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Abstract: Dynamic texture synthesis aims to generate sequences that are visually similar to a reference 
video texture and exhibit specific stationary properties in time. In this paper, we introduce a 
spatiotemporal generative adversarial network (DTSGAN) that can learn from a single dynamic texture 
by capturing its motion and content distribution. With the pipeline of DTSGAN, a new video sequence is 
generated from the coarsest scale to the finest one. To avoid mode collapse, we propose a novel strategy 
for data updates that helps improve the diversity of generated results. Qualitative and quantitative 
experiments show that our model is able to generate high quality dynamic textures and natural motion. 
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1. Introduction 

Consider a dynamic scene in our mind, such as clouds, waves, and geysers. How do we visualize the 
contents of dynamic videos? We may construct a general structure of a texture image, portray the objects 
on the image, fill the picture with different colors, and adjust the lightness to address the main object. In 
addition, we need to transit from the first frame reasonably to generate a realistic dynamic scene. 
However, in reality, the process of generating a video sequence is far from this simple. Different 
operations are not independent, and they may occur at the same time. For example, we may 
simultaneously portray both shapes and motions of the objects, and the color and lightness may change 
over time. Synthesizing a dynamic texture is an intricate process in space and time. 

Learning dynamic textures for video synthesis has been widely explored with both non-parametric 
and parametric method. For the non-parametric approach, pixels or patches of the given dynamic texture 
are sampled to synthesize dynamic textures [1,2]. On the other hand, parametric models learn dynamic 
texture in two manners, statistical methods and deep neural networks. Statistical approaches [3–5] 
explore the underlying models of the dynamic texture exemplar and synthesize new texture videos by 
sampling from the learned model. Recently, parametric models have been designed as deep neural 
networks [6–8]. Although these methods show significant improvements over statistical parametric 
models, they are still limited in generating dynamic textures with non-local structures. 

In this work, we aim to learn dynamic textures via spatiotemporal generative networks (DTSGAN), 
as shown in Figure 1. We address to construct non-local structures by building a pyramid architecture. 
DTSGAN learns from a single videoclip from the coarsest scale to the finest one. At each scale, a video 
generative network maps a random vector to a dynamic texture video. Except for the coarsest scale, the 
random vector at each scale consists of two parts: the first is a randomly initialized noise, and the second 
is upsampled from the generated video in the previous scale. To avoid mode collapse, we propose a novel 
data update strategy that changes the training data every fixed training step sequentially. Once trained, 
DTSGAN can synthesize diverse high quality dynamic textures and plausible motions from noise. We 
qualitatively and quantitatively demonstrate that our approach performs favorably against existing 
methods. 
 

mailto:zhz088@ucsd.edu


Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 7, Issue 10: 31-40, DOI: 10.25236/AJCIS.2024.071005 

Published by Francis Academic Press, UK 
-32- 

 

Figure 1. Overview of our work. We propose to learn dynamic textures from raw videos. The acquired 
models show the applications of:(a) dynamic textures generation for cloud movement; (b) future 

prediction for rotary motions; (c) editing dynamic textures from coarsely copy-and-paste inputs to 
seamless videos. 

We explore the application of our model on future pre- dictions. Given a starting frame, we design 
an encoder upon Video GAN [9], attach it to the generator at the finest scale, and feed the input texture 
image into the encoder. Also, we add a loss term to minimize the distance between the input frame and 
the first frame in the generated video. [10] Extensive experimental results show that our model can 
generate realistic videoclips conditioned to the input frame. 

We make the following five contributions in this work: 

• We propose a spatiotemporal generative network that learns dynamic textures from a single 
videoclip. 

• We introduce a novel data update strategy that helps improve the diversity of generated results. 

• We demonstrate that the proposed algorithm performs favorably against the state-of-the-art methods 
through extensive experiments. 

• We design an encoder attached to the network for future predictions. 

• We show the proposed method can be used for video editing based on reference patches. 

2. Related Work 

Dynamic texture synthesis. Dynamic textures are sequences of images of moving scenes that exhibit 
certain stationary properties in time; this includes sea-waves, smoke, foliage, whirlwind but also talking 
faces, and traffic scenes, to name a few [3]. Dynamic texture synthesis is a process of creating artificial 
textures, which plays a vital role in video analysis and has been widely explored for years. [11] 

There are two main approaches to synthesize dynamic texture: non-parametric synthesis and 
parametric models. A non-parametric synthesis is a sampling approach that synthesizes dynamic textures 
by sampling pixels or patches of a given source dynamic texture. [12] Kwatra et al. [1] em- ploy graph 
cut for dynamic texture synthesis to achieve high visual quality results. Lizarraga-Morales et al. [2] 
extend the texture synthesis method to dynamic texture synthesis. It explores the use of local 
spatiotemporal features to capture the structure in both spatial and temporal domains and describes the 
motion and appearance of dynamic textures. A conditional generative CNN (cgCNN) [13] defines an 
energy-based conditional distribution of a given dynamic texture exemplar. New dynamic textures can 
be synthesized from the learned conditional distribution. However, non- parametric methods always fail 
to synthesize dynamic textures without spatial stationary and preserve temporal continuity of the 
synthesized dynamic texture sequences. [14] 

Parametric methods estimate the latent space of dynamic textures. Early methods focus on statistical 
models, such as linear dynamic system (LDS) [15,3], and closed-loop LDS (CLDS) [5]. Recently 
spatiotemporal Convolutional Neural Networks (CNNs) are proposed to generate samples of dynamic 
textures. Funke et al. [6] propose a Bayesian- based nonlinear dynamic texture modeling method for 
dynamic texture synthesis. It utilizes the Gaussian process la- tent variable model for dimensional 
reduction and designs a multi-kernel dynamic system for the latent dynamic behavior modeling [16]. In 
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the follow-up work [8], Funke et al. introduce a parametric model for dynamic textures based on the 
feature representations of a CNN trained on object recognition [4]. In [7], a two-stream CNN, one for 
static texture appearance of each frame and the other for temporal variations between frames, is proposed 
for dynamic texture synthesis [17]. Xie et al. [18] propose a dynamic generator (DG) model to execute a 
nonlinear transformation from a la- tent space vector to each timeframe of the video sequence. The 
limitation of current CNN methods is that they can- not synthesize dynamic textures with non-local 
structures because the optimizations are always trapped in local mini- mum during training [19]. 

Single-image generative adversarial networks. Recently, single-image generative models have been 
proposed to capture the internal distribution of a single image. [20] InGAN [21] learns the input image’s 
internal patch-distribution and generates images of different sizes with the same internal patch-
distribution as the input image. Multi-scales methods such as SinGAN [22] also have been proposed to 
learn on a single image and generate high quality, diverse samples with the same patch distribution as 
the input image. [23] The seminal work of SinGAN can also be used for conditional image generation 
tasks [24,25]. Tu- iGAN [24] aims to capture the distribution variations be- tween two unpaired images 
and transform an image from one source distribution to the other. Vinker et al. [25] pro- pose a single-
image based method to train deep generative models that can perform challenging image manipulation 
tasks. However, these models all focus on image generation and manipulation and do not pay much 
attention to video generation. [26] In this work, we propose a model that em- ploys the single-data based 
strategy to generate videos by 3D convolution. Instead of learning the patch distribution on the timeaxis 
[27], we use a data update strategy to accommodate GPUs’ limited memory capacity [28]. 

Video generation. Video generation aims to map a random noise to the spatial content and temporal 
motion, which form a realistic video sequence. VideoVAE [29] proposes a cross convolutional network 
to encode the image and motion information as feature maps and learned kernels, respectively. The 
network can recurrently synthesize possible future frames of the input image. VideoGAN [9] utilizes 
generative adversarial networks (GANs) to synthesize videos. Combining the static background stream 
and the dynamic foreground stream, the model can generate realis- tic short videos. [30] Instead of 
generating foreground and background separately, TGAN [31] maps a latent vector to a set of latent 
variables through a temporal generator and then transforms the latent variables into a video sequence. 
[32] MoCoGAN [33] can learn to disentangle motion from content by sampling from separate latent 
spaces and generate a videoclip by recurrently generating video frames. Built upon the state-of-the-art 
BigGAN architecture [34], DVD- GAN [35] is capable of capturing the complexity of a large video 
dataset as well as producing longer and higher-quality video samples. 

3. Proposed Method 

3.1. Overview 

In this section, we present a generative model trained on a single video. We briefly discuss the 
SinGAN [22] method before describing the details of DTSGAN. The SinGAN model consists of a 
pyramid of generators {G0,..., GN }. These generators are sequentially trained on videos {x0,..., xN } from 
the coarsest scale to the finest one. Before being fed into a sequence of convolution layers of Gn (n > 0), 
the noise zn is added to the image n−1) ↑r that is an upsampled version of the image xn−1 from the coarser 
scale. This ensures that the GAN can generate the missing details in n−1) ↑r and also does not disregard 
the noise. 

We use a multi-scale architecture similar to that of the SinGAN. However, unlike SinGAN that can 
only generate 2D images, our model is able to synthesize a videoclip with the same patch distribution as 
the input video sequence. 

3.2. Model Architecture 

Multi-scale architecture. Similar to SinGAN, we employ the multiscale architecture in our work. The 
architecture of our model is shown in Figure 2. The generators and discriminators at each scale have the 
same architecture.  
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Figure 2. Architecture overview. Our model uses a multi-scale architecture, where both the 
generator and discriminator progress in a coarse-to-fine manner. Starting from scale 0, the 
generator Gn takes in the summation of the upsampled video  a random noise zn , 
while the input of the generator at scale 0 is a random noise. At each scale, we update the 

videoclip data every fixed step to avoid mode collapse during training. 

Since the input is a 16-frame video, all the operations in our model are in a 3D manner, i.e., 3D 
convolution, 3D deconvolution, and 3D batch normalization. At the coarsest scale, G0 maps the 3D 
Gaussian noise z0 to an 3D video x̃0 by 

x̃0 = G0 (z0 ).                                                               (1) 

An upsampling process, enlarging the size while main-taining the length of the video, is then applied 
to x̃0 . The following generators Gn at finer scales (n > 0) take in the noise Zn and the upsampled version 
of the video from the coarser scale,i.e., 

x̃n = Gn (zn, (x̃n−1) ↑r ),    n > 0.                                         (2) 

At the finer scales, the model captures the patch distribution of the input video with a relatively small 
receptive field, which generates details of the video sequence [28]. 

Generator. The generator is a 3D model that takes in a 3D video input. We stack 16 consecutive 
frames from a single video together to create an input. Except for the last convolution layer, each 
convolution layer is followed by a 3D batch normalization [36] and a leaky ReLU layer. A hyperbolic 
tangent activation function is used at the last convolution layer. The size of the output feature map is the 
same as the input. 

Discriminator. The discriminator distinguishes whether the generated video is real. The patch 
discriminator has a receptive field of 11 × 11 × 11. Each convolution layer is followed by a 3D batch 
normalization and a leaky ReLU layer except the last convolution layer. [37] The last convolution layer 
directly outputs a 3D feature map with only one channel. Then we use the mean of the output feature 
map to compute the adversarial loss. 

3.3. Data Update Strategy 

A video generative model needs to learn the motions in videos over time. With a receptive field of 11 
× 11 × 11, the generators and discriminators can see a small patch in the height and width axis while a 
relatively large patch in the timeaxis. Therefore, a model trained on only one 16-frame videoclip fails to 
generate results with high diversity. 

In order to improve the diversity of the generated results, the model needs to see more motions over 
time. One possible solution is increasing the length of a training video clip. However, this method fails 
in practice because of limited computational capacity. The 3D model entails a large amount of space that 
causes the training process to collapse. Another approach is the data update strategy, i.e., feeding different 
videoclips to the model every fixed training step. A direct idea is randomly selecting a video clip from a 
single video every fixed step. However, since the video clips vary significantly in shapes and motions 
over time, this model fails to capture the key information of a video and generates chaotic results. 
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Figure 3. Data Update Strategy. We update the training video clip every fixed training step to 
make the model see more motions over time. 

 
Figure 4. Data update strategy comparison. We present two examples here. For each example, the 
first row is the model training on a single videoclip, and the second row is the model employing the 

data update strategy. 

Instead of randomly updating the training data, we pro- pose a new data strategy, as shown in Figure 
3. During training, we update the previous videoclip with its neighbor one. As the training progresses, 
the model can see different parts of the input video from a single video and generate videos with higher 
diversity in motions and textures. Since the neighbor videoclips are similar in motions and textures, the 
model can learn the patch distribution of dynamic textures more steadily. The qualitative comparison is 
shown in Figure 4. 

3.4. Model Training 

Adversarial loss. The adversarial loss builds on the fact that the generator generates realistic videos 
to fool the discriminator, and the discriminator distinguishes the real videos from generated ones. At each 
scale n, there are a generator Gn and a discriminator Dn. We use the WGAN- GP loss [38] as the 
adversarial loss, which can make the training process more steady: 

LD n  =Dn (xn )−Dn (Gn (x̃n  nDn (x̂n  )∥2 −1)2 .                     (3) 

where, x̂n = αxn + (1 − α)x̃n , α ∼ (0, 1), λ is a given penalty coefficient.  

Reconstruction loss. We add the reconstruction loss to ensure that the model can generate the input 
videoclip. We set z0 as a fixed noise map and zn as zero for all n > 0 to reconstruct the input videoclip. 
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The reconstruction loss is 

Lrec = ∥x̃n
r ec − xn ∥2                                                             (4) 

where, x̃n
r ec is the generated video at scale n. 

Loss function. The overall loss is the sum of the adversarial loss and the reconstruction loss, weighted 
by a hyper- parameter η, which is 

L = LD n  + ηL r ec .                                                                (5) 

4. Experiments and Analysis 

We conduct experiments on a large variety of videos, both qualitatively and quantitatively. 

4.1. Experimental Settings 

The videos come from the Dynamic Texture DataBase (DTDB) [39]. We set the coarsest scale as 
25px and the finest scale as 150px. The scaling factor r is approximately 1.39, and the number of scales 
is 8. As for the data update frequency, we find that 50-200 is a fit range of epochs that increases the 
diversity of generated results and maintains the quality of the videoclips. 

We compare our model with three baseline methods, which are Two-Stream [7], DG [18], and cgCNN 
[13]. Two- Stream model utilizes an appearance stream and a dynamics stream to synthesize dynamic 
textures. DG is a dynamic generator learned by an alternating back-propagation algorithm through time. 
cgCNN is an exemplar-based model for dynamic texture synthesis. We select one example from each 
category (18 in total) from the test set of the DTDB for quantitative evaluation. We compare the results 
from these baseline methods and our model, both qualitatively and quantitatively. 

4.2. Qualitative Evaluation 

We evaluate the proposed DTSGAN model on several videos from the test set of DTDB [39]. Some 
generated videoclips are shown in Figure 5. Our model can generate a 16-frame videoclip with a size of 
150 × 150 on a single GPU. More generated videos can be found in the supple- mentary material. 

 
Figure 5. Qualitative results. After training DTSGAN on a single video, our model can generate a 

16-frame realistic video with a size of 150 × 150. For each pair, the first row is the original 
videoclip and the second is the generated video. We display the first eight frames for each example. 
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Figure 6 presents the qualitative comparison between DTSGAN and three baseline methods. We 
notice that our results exhibit obvious advantages over other methods in maintaining shapes, 

textures, and motions. 

4.3. Quantitative Evaluation 

Multi-scale structural similarity. We measure the multi- scale structural similarity (MS-SSIM) [40] 
between the original video and the generated video. A higher MS-SSIM score indicates higher visual 
realism of generated results. Given two videoclips, we compute the MS-SSIM score be- tween each frame 
in the original videos and the corresponding frame in generated videos. The average of MS-SSIM metric 
represents the visual realism of the generated video. 

Frechet Inception Distance. The Frechet Inception Distance (FID) metric [41] measures the distance 
between the feature distribution of original and generated images. We use the FIN metric to assess the 
realism of generated video clips. For a generated video clip X = {x̃1, x̃2, ·· · , x̃T },we compute the FID 
between the frames in the generated video clip and the frames in the reference video clip X = {x1 , x2 , 
··· , xT }. In particular, we set T = 16 and train our model on 16-frame videoclips to generate videos. 

Standard deviation of the normalized LPIPS. The standard deviation of the normalized LPIPS (δ-N-
LPIPS) [42] can measure the smoothness of a video. Given a generated video x̃n, we compute the 
smoothness between frame video x̃n , we compute the smoothness between frame x̃ni   and frame xn

i+1
 as 

                                        (6) 

where, σ stands for the standard deviation. Lower δ-N- LPIPS implies a smoother transition 
between frames. In the experiment, we compute all the ratios of the LPIPS scores between every 
two consecutive frames and the LPIPS score between the first frame and the last frame. 

Table 1. Quantitative comparisons on selected videos from the DTDB. We compute the value of MS-
SSIM, FID, and δ-N-LPIPS on the videos generated by the five models separately. We use the 

average score of the 18 videos to measure the models. The best results under different metrics are 
marked by Bold. 

 

Method MS-SSIM ↑ FID ↓ δ-N-LPIPS ↓ 
Two-Stream 0.150 229.464 0.471 
DG 0.609 223.232 0.768 
cgCNN-Gram 0.217 240.834 0.864 
cgCNN-Mean 0.231 255.231 0.912 
DTSGAN (Ours) 0.621 193.063 0.223 

Analysis. Figure 6 and Table 1 show qualitative and quantitative comparisons of these methods. 
As can be seen in Figure 6, Two-Stream and cgCNN do not generate results similar to the reference 
video. Thus, they have a low MS-SSIM score and high FID value, as shown in Table 1. Although 
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DG generates relatively similar results to the original video in texture distribution, the generated 
videos contain limited smoothness that achieves a high δ-N-LPIPS score. In contrast, our model 
leads to the highest value of MS-SSIM and lowest value of FID and δ-N-LPIPS among all the 
experiment methods, which demonstrates the proposed model can generate high quality and smooth 
transition videos. 

Table 2. User study results. We conduct a user study to ask participants to choose their favorite 
videoclips. Each number represents the average preference percentage of each method. 

 

Method Percentage 
Two-Stream 11.78% 
DG 20.67% 
cgCNN-Gram 5.89% 
cgCNN-Mean 7.78% 
DTSGAN (Ours) 53.89% 

User study. We conduct a user study to compare the quality of our generated video clips with 
those product from the other four methods. We utilize the 18 dynamic texture videos in the previous 
section and use these five methods to generate video clips. For each dynamic texture video, we show 
five results generated by the methods separately to participants and ask them to select the most 
realistic one. Fifty people participate in the study. Table 2 shows that the majority of participants 
prefer the results generated by our DTSGAN model compared with other results. 

4.4. Ablation Study 

In this section, we evaluate the effect of data update strategy. We use LPIPS [43] to measure the 
diversity of synthesized results. We train two models for each reference video, one learning from several 
video clips with training data updating, the other only learning from one videoclip. Given two videos 
generated by the same model, we compute the LPIPS between each frame in one video and the 
corresponding frame of the other video. We set the average of LPIPS scores of each frame pair as the 
LPIPS between two videos. For each video category, we calculate the difference between every two 
videos among 20 videos. The mean of the LPIPS scores among all video pairs represents the diversity of 
the results in one category. [44] 

Table 3. Effect of the data update strategy. We conduct an ablation study on the data update 
strategy. Each number represents the average LPIPS among the 20 synthesized videos of each 

video category. A higher LPIPS score represents better diversity. 

Category With data 
update 

w/odata update 

Geyser 0.312 0.236 
Escalator 0.177 0.103 
Candy 0.416 0.368 
Coral 0.143 0.091 
Flag 0.179 0.146 

The quantitative results are shown in Table 3. From these results, we can find that the data update 
strategy improves the diversity of the generated results remarkably.[45] 

5. Conclusions 

In this paper, we introduce DTSGAN, a model designed to capture the spatial and temporal 
distribution of dynamic textures for accurate and diversified video generation. We build the 3D model to 
learn dynamic textures from coarse scales to fine ones, and utilize sequential training data update with 
fixed steps to improve the diversity of generated clips. Experimental results demonstrate that DTSGAN 
outperforms Two-Stream, DG, and cgCNN both qualitatively and quantitatively.[46] However, a 
limitation of our method, along with other single-video approaches, is that we need to train a model from 
scratch for every dynamic texture video to synthesize new videos. 
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