor-intensive, which in turn restricts the practical deployment of these methods. Here, we propose a 

self-supervised learning (SSL) framework to reduce this dependency for seizure detection and 

classification. Our method combines a time-frequency data augmentation module with a 

representation-level reconstruction task, guided by a novel semantic-subsequence-preserving (SSP) 

masking strategy, to learn semantic representations from unlabeled EEG. When evaluated on 5,499 

public EEG recordings, our model achieves an AUROC of 0.848 for detection and a weighted F1-score 

of 0.900 for classification. This demonstrates the ability of our SSL approach to deliver high 

performance with minimal labeled data, offering a promising path toward more scalable and accurate 

clinical diagnostic tools. 
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1. Introduction 

Epilepsy, caused by abnormal discharges of neurons in the brain, has become one of the most 

common neurological disorders worldwide[1]. Due to differences in the origin and propagation of 

abnormal brain electrical activity, the clinical manifestations of epilepsy are diverse and complex. 

These variations can lead to significant challenges in diagnosis and treatment. In clinical practice, 

diagnosis is primarily based on EEG recordings to assess brain activity during seizures[2].The 

interpretation and analysis of EEG signals mainly rely on visual inspection and manual annotation by 

medical professionals. However, the unpredictable onset and duration of seizures make it labor-

intensive to extract relevant segments from large volumes of EEG data. This process is also highly 

dependent on the subjective judgment of experts. 

In recent years, substantial advancements have been made in automated seizure detection and 

classification, offering clinicians efficient tools for assisted diagnosis[3-5]. With the increasing adoption 

of deep learning in biomedical fields, its superiority over traditional machine learning methods in 

seizure-related tasks has been well-documented. Liu et al. [6] proposed a hybrid architecture that 

integrates convolutional neural networks (CNNs) with long short-term memory (LSTM) networks to 

improve epilepsy classification. Similarly, Priyasad et al.[7] developed a deep learning framework 

leveraging attention-based data fusion to optimize seizure type identification. Further advancing the 

field, Arshia et al.[8] introduced a residual state update mechanism (REST), which combines graph 

neural networks (GNNs) with recurrent structures to enable real-time EEG signal analysis. More 

recently, models such as the Transformer [9-12] and Mamba [13-16] have also demonstrated success 

in epileptic seizure detection and classification tasks. 

While effective, these supervised learning methods depend heavily on large-scale labeled datasets 

to achieve robust generalization. However, high-quality annotated EEG data remain scarce in practice. 

To address this limitation and leverage abundant unlabeled data, researchers have increasingly turned 
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to self-supervised learning (SSL) for epilepsy diagnosis. 

Recent work has explored SSL techniques for EEG analysis. Tang et al. [17] adopted SSL-based pre-

training for graph neural networks to improve epilepsy detection and classification. Lam et al. [18] 

proposed a masked prediction task to reconstruct intracranial EEG spectrograms, enabling label-free 

representation learning. Han et al. [19] introduced a contrastive learning framework with a channel-

abnormality detection pretext task. Collectively, these studies highlight the potential of SSL paradigms 

to enhance EEG-based models via task-specific pre-training. Nevertheless, their representation capacity 

is often insufficient for complex epilepsy diagnosis tasks, leaving room for further improvement.  

Moreover, the reconstruction of raw EEG signals may amplify inherent recording noise. Compared 

to conventional self-prediction methods that directly reconstruct raw EEG signals [20-21], reconstructing 

more abstract representations in the latent space has demonstrated superior effectiveness - an approach 

already validated in image and text representation learning [22-24] and recently adapted to EEG data [25]. 

To address these challenges, we propose a novel self-supervised learning (SSL) framework 

incorporating advanced data augmentation techniques. Specifically, we introduce a time-frequency 

mixed augmentation strategy to enhance the temporal stability of learned semantic representations. 

Furthermore, by leveraging a masked prediction task in the latent space, our model captures intrinsic 

data correlations while generating highly informative representations. This approach significantly 

reduces the dependency on labeled data while maintaining robust performance. 

2. Methods 

2.1. Overall Model Architecture 

The self-supervised model proposed in this study is illustrated in Figure 1. Each EEG sample 𝑋𝑖 =
{𝑥1, 𝑥2, … , 𝑥𝐿}  from the dataset 𝐷 is transformed into a latent representation 𝑅𝑖 ∈ 𝑅𝑑𝑒 of dimension 𝑑𝑒, 

where 𝑑𝑒  denotes the embedding size. The network consists of three main components: a data 

augmentation module, an encoder module, and reconstruction module. The overall architecture of the 

proposed model is illustrated in Figure 1. The process begins by applying data augmentation to the 

input signals. These augmented signals are then fed into an encoder to generate effective 

representations. Subsequently, a portion of these representations is masked, and the model is trained to 

reconstruct the masked parts as a pretext task. 

 

Figure 1. The overall architecture of the proposed model. 

2.2. Data Augmentation Module 

In time-series representation learning, designing data augmentation strategies that balance semantic 

consistency with model robustness remains a critical challenge. Conventional augmentation approaches 

often rely on task-specific priors, which can easily disrupt the intrinsic temporal dependencies in the 

data. Our method builds upon the FT-Aug framework proposed by Liu et al.[26], which constructs 

augmented views via frequency mixing and overlapping cropping to preserve temporal semantics. 

Instead of employing an explicit contrastive loss, we implement an implicit contrastive learning 

mechanism through a dual-path masked reconstruction task. By applying distinct augmentation 

perturbations to the same time segment and performing masked reconstruction separately, the encoder 

is guided to learn perturbation-invariant feature representations. An overview of the proposed data 

augmentation framework is illustrated in Figure 2. 

The proposed framework consists of two key components: 
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Overlapping Cropping: To enable effective dual-path learning, it is essential to ensure strict 

semantic consistency between the two input views. We design an overlapping cropping algorithm: for 

an input sequence 𝑋𝑖, a target length T and a start point t are randomly determined, defining a core 

interval [𝑡, 𝑡 + 𝑇]. Two segments both covering this core interval are then generated by introducing 

controlled random offsets: 

Original segment 𝑋𝑜𝑟𝑖𝑔: obtained by directly cropping the raw signal of 𝑋𝑖 within [𝑡, 𝑡 + 𝑇]. 

Augmented segment 𝑋𝑎𝑢𝑔 : It is derived by applying frequency mixing to a segment of 𝑋𝑖 

encompassing the interval[𝑡, 𝑡 + 𝑇], and subsequently truncating the result to the core interval[𝑡, 𝑡 +
𝑇].  

Frequency Mixing: To preserve the macroscopic structure of the time series during augmentation, 

we adopt a frequency-domain mixing strategy. This operation exchanges partial frequency components 

between randomly selected samples within the same batch to construct semantically consistent hard 

samples. Specifically, for a candidate segment 𝑋𝑖 , it is first transformed into the frequency domain via 

the Fast Fourier Transform (FFT) to obtain its spectrum 𝐹. A random proportion of non-dominant 

frequency components is then replaced with the corresponding components from another randomly 

selected sample 𝑋𝑗 in the same batch, yielding a mixed spectrum 𝐹′ . An inverse FFT is applied to 

reconstruct the augmented segment 𝑋𝑎𝑢𝑔 in the time domain. 

Notably, the frequency mixing operation is performed on a segment longer than the target core 

interval. This design allows the augmentation process to leverage richer spectral context, thereby 

generating more diverse and challenging augmented examples. The resulting augmented segment is 

then cropped to the same core interval [𝑡, 𝑡 + 𝑇]  as the original view, forming the augmented 

view 𝑋𝑎𝑢𝑔 . This approach ensures strict semantic alignment while significantly enhancing 

augmentation diversity and regularization strength, effectively encouraging the model to learn robust 

features that are invariant to frequency-domain perturbations. 

 

Figure 2. Data Augmentation: Cropping and Frequency Mixing. 

2.3. Patch Embedding and Masking 

Following the data augmentation, the Patch Embedding and Masking module transforms the 

processed EEG signals into a structured sequence of embedded patches and prepares them for self-

supervised pre-training. This module consists of two key operations: spatial-temporal embedding which 

projects the input into patch representations, and strategic masking which constructs the pretext task 

objectives. 

The ST Embedder: Building upon established methodologies—particularly the approach of 

Mohammadi Foumani et al.[25] ,which enhances the signal-to-noise ratio (SNR) by leveraging 

systematic spatial differences between neural signals and noise. Neural activities typically exhibit 

structured topographical distributions, whereas noise tends to manifest stochastic spatial patterns[27]. 

We maintain a depth-wise convolution layer followed by spatial filtering to ensure effective denoising 

while preserving semantically meaningful neural features. Furthermore, we introduce a multi-scale 

convolutional module to capture temporal dynamics across varying receptive fields. This design 

enables the extraction of comprehensive temporal representations that incorporate both fine-grained 

variations and broader contextual information.  

For each EEG sample 𝑋𝑘, a depth-wise convolutional layer is applied across channels to extract 
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spatial dependencies, while linear spatial filters are applied to amplify the signal-to-noise ratio. The 

filtered output is then processed by the multi-scale temporal module. Finally, after adding positional 

encoding to each patch, the output of this network consists of embedded EEG patches 𝑆𝑥 =
{𝑆𝑥1, … , 𝑆𝑥𝑙} , where 𝑆𝑥𝑖 ∈ 𝑅𝑑𝑥 ,𝑑𝑥 are the embedding dimensions, and 𝑙 is the number of fragments. 

Masking Strategy: To address the challenge of high amplitude variability in raw EEG signals, we 

employ a representation-level masked prediction task using the Semantic Subsequence Preserving 

(SSP) method introduced by Mohammadi Foumani et al. [25]. This task is conducted in the latent space, 

which encourages the model to learn robust and discriminative features while mitigating the influence 

of noise. The SSP strategy ensures the masking process preserves semantically continuous 

subsequences, thereby improving the model's efficacy for downstream tasks. 

The SSP method is particularly suited to this objective due to its strategy of preserving semantically 

continuous subsequences during masking. Instead of randomly selecting patches to remove, it actively 

determines which time steps to retain in a block-wise manner. This design ensures that the encoder 

receives input with coherent contextual structure, which helps prevent the model from being misled by 

high-amplitude but semantically sparse segments and guides it to learn representations based on 

meaningful neurophysiological contexts. 

Formally, for the preprocessed EEG patches𝑆𝑥 = {𝑆𝑥1, … , 𝑆𝑥𝑙}, we construct a preserved block set 

𝛣 = {𝐵𝑘}𝑘=1
𝛽

 according to a masking ratio 𝜌 and block count 𝛽. The width of each block 𝐵𝑘 is given 

by:    

𝐵 = ⌈((1 − 𝜌) × 𝑙)/𝛽⌉                                              (1) 

The visible subset P is formed by concatenating these preserved blocks selected 𝑆𝑥  from via the 

SSP strategy. Then passed as input to the encoder, enabling it to learn from structured and semantically 

informative subsequences. 

2.4. Encoder-Decoder Architecture 

This encoder-decoder architecture is designed for EEG signal representation learning. It employs a 

Transformer encoder with multi-head attention and a decoder with cross-attention mechanisms to 

achieve effective self-supervised pre-training. 

The encoder is built on a shared Transformer architecture with multi-head attention, which allows 

parallel attention computations across multiple representation subspaces to capture diverse high-level 

features. It consists of two components: a Reference Encoder and an Operational Encoder. The 

Reference Encoder operates on the complete set of EEG patches, whereas the Operational Encoder 

handles the masked patches. A momentum-based strategy is employed for updating both encoders: the 

Operational Encoder is directly optimized via gradient descent, whereas the Reference Encoder is 

updated via an Exponential Moving Average (EMA) strategy[28-29], ensuring stable and robust 

representation learning. 

Specifically, the complete set of EEG patches 𝑆𝑥 = {𝑆𝑥1, … , 𝑆𝑥𝑙}obtained from the ST Embedder is 

processed by the Reference Encoder 𝑓𝜃̂  which transforms it into the patch-level representation =
{𝑦1, … , 𝑦𝑙} : 

𝑦 =  𝑓𝜃̂(𝑆𝑥)                                    (2) 

Where 𝑦𝑖 ∈ 𝑅𝑑𝑒 and 𝑑𝑒 are the embedding dimensions of the Transformer. 

Concurrently, a visible subset P is obtained from 𝑆𝑥 is encoded by the Operational Encoder 𝑓𝜃 into a 

latent representation  : 

𝑟 = 𝑓𝜃(𝑃)                                         (3) 

The Reference Encoder acts as a momentum encoder, updated through the EMA synchronization 

mechanism 𝜃̂  = 𝜏𝜃̂ + (1 − 𝜏)𝜃  . Its lagged updated parameters 𝜃̂  provide a consistent learning 

objective for the prediction task. After pre-training, only the Operational Encoder is used for 

downstream tasks. 

The decoder generates predicted representations for the masked regions based on the encoded 

visible context. Given the masked positions 𝐼𝑚 = {1, … , 𝑙}\𝛣, where 𝛣 are SSP preserved blocks, we 

randomly sample 𝑀 target blocks {𝐵𝑖}𝑖=1
𝑀  . For each target block 𝐵𝑖, the predictor 𝑔𝜑 takes as input the 
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latent representation 𝑟 from the Operational Encoder and a set of mask tokens 𝑚(𝑖) = {𝑚𝑗}𝑗∈𝐵𝑖
 for 

each patch we wish to predict and outputs a patch-level prediction 𝑦̂𝑖: 

𝑦̂𝑖 = 𝑔𝜑(𝑟, 𝑚(𝑖))                                 (4) 

The model is optimized by minimizing the L2 loss between the predicted representation 𝑦̂𝑖 and the 

corresponding true target representation 𝑦𝑖  from the Reference Encoder. The loss function for the 

masked prediction task is defined as: 

𝐿𝑚𝑎𝑠𝑘 =
1

|𝑀|
∑ ||𝑦̂𝑖 − 𝑦𝑖||2

2𝑀
𝑖=1                                            (5) 

2.5. Downstream Task Fine-tuning 

To quantitatively evaluate the quality of the representations learned through self-supervised pre-

training, we adopt a linear evaluation protocol, as illustrated in the downstream phase of Figure 3. The 

pre-trained encoder weights are frozen. Specifically, we extract fixed feature vectors for all training and 

test set samples using the frozen encoder. A logistic regression (LR) classifier is then trained on these 

fixed representations to perform the downstream seizure detection and classification task. This protocol 

effectively isolates and assesses the linear separability and discriminative power of the learned features, 

providing a clear benchmark of their utility for the target clinical application. 

 

Figure 3. Illustration of the Self-Supervised Pre-training and Downstream Fine-tuning Pipeline. 

3. Results 

3.1. Experimental Setup 

Experimental environment: NVIDIA 3090 GB GPU, Python 3.9, PyTorch 1.12.1, CUDA 11.3 

Dataset segmentation: We randomly split the official TUSZ train set by patients into train and 

validation sets by 90/10 for model pre-training and fine-tuning, respectively, and we hold-out the 

official TUSZ test set for model evaluation. The pre-train, train, and test sets consist of distinct patients.  

Training parameters: The model was trained for 200 epochs using the RAdam optimizer with a 

base learning rate of 1e-3 and batch size of 128. 

3.2. Dataset and Preprocessing  

The Temple University Hospital EEG Epilepsy Seizure Corpus (TUSZ) version 1.5.2 was employed 

in this study [30] . During self-supervised pre-training, the data were sampled at 200 Hz with a segment 



Academic Journal of Computing & Information Science 

ISSN 2616-5775 Vol. 8, Issue 11: 23-31, DOI: 10.25236/AJCIS.2025.081103 

Published by Francis Academic Press, UK 

-28- 

length of 12 seconds. The epilepsy types in the dataset were reclassified based on previous studies 
[17,31] . Due to the clinical distinction between simple partial (SP) and complex partial (CP) seizures—

based solely on consciousness during the event, as they are not discernible from EEG signals alone [31] 

—we merged them with focal non-specific (FN) seizures into a combined focal (CF) seizure class. 

Given the extremely limited sample size (only three instances of myoclonic seizures in the TUSZ 

corpus), this class was excluded from analysis. The epilepsy seizure types were thus categorized into 

four classes: CF, generalized nonspecific (GN), absence (AB), and CT seizures. 

3.3. Baseline Methods 

To comprehensively evaluate the effectiveness of the proposed model, four state-of-the-art self-

supervised learning methods were selected as baselines. A brief description of each method is provided 

below: 

EEG-GNN-SSL (Corr-DCRNN)[17]: A graph neural network (GNN) based model that utilizes a 

diffusion convolutional recurrent neural network (DCRNN) on graphs constructed from the cross-

correlation of EEG data at each time step. 

REST (DS)[8]: Combines graph neural networks and recurrent structures for epilepsy detection and 

classification. 

WGTS[32]: A recurrent graph neural network that constructs graphs using weighted graph time 

series. 

EEG2Rep[25]: A framework for learning EEG representations using a reconstruction task. 

All models were pre-trained on the same dataset and evaluated on seizure detection and 

classification tasks. The performance was measured using the AUROC and the Weighted F1-score. 

Table 1. Comparison with state-of-the-art self-supervised methods. 

Model 
Seizure Detection  

AUROC 

Seizure Classification  

Weighted F1-Score 

EEG-GNN-SSL 

(Corr-DCRNN) 
0.850 0.749 

REST (DS) 0.706 0.792 

WGTS 0.762 0.847 

Eeg2rep 0.810 0.843 

Ours 0.848 0.900 

Table 1 summarizes the comparative performance of different self-supervised learning methods. As 

shown, the proposed model achieves seizure detection performance comparable to the best-performing 

baselines and surpasses all baselines in seizure classification. 

3.4. Impact of Pre-training 

To assess the impact of self-supervised pre-training on model performance, we compared networks 

trained with and without pre-training for epilepsy detection and classification. As presented in Table 2, 

the network with self-supervised pre-training consistently outperforms the non-pre-trained model 

across all evaluation metrics. Notably, substantial improvements are observed in overall seizure 

detection AUROC (+16.16%) and weighted F1-score for 4-class classification (+26.23%). Performance 

gains are also evident across individual seizure types, including CF, GN, AB, and CT. 

Table 2. Effect of self-supervised pre-training on seizure detection and classification performance. 

 

Seizure 

Detection 

AUROC 

4-class 

Weighted  

F1-Score 

CF 

AUROC 

GN 

AUROC 

AB 

AUROC 

CT 

AUROC 

w/  

pre-training 
0.730 0.713 0.769 0.617 0.939 0.909 

w/o  

pre-training 
0.848 0.900 0.904 0.885 0.983 0.954 

Improvement +16.16 +26.23% +17.56% +43.44% +4.69% +4.95% 
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3.5. Ablation Study 

To validate the effectiveness of our data augmentation module, ablation experiments were 

conducted comparing different augmentation strategies: no augmentation, traditional Gaussian noise 

injection, and the proposed time-frequency augmentation method. As shown in Table 3, our 

augmentation approach outperforms the traditional noise injection technique and significantly improves 

model performance in both seizure detection and classification tasks. 

Table 3. Performance comparison of different data augmentation methods on seizure detection and 

classification. 

 
Seizure Detection  

AUROC 

Seizure Classification 

 Weighted F1-Score 

No Augmentation 0.808 0.861 

Gaussian Noise 0.799 0.862 

ours 0.848 0.900 

Furthermore, we investigated the impact of different masking strategies and masking ratios on 

model performance during pre-training. Specifically, the Semantic Subsequence Preservation (SSP) 

masking strategy was compared against random masking, using five masking rates: 10%, 20%, 50%, 

75%, and 90%. Results in Table 4 indicate that for the SSP method, moderate masking ratios (around 

50%) yield the best performance, whereas excessively high or low masking ratios degrade 

effectiveness. Conversely, under random masking, increasing the masking ratio generally improves 

performance. 

Table 4. Masking strategies and ratios in pre-training. 

 
Seizure Detection 

AUROC 

Seizure Classification 

Weighted F1-Score 

Mask Ratio SSP RANDOM SSP RANDOM 

10% 0.798 0.790 0.861 0.764 

20% 0.789 0.791 0.859 0.800 

50% 0.848 0.792 0.900 0.844 

75% 0.833 0.794 0.872 0.873 

90% 0.815 0.824 0.856 0.899 

4. Discussion 

The self-supervised network proposed in this paper offers an effective self-supervised model for 

epilepsy diagnosis. The main contribution of this study is the development of a framework that 

integrates multiple representations to enhance task performance, generating more robust 

representations for various epilepsy types via mixed-frequency augmentation, and mitigating the 

dependency on labeled data through self-supervised pre-training. Experiments on the TUSZ dataset 

validate the effectiveness of the proposed method, and comparisons with other models pre-trained on 

the same dataset indicate superior performance of the proposed framework. However, our experiments 

revealed an important limitation: detection performance consistently underperforms relative to 

classification accuracy across all evaluated models. Future research will focus on developing enhanced 

representation learning techniques to bridge this performance gap while maintaining the framework's 

strong classification capabilities. Specifically, we plan to investigate task-specific attention mechanisms 

and hierarchical feature aggregation approaches to improve detection sensitivity without compromising 

classification accuracy 
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