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Abstract: A novel financial modeling framework is presented that dynamically quantifies geopolitical 

risk for Taiwan’s stock market under Cross-Strait tensions, addressing the limitations of traditional asset 

pricing models in capturing spatiotemporal risk propagation. The framework integrates a Geopolitical 

Risk Propagation Module (GRPM), which combines dynamic network theory and sequence-to-sequence 

learning to model both the spatial spillover effects of geopolitical shocks and their temporal evolution. 

The GRPM consists of two core components: a Dynamic Asset Network (DAN) that tracks real-time risk 

transmission across asset classes and an LSTM-Event Encoder (LEE) that processes geopolitical event 

sequences to generate context-aware risk scores. These components interact through a Risk Propagation 

Layer (RPL), which adjusts spillover intensities based on event severity and historical asset correlations, 

thereby capturing market overreaction phenomena. The output is a time-varying risk-adjusted 

covariance matrix that enhances conventional multifactor models by explicitly incorporating 

geopolitical risk. Key innovations include the coupling of temporal event sequencing with spatial risk 

diffusion, a self-attentive mechanism to isolate high-impact events, and nonlinear spillover adjustments 

that reflect empirical market behavior. Implemented with PyTorch Geometric and Hugging Face 

Transformers, the framework demonstrates practical applicability by ingesting real-time data from 

Bloomberg and GDELT. Our approach not only improves risk sensitivity in financial models but also 

provides policymakers and investors with a tool to anticipate market disruptions during geopolitical 

crises. The methodology is particularly relevant for regions exposed to volatile political dynamics, 

offering a scalable template for other emerging markets.  
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1. Introduction 

Geopolitical risks have become increasingly influential in global financial markets, particularly in 

regions exposed to volatile political dynamics such as Taiwan under Cross-Strait tensions. Traditional 

financial models often treat geopolitical shocks as exogenous events, failing to capture their complex 

spatiotemporal propagation across asset classes [1]. While network theory has been applied to model 

financial contagion [2], and sequence learning techniques like LSTM networks have shown promise in 

forecasting market reactions [3], existing approaches lack a unified framework to quantify how 

geopolitical events dynamically alter risk transmission pathways. The challenge is particularly acute for 

Taiwan’s stock market, where Cross-Strait political tensions create nonlinear, context-dependent 

spillovers. For instance, missile tests or diplomatic escalations may trigger disproportionate reactions in 

semiconductor stocks before affecting broader indices [4]. Current methods either oversimplify these 

dynamics as static correlations or rely on retrospective analysis, leaving investors and policymakers ill-

equipped to anticipate real-time risk cascades. 

We address this gap by introducing a hybrid methodology that integrates network theory with 

sequence-to-sequence learning. The core innovation lies in modeling geopolitical risk transmission as a 

coupled spatiotemporal process: a Dynamic Asset Network (DAN) maps real-time inter-asset spillover 

intensities, while an LSTM-Event Encoder (LEE) processes geopolitical event sequences to adjust these 

intensities based on event severity and historical market responses. This dual approach captures both the 

spatial diffusion of risk (e.g., from energy to tech sectors) and its temporal evolution (e.g., delayed 

overreactions to political rhetoric). Unlike traditional multifactor models that treat geopolitical risk as a 

scalar input [5], our framework generates a time-varying risk-adjusted covariance matrix that reflects the 

nonlinear, context-sensitive nature of political shocks. Three key advancements distinguish our work. 
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First, we introduce a self-attentive event filtering mechanism that isolates high-impact geopolitical events 

from noise, addressing the “signal dilution” problem in existing risk models [6]. Second, the Risk 

Propagation Layer (RPL) dynamically recalibrates network edges using both event embeddings and 

market feedback, enabling the model to capture regime shifts in risk transmission during crises. Third, 

we demonstrate how the framework enhances portfolio optimization by quantifying the asymmetric tail 

risks induced by geopolitical events—a critical improvement for emerging markets like Taiwan where 

political risks dominate fundamental valuations [7]. 

The remainder of this paper is organized as follows: Section 2 reviews related work in financial 

contagion modeling and geopolitical risk quantification. Section 3 formalizes the theoretical foundations 

of our hybrid approach, while Section 4 details the GRPM architecture. Section 5 presents empirical 

results using Taiwan market data during the 2022-2023 Cross-Strait crisis, and Section 6 discusses 

implications for risk management and policy. Our contributions bridge financial econometrics with 

computational social science, offering a replicable template for regions where political risks defy 

conventional modeling assumptions. The framework’s modular design—implemented with PyTorch 

Geometric for network operations and Hugging Face Transformers for event encoding—ensures 

adaptability to other geopolitical contexts while maintaining interpretability for financial practitioners 

[8]. By aligning theoretical rigor with real-world applicability, we advance both academic research and 

practical risk management in politically sensitive markets. 

2. Related Work 

The quantification of geopolitical risk in financial markets has evolved along two primary research 

trajectories: network-based contagion modeling and sequential event analysis. While these approaches 

have traditionally been developed in isolation, our framework bridges them by introducing dynamic 

interactions between spatial risk propagation and temporal event sequencing. 

2.1 Network-Based Financial Contagion Models 

Financial network theory has demonstrated significant potential in modeling cross-asset risk 

transmission, particularly through the lens of spillover effects. The Diebold-Yilmaz spillover index [9], 

provides a foundational methodology for quantifying directional risk flows between assets, which we 

adapt for our Dynamic Asset Network (DAN) component. Recent extensions incorporate time-varying 

copulas to capture nonlinear dependencies during crises [10], though these typically assume static 

network topologies. The hierarchical contagion framework [11] addresses this limitation by modeling 

multi-layer dependencies between banks and firms, but overlooks the exogenous shocks from 

geopolitical events. Our work advances these approaches by introducing real-time network 

reconfiguration based on geopolitical risk scores. 

2.2 Geopolitical Risk and Market Dynamics 

Empirical studies have established the disproportionate impact of geopolitical events on financial 

markets, particularly in politically sensitive regions. The Taiwan misfired missile event study reveals 

how localized political shocks can trigger liquidity crises with cross-asset spillovers. While traditional 

event studies [12] measure average market reactions, they fail to capture the dynamic propagation 

patterns that our LSTM-Event Encoder (LEE) explicitly models. The two-layer network perspective [13] 

demonstrates the value of combining market linkages with event data, though their static risk scoring 

lacks the temporal sensitivity of our attention-based mechanism. 

2.3 Hybrid Approaches in Financial Modeling 

Emerging methodologies have begun integrating network and sequential analysis techniques. The 

dynamic multi-layer network approach [14] captures interbank contagion channels but remains confined 

to financial system internals without geopolitical inputs. Meanwhile, the panel data models in [15] 

confirm that geopolitical shocks amplify cross-industry contagion, yet their econometric specifications 

cannot adapt to real-time event streams. Our framework synthesizes these insights through the Risk 

Propagation Layer (RPL), which dynamically adjusts network weights based on both historical 

correlations and incoming event severity. The proposed framework distinguishes itself through three key 

innovations: (1) The simultaneous modeling of temporal event sequences and spatial risk networks 

addresses a critical gap in both literatures, as neither traditional network models nor event studies alone 
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can capture the feedback loops between geopolitical developments and market reactions. (2) The self-

attentive mechanism in the LEE component provides a data-driven solution to the signal-to-noise 

problem in geopolitical event analysis, automatically weighting events by their predicted market impact 

rather than relying on manual classification. (3) The exponential spillover adjustment in the RPL 

introduces a nonlinear response function that better reflects empirical market behavior during political 

crises, where risk transmission often follows power-law rather than linear dynamics. These advances 

collectively enable the first unified system for real-time geopolitical risk assessment in financial markets. 

3. Background: Financial Contagion, Network Theory, and Sequence Learning 

Understanding the propagation of geopolitical risk in financial markets requires integrating concepts 

from network theory and sequence learning. These disciplines provide the mathematical foundations for 

modeling how shocks transmit spatially across interconnected assets while evolving temporally through 

event sequences. 

3.1 Network Theory in Finance 

Financial systems naturally exhibit network structures where nodes represent entities (markets, 

sectors, or individual assets) and edges capture their interdependencies. The degree centrality 𝐶𝐷(𝑖) 

measures a node’s direct influence by counting its connections: 

𝐶𝐷(𝑖) =
deg(𝑖)

|𝑉| − 1
                                                                          (1) 

Where deg(𝑖) denotes the degree of node 𝑖 and |𝑉| is the total number of nodes. More sophisticated 

measures like betweenness centrality 𝐶𝐵(𝑖) identify nodes that bridge disparate parts of the network: 

𝐶𝐵(𝑖) = ∑
𝜎𝑠𝑡(𝑖)

𝜎𝑠𝑡
𝑠≠𝑖≠𝑡

                                                                  (2) 

Here, 𝜎𝑠𝑡 counts all shortest paths between nodes 𝑠 and 𝑡, while 𝜎𝑠𝑡(𝑖) tracks those passing through 

node 𝑖. These metrics help pinpoint systemically important assets that may amplify geopolitical shocks 

[16]. 

3.2 Sequence Learning Concepts 

Temporal patterns in geopolitical events and market reactions require sequence modeling techniques. 

Markov chains offer a basic framework where transition probabilities 𝑃𝑖𝑗 govern state changes: 

𝑃𝑖𝑗 = 𝑃(𝑋𝑡+1 = 𝑗|𝑋𝑡 = 𝑖)                                                              (3) 

However, such models fail to capture long-range dependencies prevalent in financial time series [17]. 

Modern sequence learners like LSTMs address this by maintaining memory cells that selectively retain 

or forget information across extended periods. The gating mechanisms in these networks allow them to 

learn which historical events remain relevant for current risk assessments—a critical capability when 

analyzing protracted geopolitical tensions [18]. 

4. Hybrid Geopolitical Risk Transmission Framework 

The proposed framework integrates dynamic network theory with sequence-to-sequence learning to 

quantify geopolitical risk propagation across financial markets. This section details the technical 

architecture and interaction mechanisms that enable real-time risk assessment under Cross-Strait tensions. 

4.1 Hybrid LSTM-Network Architecture for Geopolitical Risk Quantification 

The core innovation lies in the bidirectional coupling between the LSTM-Event Encoder (LEE) and 

Dynamic Asset Network (DAN). The LEE processes geopolitical event sequences 𝐱𝑡 = (𝑥𝑡−𝐾 , . . . , 𝑥𝑡) 

where each event 𝑥𝑡 is represented as a feature vector containing magnitude, duration, and sentiment 

polarity. The encoder’s hidden state 𝐡𝑡 undergoes self-attention to compute a dynamic risk score: 

𝑟𝑡 = Softmax(𝐖𝑞𝐡𝑡(𝐖𝑘𝐡𝑡)𝑇/√𝑑)𝐖𝑣𝐡𝑡                                                     (4) 
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Where 𝐖𝑞 , 𝐖𝑘, 𝐖𝑣  are learnable projection matrices and 𝑑  denotes the dimension of 𝐡𝑡 . This 

attention mechanism isolates high-impact events by assigning larger weights to sequences containing 

military drills or diplomatic escalations. 

The DAN component models asset classes as nodes with edges representing spillover intensities 𝑤𝑖𝑗,𝑡. 

These intensities are computed using a modified Diebold-Yilmaz index with rolling windows of high-

frequency returns: 

𝑤𝑖𝑗,𝑡 =
∑ 𝜓𝑖𝑗,𝑡

(ℎ)𝐻
ℎ=1

∑ ∑ 𝜓𝑖𝑘,𝑡
(ℎ)𝑁

𝑘=1
𝐻
ℎ=1

                                                            (5) 

Where 𝜓𝑖𝑗,𝑡
(ℎ)

 measures the forecast error variance contribution from asset 𝑖  to 𝑗 at horizon ℎ. The 

sliding window approach ensures real-time adaptation to changing market conditions. 

4.2 Dynamic Network with Real-Time Spillover Updates 

The Risk Propagation Layer (RPL) nonlinearly couples the LEE’s output 𝑟𝑡 with the DAN’s edge 

weights through exponential scaling: 

𝑤′
𝑖𝑗,𝑡 = 𝑤𝑖𝑗,𝑡 ⋅ exp (𝛼 ⋅ 𝑟𝑡 ⋅ Corr(𝐑𝑖 , 𝐑𝑗))                                                  (6) 

Here, 𝛼 is a learnable parameter that controls the degree of risk amplification, while Corr(𝐑𝑖 , 𝐑𝑗) 

represents the historical correlation between assets 𝑖  and 𝑗 . This formulation captures market 

overreaction phenomena where correlated assets experience disproportionate contagion during crises. 

The network’s adjacency matrix 𝐀𝑡 is updated at each timestep using the adjusted weights 𝑤′
𝑖𝑗,𝑡. Node 

centrality measures are recomputed to identify systemically important assets under current geopolitical 

conditions. The dynamic recalibration enables the model to detect regime shifts in risk transmission, such 

as when semiconductor stocks become contagion hubs during technology export restrictions. 

4.3 Self-Attentive Event Encoding and Nonlinear Risk Propagation 

The LEE’s bidirectional LSTM architecture processes event sequences both forward and backward 

to capture anticipatory and reactive market behaviors. Each event feature vector 𝑥𝑡 undergoes embedding 

through a dense layer before LSTM processing: 

𝐞𝑡 = ReLU(𝐖𝑒𝑥𝑡 + 𝐛𝑒)                                                                     (7) 

The hidden states 𝐡𝑡
𝑓
 (forward) and 𝐡𝑡

𝑏 (backward) are concatenated to form the final representation: 

𝐡𝑡 = [𝐡𝑡
𝑓

; 𝐡𝑡
𝑏]                                                                            (8) 

This dual-perspective encoding allows the model to distinguish between immediate market shocks 

(e.g., missile tests) and prolonged political tensions (e.g., trade negotiations), with the attention 

mechanism in Equation 4 automatically weighting their relative importance. 

4.4 Integration of the Framework into Asset Pricing 

The GRPM outputs a time-varying covariance matrix 𝚺𝑡 that modifies expected returns in multifactor 

models. For Cross-Strait-sensitive assets marked by indicator matrix 𝐁𝑡, the risk-adjusted expected return 

becomes: 

𝜇′
𝑡

= 𝜇𝑡 + 𝜆 ⋅ diag(𝐁𝑡𝚺𝑡𝐁𝑡
𝑇)                                                               (9) 

Where 𝜆 represents the market price of geopolitical risk. This formulation directly links the hybrid 

framework’s risk assessments to portfolio optimization decisions. 
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Figure 1 Integration of GRPM into Multifactor Asset Pricing Model 

The complete system architecture is illustrated in Figure 1, showing how the GRPM replaces 

traditional geopolitical risk factors in asset pricing models. The modular design allows seamless 

integration with existing financial analysis pipelines while providing interpretable risk decomposition 

through the attention weights and network visualizations. 

5. Empirical Experiments 

To validate the proposed hybrid framework, we conduct comprehensive experiments using Taiwan’s 

stock market data during the 2022-2023 Cross-Strait crisis period. The evaluation focuses on three key 

aspects: (1) the model’s ability to capture dynamic risk transmission patterns, (2) its predictive 

performance compared to conventional methods, and (3) the economic significance of geopolitical risk 

adjustments in portfolio optimization. 

5.1 Experimental Setup 

Data Sources and Preprocessing: We utilize high-frequency trading data from the Taiwan Stock 

Exchange (TWSE) covering 12 major sectors, with particular focus on semiconductor and financial 

stocks that exhibit heightened sensitivity to Cross-Strait tensions [19]. Geopolitical event data is sourced 

from the Global Database of Events, Language, and Tone (GDELT) [20], filtered for Chinese Mainland 

-Taiwan relations and categorized by event type (military, diplomatic, economic). Market data spans 

January 2022 to June 2023, encompassing multiple escalation events including military drills and trade 

restrictions. 

To benchmark performance, we compare our model against three established approaches. The first is 

the Static Network Model (SNM), which implements the traditional Diebold-Yilmaz spillover analysis 

with a fixed network topology. This approach allows us to assess how a static contagion framework 

performs when faced with highly dynamic political risks. The second is the Event Study Approach (ESA), 

which relies on cumulative abnormal returns around identified geopolitical events to infer their impact. 

Although this methodology is widely used in empirical finance, it tends to overlook the temporal 

propagation and evolving intensity of shocks, offering a useful contrast with our dynamic architecture. 

The third comparator is the LSTM Market Model (LMM), which employs pure sequence learning 

techniques to forecast market movements without incorporating network structures [21]. By positioning 

our framework against these three distinct baselines—static network contagion, event-based returns 

analysis, and purely temporal sequence forecasting—we are able to isolate the added value of integrating 

both network and sequence learning dimensions. 

Likewise, model performance is assessed along three dimensions. First, risk transmission accuracy is 

evaluated by computing the mean absolute error (MAE) between predicted spillover intensities and actual 

observed values. This measure quantifies the extent to which the framework captures the real-time 

propagation of shocks across asset classes. Second, we examine event response timing using the F1-score, 
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which evaluates the model’s ability to correctly detect market reaction windows surrounding geopolitical 

events. This metric is particularly important for determining whether the system can identify both 

immediate and lagged responses in the data. Finally, we assess the economic significance of the model 

outputs by analyzing portfolio impact, specifically through improvements in Sharpe ratios when 

incorporating geopolitical-risk-adjusted covariance matrices. By jointly considering statistical accuracy, 

event detection capability, and tangible portfolio outcomes, this evaluation strategy provides a 

comprehensive test of the proposed framework’s practical and theoretical contributions. 

5.2 Dynamic Risk Transmission Analysis 

The proposed model demonstrates superior capability in tracking real-time risk propagation 

compared to static alternatives. Figure 2 shows the evolution of risk-adjusted covariance matrices for 

semiconductor and financial sectors during the August 2022 military drills: 

 

Figure 2 Change of risk-adjusted covariance matrix over time under geopolitical events 

The heatmap sequence reveals how our model captures the initial semiconductor sell-off (Day 1-3), 

subsequent financial sector contagion (Day 4-7), and eventual market stabilization (Day 8-10). The 

dynamic network adjustments in Equation 6 enable this temporal precision, while static models fail to 

capture the shifting contagion pathways. Quantitatively, our framework achieves 38% lower MAE in 

spillover intensity prediction compared to SNM (0.21 vs. 0.34), with particular improvement during 

high-volatility periods. The attention mechanism in Equation 4 correctly identifies 83% of significant 

reaction windows (F1-score=0.79), versus 61% for ESA and 68% for LMM. 

5.3 Cross-Asset Correlation Dynamics 

The model’s capacity to recalibrate inter-asset correlations under varying geopolitical contexts is 

illustrated in Figure 3, which compares correlation structures before and after the application of the 

GRPM adjustment. The results indicate that geopolitical shocks significantly alter the degree of 

connectedness between sectors, particularly during high-intensity events such as military drills or 

diplomatic escalations. One of the most striking findings is the pronounced increase in correlation 

between the semiconductor and financial sectors. Prior to adjustment, the correlation coefficient stood at 

0.32, reflecting a moderate linkage between these two critical areas of the Taiwanese economy. 

Following the GRPM adjustment, however, the correlation rose sharply to 0.58, underscoring how 

military events can amplify systemic risk transmission across technologically and financially sensitive 

industries. This suggests that the semiconductor sector, often regarded as the cornerstone of Taiwan’s 

global economic position, serves as a contagion hub that transmits volatility into the financial system 

when geopolitical uncertainty escalates. In contrast, traditional safe-haven assets such as utilities and 

healthcare displayed a reduction in their correlation with technology stocks after GRPM adjustment. 

While these sectors are typically expected to remain resilient and maintain low sensitivity to geopolitical 

shocks, the model reveals that their risk-buffering capacity becomes even more pronounced during 

periods of heightened political tension. The observed decline in co-movement suggests that investors 

tend to reallocate capital toward these defensive sectors in times of crisis, thereby reinforcing their role 

as stabilizers in the broader market portfolio. This finding aligns with conventional financial theory but 

gains added empirical strength by being dynamically captured within the GRPM framework, which 

adjusts correlations in real time rather than relying on static assumptions. 
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Figure 3 Correlation between asset classes before and after GRPM adjustment 

Importantly, the model’s adjustments were not only theoretically consistent but also empirically 

validated against subsequent trading behavior. Approximately 72 percent of the predicted changes in 

asset correlations were confirmed by realized market patterns in the aftermath of major geopolitical 

events. This alignment highlights the framework’s ability to anticipate rather than merely reflect market 

shifts, thereby offering practical value for both investors and policymakers. For portfolio managers, the 

capacity to detect changes in cross-asset correlations in advance is particularly valuable, as it enables 

more effective hedging strategies and rebalancing decisions during volatile periods. For regulators and 

policymakers, the results provide an early-warning mechanism that identifies sectors most at risk of 

contagion, thereby informing macroprudential oversight. Collectively, these findings underscore the 

GRPM’s strength in dynamically quantifying the evolution of market linkages under geopolitical stress, 

offering a nuanced understanding of how political risk propagates across asset classes in Taiwan’s highly 

interconnected financial system. 

5.4 Portfolio Performance Enhancement 

Implementing the GRPM output in mean-variance optimization yields significant improvements. 

Table 1 compares portfolio performance metrics: 

Table 1 Portfolio performance with and without geopolitical risk adjustment 

Metric Standard Model GRPM-Adjusted Improvement 

Annualized Return 8.2% 9.7% +18.3% 

Volatility 16.4% 15.1% -7.9% 

Sharpe Ratio 0.50 0.64 +28.0% 

Maximum Drawdown -22.3% -18.7% -16.1% 

The risk-adjusted returns in Equation 9 prove particularly valuable during crisis periods, with the 

GRPM portfolio avoiding 76% of the worst single-day losses observed in the standard portfolio. Figure 

4 illustrates this protective effect: 

 

Figure 4 Historical returns vs. modified expected returns incorporating geopolitical risk 
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The scatter plot shows how incorporating geopolitical risk (x-axis) helps explain otherwise 

anomalous returns (y-axis), particularly in the negative tail where traditional models underestimate 

downside risk. 

5.5 Ablation Study 

We conduct component-wise analysis to isolate the contributions of key framework elements: As 

shown in Table 2, removing the LSTM-Event Encoder (LEE) markedly worsens spillover prediction 

(MAE rises from 0.21 to 0.31; F1 falls from 0.79 to 0.58), and removing the Dynamic Network leads to 

similar degradation (MAE 0.28; F1 0.65). Moreover, replacing the exponential spillover adjustment with 

a linear form weakens performance (MAE 0.25; F1 0.71). These results underscore that both temporal 

event processing and nonlinear risk propagation are essential for accurate geopolitical-risk quantification. 

Table 2 Ablation study results (MAE for spillover prediction) 

Model Variant MAE F1-Score 

Full GRPM 0.21 0.79 

Without LSTM-Event Encoder 0.31 0.58 

Without Dynamic Network 0.28 0.65 

Linear Spillover Adjustment 0.25 0.71 

The results confirm that both temporal event processing and nonlinear network dynamics are essential 

for accurate risk quantification. The exponential spillover adjustment in Equation 6 provides particular 

value during high-risk periods, reducing MAE by 19% compared to linear alternatives. 

6. Discussion and Future Work 

6.1 Limitations of the Proposed Method 

While the hybrid framework demonstrates superior performance in quantifying geopolitical risk 

transmission, several limitations warrant discussion. The model’s reliance on structured event data from 

GDELT introduces potential biases in event classification, particularly for nuanced diplomatic 

communications that may lack clear sentiment signals [22]. Additionally, the exponential spillover 

adjustment in Equation 6, though effective for capturing market overreactions, could amplify noise 

during periods of low geopolitical activity. Empirical tests reveal a 12% increase in false positive risk 

alerts when event frequency drops below five significant occurrences per week. The dynamic network 

component faces computational scalability constraints when expanding beyond sector-level analysis to 

individual securities. Processing latency increases quadratically with node count, creating trade-offs 

between granularity and real-time responsiveness—a challenge observed when testing the model on all 

900+ TWSE listed stocks. Furthermore, the current implementation does not fully account for cross-

border spillovers from correlated global markets, potentially underestimating secondary contagion 

effects during synchronized geopolitical crises [23]. 

6.2 Potential Application Scenarios 

Beyond portfolio optimization, the framework’s real-time risk assessment capabilities enable several 

novel applications in financial policymaking and corporate risk management. Central banks could 

integrate the GRPM outputs into macroprudential stress tests, particularly for assessing the systemic 

vulnerability of domestic financial institutions to escalating Cross-Strait tensions. The semiconductor 

industry, which contributes over 40% of Taiwan’s GDP, could utilize the model’s sector-specific risk 

projections to optimize inventory hedging strategies and supply chain diversification timelines [24]. The 

methodology also shows promise for automated trading systems that require dynamic position 

adjustments during geopolitical crises. Backtesting reveals that incorporating GRPM signals into stop-

loss algorithms reduces maximum drawdowns by 23% compared to volatility-based triggers alone. 

Insurance providers could similarly adapt the framework to price political risk derivatives, with the 

model’s time-varying covariance matrices providing a quantitative basis for option premiums on Taiwan-

related financial instruments. 
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6.3 Directions for Model Improvement 

Three primary avenues emerge for enhancing the framework’s accuracy and applicability. First, 

integrating multimodal event processing—including satellite imagery and central bank 

communications—could address current limitations in textual event classification [25]. Preliminary 

experiments with CNNs applied to military exercise satellite photos show a 15% improvement in 

predicting subsequent market reactions compared to text-only analysis. Second, developing hierarchical 

network structures would enable simultaneous analysis at multiple market granularities without 

sacrificing computational efficiency. A two-tiered approach that models both sector-level and firm-

specific connections could leverage graph neural networks to propagate risk scores across resolution 

levels [26]. This extension would particularly benefit institutional investors managing cross-

capitalization portfolios. Finally, incorporating agent-based modeling elements could capture the 

reflexive relationship between market behavior and geopolitical developments. Since financial market 

reactions themselves influence political decision-making—as seen in the 2022 semiconductor export 

controls—future iterations should model this feedback loop through reinforcement learning mechanisms 

[27]. Such enhancements would move the framework closer to a comprehensive system for 

understanding the finance-geopolitics nexus. 

7. Conclusion 

The hybrid LSTM-network framework presented in this study advances geopolitical risk 

quantification by systematically integrating temporal event sequencing with spatial risk propagation 

dynamics. Through the coupled operation of the LSTM-Event Encoder and Dynamic Asset Network, the 

model captures nonlinear market responses to Cross-Strait tensions that traditional approaches miss—

particularly the asymmetric spillovers between semiconductor stocks and broader market indices during 

military escalations. The empirical results demonstrate that real-time adjustments to risk transmission 

pathways, governed by the self-attentive mechanism and exponential spillover function, yield measurable 

improvements in both predictive accuracy and portfolio performance. The framework’s modular 

architecture provides financial institutions with actionable insights while maintaining interpretability 

through attention weights and network visualizations. By transforming geopolitical events into dynamic 

covariance matrices, the model bridges a critical gap between qualitative political analysis and 

quantitative finance. The significant reduction in portfolio drawdowns during crisis periods—achieved 

without sacrificing long-term returns—validates the economic value of context-aware risk adjustments. 

These findings have immediate relevance for asset managers operating in politically sensitive emerging 

markets, where conventional risk models often fail to account for regime shifts in asset correlations. 

Future extensions could explore the framework’s adaptability to other geopolitical contexts, such as 

Middle Eastern energy markets or Eastern European financial systems exposed to regional conflicts. The 

methodology’s foundation in network theory and sequence learning ensures generalizability, while its 

implementation with modern deep learning libraries facilitates deployment across different asset classes 

and data sources. As global financial markets grow increasingly interconnected yet politically fragmented, 

such tools will become essential for navigating the complex interplay between geopolitical developments 

and market stability. 
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