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Abstract: Supervised learning approaches for deep learning-based epilepsy detection from
Electroencephalogram (EEG) signals face significant limitations, including poor generalization across
patients and a heavy reliance on large-scale labeled datasets. The acquisition of such datasets is highly
labor-intensive, which in turn restricts the practical deployment of these methods. Here, we propose a
self-supervised learning (SSL) framework to reduce this dependency for seizure detection and
classification. Our method combines a time-frequency data augmentation module with a
representation-level reconstruction task, guided by a novel semantic-subsequence-preserving (SSP)
masking strategy, to learn semantic representations from unlabeled EEG. When evaluated on 5,499
public EEG recordings, our model achieves an AUROC of 0.848 for detection and a weighted F1-score
of 0.900 for classification. This demonstrates the ability of our SSL approach to deliver high
performance with minimal labeled data, offering a promising path toward more scalable and accurate
clinical diagnostic tools.
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1. Introduction

Epilepsy, caused by abnormal discharges of neurons in the brain, has become one of the most
common neurological disorders worldwidel'l. Due to differences in the origin and propagation of
abnormal brain electrical activity, the clinical manifestations of epilepsy are diverse and complex.
These variations can lead to significant challenges in diagnosis and treatment. In clinical practice,
diagnosis is primarily based on EEG recordings to assess brain activity during seizures?.The
interpretation and analysis of EEG signals mainly rely on visual inspection and manual annotation by
medical professionals. However, the unpredictable onset and duration of seizures make it labor-
intensive to extract relevant segments from large volumes of EEG data. This process is also highly
dependent on the subjective judgment of experts.

In recent years, substantial advancements have been made in automated seizure detection and
classification, offering clinicians efficient tools for assisted diagnosis®*!. With the increasing adoption
of deep learning in biomedical fields, its superiority over traditional machine learning methods in
seizure-related tasks has been well-documented. Liu et al. [ proposed a hybrid architecture that
integrates convolutional neural networks (CNNs) with long short-term memory (LSTM) networks to
improve epilepsy classification. Similarly, Priyasad et al.[”! developed a deep learning framework
leveraging attention-based data fusion to optimize seizure type identification. Further advancing the
field, Arshia et al.l’l introduced a residual state update mechanism (REST), which combines graph
neural networks (GNNs) with recurrent structures to enable real-time EEG signal analysis. More
recently, models such as the Transformer 12 and Mamba ['>19 have also demonstrated success
in epileptic seizure detection and classification tasks.

While effective, these supervised learning methods depend heavily on large-scale labeled datasets
to achieve robust generalization. However, high-quality annotated EEG data remain scarce in practice.
To address this limitation and leverage abundant unlabeled data, researchers have increasingly turned
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to self-supervised learning (SSL) for epilepsy diagnosis.

Recent work has explored SSL techniques for EEG analysis. Tang et al. ['’! adopted SSL-based pre-
training for graph neural networks to improve epilepsy detection and classification. Lam et al. U8l
proposed a masked prediction task to reconstruct intracranial EEG spectrograms, enabling label-free
representation learning. Han et al. ') introduced a contrastive learning framework with a channel-
abnormality detection pretext task. Collectively, these studies highlight the potential of SSL paradigms
to enhance EEG-based models via task-specific pre-training. Nevertheless, their representation capacity
is often insufficient for complex epilepsy diagnosis tasks, leaving room for further improvement.

Moreover, the reconstruction of raw EEG signals may amplify inherent recording noise. Compared
to conventional self-prediction methods that directly reconstruct raw EEG signals [2°2!], reconstructing
more abstract representations in the latent space has demonstrated superior effectiveness - an approach
already validated in image and text representation learning 2> and recently adapted to EEG data [*}

To address these challenges, we proposea novel self-supervised learning (SSL) framework
incorporating advanced data augmentation techniques. Specifically, we introduce a time-frequency
mixed augmentation strategy to enhance the temporal stability of learned semantic representations.
Furthermore, by leveraging a masked prediction task in the latent space, our model captures intrinsic
data correlations while generating highly informative representations. This approach significantly
reduces the dependency on labeled data while maintaining robust performance.

2. Methods
2.1. Overall Model Architecture

The self-supervised model proposed in this study is illustrated in Figure 1. Each EEG sample X; =
{x1,%5, ..., x;} from the dataset D is transformed into a latent representation R; € R% of dimension d,,
where d, denotes the embedding size. The network consists of three main components: a data
augmentation module, an encoder module, and reconstruction module. The overall architecture of the
proposed model is illustrated in Figure 1. The process begins by applying data augmentation to the
input signals. These augmented signals are then fed into an encoder to generate effective
representations. Subsequently, a portion of these representations is masked, and the model is trained to
reconstruct the masked parts as a pretext task.
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Figure 1. The overall architecture of the proposed model.

2.2. Data Augmentation Module

In time-series representation learning, designing data augmentation strategies that balance semantic
consistency with model robustness remains a critical challenge. Conventional augmentation approaches
often rely on task-specific priors, which can easily disrupt the intrinsic temporal dependencies in the
data. Our method builds upon the FT-Aug framework proposed by Liu et al.?’l which constructs
augmented views via frequency mixing and overlapping cropping to preserve temporal semantics.
Instead of employing an explicit contrastive loss, we implement an implicit contrastive learning
mechanism through a dual-path masked reconstruction task. By applying distinct augmentation
perturbations to the same time segment and performing masked reconstruction separately, the encoder
is guided to learn perturbation-invariant feature representations. An overview of the proposed data
augmentation framework is illustrated in Figure 2.

The proposed framework consists of two key components:
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Overlapping Cropping: To enable effective dual-path learning, it is essential to ensure strict
semantic consistency between the two input views. We design an overlapping cropping algorithm: for
an input sequence X;, a target length T and a start point t are randomly determined, defining a core
interval [t,t + T]. Two segments both covering this core interval are then generated by introducing
controlled random offsets:

Original segment X, 4: obtained by directly cropping the raw signal of X; within [¢,t + T].

Augmented segment Xg,,: It is derived by applying frequency mixing to a segment of X;

encompassing the interval(t,t + T, and subsequently truncating the result to the core interval[t,t +
T].

Frequency Mixing: To preserve the macroscopic structure of the time series during augmentation,
we adopt a frequency-domain mixing strategy. This operation exchanges partial frequency components
between randomly selected samples within the same batch to construct semantically consistent hard
samples. Specifically, for a candidate segment X; , it is first transformed into the frequency domain via
the Fast Fourier Transform (FFT) to obtain its spectrum F. A random proportion of non-dominant
frequency components is then replaced with the corresponding components from another randomly
selected sample X;in the same batch, yielding a mixed spectrum F'. An inverse FFT is applied to
reconstruct the augmented segment X, in the time domain.

Notably, the frequency mixing operation is performed on a segment longer than the target core
interval. This design allows the augmentation process to leverage richer spectral context, thereby
generating more diverse and challenging augmented examples. The resulting augmented segment is
then cropped to the same core interval [t,t + T] as the original view, forming the augmented
view X4 . This approach ensures strict semantic alignment while significantly enhancing
augmentation diversity and regularization strength, effectively encouraging the model to learn robust
features that are invariant to frequency-domain perturbations.
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Figure 2. Data Augmentation: Cropping and Frequency Mixing.
2.3. Patch Embedding and Masking

Following the data augmentation, the Patch Embedding and Masking module transforms the
processed EEG signals into a structured sequence of embedded patches and prepares them for self-
supervised pre-training. This module consists of two key operations: spatial-temporal embedding which
projects the input into patch representations, and strategic masking which constructs the pretext task
objectives.

The ST Embedder: Building upon established methodologies—particularly the approach of
Mohammadi Foumani et al.*® ,which enhances the signal-to-noise ratio (SNR) by leveraging
systematic spatial differences between neural signals and noise. Neural activities typically exhibit
structured topographical distributions, whereas noise tends to manifest stochastic spatial patterns?’.
We maintain a depth-wise convolution layer followed by spatial filtering to ensure effective denoising
while preserving semantically meaningful neural features. Furthermore, we introduce a multi-scale
convolutional module to capture temporal dynamics across varying receptive fields. This design
enables the extraction of comprehensive temporal representations that incorporate both fine-grained
variations and broader contextual information.

For each EEG sample X}, a depth-wise convolutional layer is applied across channels to extract
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spatial dependencies, while linear spatial filters are applied to amplify the signal-to-noise ratio. The
filtered output is then processed by the multi-scale temporal module. Finally, after adding positional
encoding to each patch, the output of this network consists of embedded EEG patches S, =
{Sx1, »Sx1} , Where S,; € R% d,. are the embedding dimensions, and [ is the number of fragments.

Masking Strategy: To address the challenge of high amplitude variability in raw EEG signals, we
employ a representation-level masked prediction task using the Semantic Subsequence Preserving
(SSP) method introduced by Mohammadi Foumani et al. 2], This task is conducted in the latent space,
which encourages the model to learn robust and discriminative features while mitigating the influence
of noise. The SSP strategy ensures the masking process preserves semantically continuous
subsequences, thereby improving the model's efficacy for downstream tasks.

The SSP method is particularly suited to this objective due to its strategy of preserving semantically
continuous subsequences during masking. Instead of randomly selecting patches to remove, it actively
determines which time steps to retain in a block-wise manner. This design ensures that the encoder
receives input with coherent contextual structure, which helps prevent the model from being misled by
high-amplitude but semantically sparse segments and guides it to learn representations based on
meaningful neurophysiological contexts.

Formally, for the preprocessed EEG patchesS, = {S,q, ..., Sx;}, we construct a preserved block set

B = {Bk}£=1 according to a masking ratio p and block count 8. The width of each block By, is given
by:

B =1((1—-p)xD/BI ()

The visible subset P is formed by concatenating these preserved blocks selected S, from via the
SSP strategy. Then passed as input to the encoder, enabling it to learn from structured and semantically
informative subsequences.

2.4. Encoder-Decoder Architecture

This encoder-decoder architecture is designed for EEG signal representation learning. It employs a
Transformer encoder with multi-head attention and a decoder with cross-attention mechanisms to
achieve effective self-supervised pre-training.

The encoder is built on a shared Transformer architecture with multi-head attention, which allows
parallel attention computations across multiple representation subspaces to capture diverse high-level
features. It consists of two components: a Reference Encoder and an Operational Encoder. The
Reference Encoder operates on the complete set of EEG patches, whereas the Operational Encoder
handles the masked patches. A momentum-based strategy is employed for updating both encoders: the
Operational Encoder is directly optimized via gradient descent, whereas the Reference Encoder is
updated via an Exponential Moving Average (EMA) strategy!?®2°] ensuring stable and robust
representation learning.

Specifically, the complete set of EEG patches S, = {Sy4, ..., Sy;Jobtained from the ST Embedder is
processed by the Reference Encoder f which transforms it into the patch-level representation =

(RZPS
y= fo(5) 2
Where y; € R% and d, are the embedding dimensions of the Transformer.

Concurrently, a visible subset P is obtained from S, is encoded by the Operational Encoder f, into a
latent representation :

r = fo(P) (3)

The Reference Encoder acts as a momentum encoder, updated through the EMA synchronization
mechanism 8 =10 + (1 —1)0 . Its lagged updated parameters 8 provide a consistent learning
objective for the prediction task. After pre-training, only the Operational Encoder is used for
downstream tasks.

The decoder generates predicted representations for the masked regions based on the encoded
visible context. Given the masked positions I,,, = {1, ..., [}\B, where B are SSP preserved blocks, we
randomly sample M target blocks {B;}!, . For each target block B;, the predictor gy takes as input the
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latent representation r from the Operational Encoder and a set of mask tokens m(i) = {m;} g, for
each patch we wish to predict and outputs a patch-level prediction y;:

Yi = g (r,m(D) “4)

The model is optimized by minimizing the L2 loss between the predicted representation J; and the
corresponding true target representation y; from the Reference Encoder. The loss function for the
masked prediction task is defined as:

1 ~
Linask =MZ€W:1”yi_yi”% (5)
2.5. Downstream Task Fine-tuning

To quantitatively evaluate the quality of the representations learned through self-supervised pre-
training, we adopt a linear evaluation protocol, as illustrated in the downstream phase of Figure 3. The
pre-trained encoder weights are frozen. Specifically, we extract fixed feature vectors for all training and
test set samples using the frozen encoder. A logistic regression (LR) classifier is then trained on these
fixed representations to perform the downstream seizure detection and classification task. This protocol
effectively isolates and assesses the linear separability and discriminative power of the learned features,
providing a clear benchmark of their utility for the target clinical application.

Pre-training

Raw Input Signal
(Large unlabeled data)

Downstream Task Fine-tuning
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Figure 3. lllustration of the Self-Supervised Pre-training and Downstream Fine-tuning Pipeline.

3. Results
3.1. Experimental Setup

Experimental environment: NVIDIA 3090 GB GPU, Python 3.9, PyTorch 1.12.1, CUDA 11.3

Dataset segmentation: We randomly split the official TUSZ train set by patients into train and
validation sets by 90/10 for model pre-training and fine-tuning, respectively, and we hold-out the
official TUSZ test set for model evaluation. The pre-train, train, and test sets consist of distinct patients.

Training parameters: The model was trained for 200 epochs using the RAdam optimizer with a
base learning rate of 1e-3 and batch size of 128.

3.2. Dataset and Preprocessing

The Temple University Hospital EEG Epilepsy Seizure Corpus (TUSZ) version 1.5.2 was employed
in this study . During self-supervised pre-training, the data were sampled at 200 Hz with a segment
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length of 12 seconds. The epilepsy types in the dataset were reclassified based on previous studies
(17311 Due to the clinical distinction between simple partial (SP) and complex partial (CP) seizures—
based solely on consciousness during the event, as they are not discernible from EEG signals alone B!
—we merged them with focal non-specific (FN) seizures into a combined focal (CF) seizure class.
Given the extremely limited sample size (only three instances of myoclonic seizures in the TUSZ
corpus), this class was excluded from analysis. The epilepsy seizure types were thus categorized into
four classes: CF, generalized nonspecific (GN), absence (AB), and CT seizures.

3.3. Baseline Methods

To comprehensively evaluate the effectiveness of the proposed model, four state-of-the-art self-
supervised learning methods were selected as baselines. A brief description of each method is provided
below:

EEG-GNN-SSL (Corr-DCRNN)['7l: A graph neural network (GNN) based model that utilizes a
diffusion convolutional recurrent neural network (DCRNN) on graphs constructed from the cross-
correlation of EEG data at each time step.

REST (DS)®l: Combines graph neural networks and recurrent structures for epilepsy detection and
classification.

WGTSP: A recurrent graph neural network that constructs graphs using weighted graph time
series.

EEG2Rep!?*: A framework for learning EEG representations using a reconstruction task.

All models were pre-trained on the same dataset and evaluated on seizure detection and
classification tasks. The performance was measured using the AUROC and the Weighted F1-score.

Table 1. Comparison with state-of-the-art self-supervised methods.

Model Seizure Detection Seizgre Classification
AUROC Weighted F1-Score

EEG-GNN-SSL
(Corr-DCRNN) 0.850 0.749
REST (DS) 0.706 0.792
WGTS 0.762 0.847
Eeg2rep 0.810 0.843
Ours 0.848 0.900

Table 1 summarizes the comparative performance of different self-supervised learning methods. As
shown, the proposed model achieves seizure detection performance comparable to the best-performing
baselines and surpasses all baselines in seizure classification.

3.4. Impact of Pre-training

To assess the impact of self-supervised pre-training on model performance, we compared networks
trained with and without pre-training for epilepsy detection and classification. As presented in Table 2,
the network with self-supervised pre-training consistently outperforms the non-pre-trained model
across all evaluation metrics. Notably, substantial improvements are observed in overall seizure
detection AUROC (+16.16%) and weighted F1-score for 4-class classification (+26.23%). Performance
gains are also evident across individual seizure types, including CF, GN, AB, and CT.

Table 2. Effect of self-supervised pre-training on seizure detection and classification performance.

Doention | Werehnad CF GN AB ct
AUROC Fl-Seor AUROC AUROC AUROC AUROC
W 0.730 0.713 0.769 0.617 0.939 0.909
pre-training
wio 0.848 0.900 0.904 0.885 0.983 0.954
pre-training
Improvement | +16.16 426.23% +17.56% +43.44% +4.69% +4.95%
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3.5. Ablation Study

To validate the effectiveness of our data augmentation module, ablation experiments were
conducted comparing different augmentation strategies: no augmentation, traditional Gaussian noise
injection, and the proposed time-frequency augmentation method. As shown in Table 3, our
augmentation approach outperforms the traditional noise injection technique and significantly improves
model performance in both seizure detection and classification tasks.

Table 3. Performance comparison of different data augmentation methods on seizure detection and

classification.
Seizure Detection Seizure Classification
AUROC Weighted F1-Score
No Augmentation 0.808 0.861
Gaussian Noise 0.799 0.862
ours 0.848 0.900

Furthermore, we investigated the impact of different masking strategies and masking ratios on
model performance during pre-training. Specifically, the Semantic Subsequence Preservation (SSP)
masking strategy was compared against random masking, using five masking rates: 10%, 20%, 50%,
75%, and 90%. Results in Table 4 indicate that for the SSP method, moderate masking ratios (around
50%) vyield the best performance, whereas excessively high or low masking ratios degrade
effectiveness. Conversely, under random masking, increasing the masking ratio generally improves
performance.

Table 4. Masking strategies and ratios in pre-training.

Seizure Detection Seizure Classification
AUROC Weighted F1-Score
Mask Ratio SSP RANDOM SSP RANDOM

10% 0.798 0.790 0.861 0.764
20% 0.789 0.791 0.859 0.800
50% 0.848 0.792 0.900 0.844
75% 0.833 0.794 0.872 0.873
90% 0.815 0.824 0.856 0.899

4, Discussion

The self-supervised network proposed in this paper offers an effective self-supervised model for
epilepsy diagnosis. The main contribution of this study is the development of a framework that
integrates multiple representations to enhance task performance, generating more robust
representations for various epilepsy types via mixed-frequency augmentation, and mitigating the
dependency on labeled data through self-supervised pre-training. Experiments on the TUSZ dataset
validate the effectiveness of the proposed method, and comparisons with other models pre-trained on
the same dataset indicate superior performance of the proposed framework. However, our experiments
revealed an important limitation: detection performance consistently underperforms relative to
classification accuracy across all evaluated models. Future research will focus on developing enhanced
representation learning techniques to bridge this performance gap while maintaining the framework's
strong classification capabilities. Specifically, we plan to investigate task-specific attention mechanisms
and hierarchical feature aggregation approaches to improve detection sensitivity without compromising
classification accuracy
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