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Abstract: For the uncertain factors in the fire allocation process of air and missile defense problem, 

the uncertainty theory is used to deal with the uncertain factors in the problem, and an uncertain multi-

objective dynamic weapon target assignment model is proposed. In order to deal with the above model, 

a multi-objective evolutionary algorithm based on decomposition is proposed, which adds the 

displacement mechanism of firefly algorithm and uniformly randomly adaptive weights mechanism. 

Then, the simulation results show that the proposed algorithm has good convergence and distribution 

uniformity for solving multi-objective optimization problem. Lastly, using the algorithm to solve the 

above model, the results verify the rationality of the model. 
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1. Introduction 

Generally, the fire allocation problem in air and missile defense is a kind of weapon-target 

assignment problem (WTA), whose main purpose is to find an optimal assignment scheme of weapons 

and targets to minimize the probability of a missile destroying a protected asset under some constraints. 

The original study on WTA can stretch back to the last century, which mainly focus on the simple 

mathematical model and relevant algorithm. Previously, since limitations of computer technology, many 

scholars usually make some hypotheses to simplify the WTA problem and proposed some precise 

algorithms for solving small scale WTA, like Branch and Bound method and enumeration method [1]. In 

later studies, many scholars have improved the mathematical model of WTA to make it more close to 

real situation. There are two distinct categories of the WTA: the Static WTA (SWTA) and the Dynamic 

WTA (DWTA). The original SWTA is modeled by Manne[1], which defines a scenario that a known 

number of incoming targets are detected and a finite number of weapons, with known probabilities of 

destroying the targets, are available for a single exchange. In the SWTA, no subsequent engagements are 

considered since time is not a dimension considered in the problem. By contrast, the DWTA model takes 

the effect of time into account [2].The DWTA replicates the SWTA in its first stage, but includes a 

second stage where the number and the status information of targets and weapons are known only to a 

probability distribution, then the solution to the DWTA informs the defense on how to allocate the 

weapons in the first stage and how many to reserve for the second stage in order to minimize the 

probability of destruction. Thus, DWTA is a shoot-look-shoot process can be seen as a variant of SWTA. 

Meanwhile, with the scale of targets and weapons increases, the computational complexity of WTA 

grows exponentially as well, and it leads to a NP-hard problem [10] and the precise algorithm [3,4,5] is no 

longer applicative for solving WTA. Recently, with the advent of a variety of heuristic algorithms and 

intelligent algorithms, the above difficulties were solved, and many of them have been successfully 

applied to solving large-scale WTA problems, like ant colony algorithm[6], genetic algorithm[7], clonal 

selection algorithm[8], and particle swarm optimization algorithm[9]. 

Although the above WTA model is constantly improving, many uncertain factors are still ignored in 

the process of modeling construction, and they are still build based on deterministic environment. In the 

real battlefield, the situation is rapidly changing and full of many uncertainties, and many parameters 

cannot be obtained accurately. For example, the release of various interferences, sudden maneuvering 

flight of the targets and the change of attack intention, which can not be measured accurately by sensors 

and can not be ignored when the commander choose the fire allocation scheme. Some scholars used 

probability theory or fuzzy set theory to deal with these uncertain factors[11]. But in the real battlefield, 
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there are usually not enough samples to properly estimate their probabilities distribution, and it requires 

the experts or commanders to estimate the belief degree that each event will happened based on their 

experience. Literature[12] point out that human beings tend to overestimate unlikely events, and persisting 

in using probability theory or fuzzy set theory to deal with the belief estimation may leads to false 

conclusions[18].The Uncertainty Theory was established by Liu in 2009[18], and it is a mathematical 

theory that satisfies the normality, monotonicity, self-duality, and countable subadditivity axioms which 

can deal with such uncertain problem. Liu point out that Uncertainty Theory is a mathematical system 

that parallel to probability theory, but the results of some problems derived from Uncertainty Theory is 

superior to that derived from probability theory, especially the problem involving subjective 

experience[13]. At present, this theory has been widely used in risk analysis, logistics, UAV path planning 

and other fields [14][15][16]. 

When solving the WTA problem, the commander usually takes into account not only the total 

damage efficiency of all targets, but also the operational cost and the total expected surviving value of 

protected assets and so on. Especially in the dynamic WTA model, only considering the maximization of 

the total damage efficiency may results in the waste of ammunition, which may lead to insufficient 

ammunition for subsequent incoming targets. Therefore, the WTA model of Air and Missile Defense 

usually contains more than one target function, and it leads to a Multi-objective optimization problem [17]. 

There is usually no unique optimal solution for multi-objective optimization problems, but a set of 

multiple equal non-dominant solutions which are usually called pareto optimal solution, and these 

provide the commander with a series of alternatives. Additionally, not all the pareto optimal solutions for 

multi-objective optimization problems are uniformly and continuously distributed in solution space, 

which brings difficulties to the design of multi-objective optimization algorithm [19]. In the past, some 

scholars proposed to decompose a multi-objective optimization process into multiple single-objective 

optimization processes, such as the weighted method and the Tchebycheff approach [20], which improved 

the distribution uniformity of pareto front to some extent. 

Considering the uncertain factors in the battlefield of Air and Missile Defense, firstly the basic 

concepts of Uncertainty Theory are introduced in Section 2, and a DWTA model based on the 

uncertainty theory is proposed in Section 3, which treats the target threat degree and the probability of 

each asset being destroyed as uncertain variables. Then, the model’s equivalent model is deduced by this 

theorem. In order to solve the model effectively, an algorithm with firefly algorithm displacement 

mechanism and uniformly randomly adaptive weights mechanism is proposed in Section 4, and it’s 

performance in convergence and distribution uniformity is improved, which can be testify in the 

simulation results. Finally, the algorithm is applied to solving the above model to verify that the model is 

feasible. 

2. Preliminaries 

In this section, we introduce some foundational concepts and properties of uncertainty theory, which 

are used throughout this paper. 

Definition (1) Let   be a nonempty set， and  is a  -algebra over  ,Each element   in 

is called an event. A set function  from  to [0,1] is called an uncertain measure if it satisfies 

the following axioms. 

Axiom (1) (Normality Axiom) { } 1   for the universal set  . 

Axiom (2) (Duality Axiom) { } { } 1c     for any event  . 

Axiom (3) (Subadditivity Axiom)For every countable sequence of events 1 2, , ...   ,we have 

   
1 1

,i i
i i



 

    

Axiom (4) (Product Axiom)Let i i i( , , ) be uncertainty space for 1, 2, ...i =  1, 2, ...i = .The 

product uncertain measure  is an uncertain measure satisfying 

   
11

i i
ii

 



     
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Additionally, Liu define an uncertain measure of product space 
1 1

( , )
n n

k k
k k 

  in [15]. 

Definition (2) An uncertain variable is a measurable function   from an uncertainty space 

( , , )  to the set of real numbers, i.e., for any Borel set B  of real numbers, the set 

   ( )B B      │  

Definition (3) The uncertain variables 1 1, , ..., n    are said to be independent if 

   
n n

11

( ) ( )i i i i
ii

B B 


     

for any Borel sets 1 2, , ..., nB B B  of real numbers. 

Theorem (1) The uncertain variables 1 2, , ..., n    are said to be independent if and only if 

   
n n

11

( ) ( )i i i i
ii

B B 


     

for any Borel sets 1 2, , ..., nB B B  of real numbers. 

Theorem (2) Let 1 1, , ..., n    be uncertain variables, and f is a real-valued measurable function. 

Then 1 1( , , ..., )nf     is an uncertain variable. 

Definition (4) The uncertainty distribution   of an uncertain variable   is defined by 

 ( )x x    

for any real number. 

Definition (5) Let   be an uncertain variable with regular uncertainty distribution  . Then the 

inverse function 
1  is called the inverse uncertainty distribution of  . 

Definition (6) Let   be an uncertain variable with regular uncertainty distribution  .If ( )x  is 

strictly increasing in the set ( ) 10x x │ ,we call   obey to regular distribution. 

Definition (7) An uncertain variable   is called zigzag if it has a zigzag uncertainty distribution 

0 if x a

(x a) / 2(b a) if a x b
( ) =

(x c 2b) / 2(c b) if b x c

1 if x c

x




   
 

    
 

 

denoted by ~ z(a, b, c)  where a, b, c are real numbers with a<b<c. 

Definition (8) Let   be an uncertain variable. Then the expected value of   is defined by 

   
0

0
E[ ] d dx x - x x  




     

provided that at least one of the two integrals is finite. 

Theorem (3) Let   be an uncertain variable with regular uncertainty distribution  . If the expected 

value exists, then 

1
1

0
E[ ] ( )d     
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Theorem (4) Let 1 2, , ..., n    be independent uncertain variables with regular uncertainty 

distributions 1 1, , ...   , n respectively. If the function 1 2( , , ..., )nf x x x  is a measurable function which 

is strictly increasing with respect to 1 2, , ..., mx x x  and strictly decreasing with respect to 

1 2, , ...,m m nx x x  ,then 1 2( , , ..., )n= f     is an uncertain variable with inverse uncertainty distribution 

1 1 1 1 1

1( ) ( ( ),..., ( ), (1 ),..., (1 ))m m n= f              
 

Remark (1) See the details of the above definitions and theorems in reference[15]. 

The above content are some basic definitions and theorems of Uncertainty Theory, which is used in 

the following process of modeling. For detailed derivation and proof, please refer to the references [18]. 

3. DWTA Formulation 

Considering the uncertain factors in the real battlefield, the target threat degree and the destroyed 

probability of each asset can not be obtained precisely, and we need experts to give the belief degree of 

relevant parameters. Thus, they can be treats as uncertainty variables, and a DWTA model based on 

uncertainty theory is propose. 

3.1. Problem Describtion 

Firepower allocation in air and missile defense warfare play an important role in the cooperative 

combat. In this paper, a DWTA is adopted to discuss the problem, and the firepower assignment process 

is decomposed into multiple time stages, which is more conducive to considering some parameters that 

may change over time. Give the following scenario: In an air defense area, the radar detects a batch of 

incoming targets at a time, and the attacking intentions of each target are known (The attack asset of 

each target is known). The ground has a certain number of defensive weapons, and each weapon at each 

stage can only shoot one target (if a weapon can shoot multiple targets at each stage, it can be regarded 

as multiple weapons units). The commander has a maximum of S  stages in which weapons can hit the 

targets before these targets break through the defenses. The value of S is determined by the performance 

indexes of the targets and the weapons [19]. The parameters and variables in the DWTA model are listed 

in Table1. 

Table 1: Declaration 

The meaning of variables: 

( ) :K t the number of assets at stage t ; 1, 2, ..., ; (1)t S K K   

( ) :T t the number of targets at stage t ; 1, 2, ..., ; (1)t S T T   

( ) :W t the number of weapons at stage t ; 1, 2, ..., ; (1)t S W W   

1[ ] :k Kv V the vector of asset value ( kv  denotes the value of asset k ) 

1[ ] :j Tw W the vector of threat value ( jw  denotes the threat value of target j ) 

[ ] :jk T Kq Q the target lethality matrix( jkq  denotes the probability that target j  destroys asset 

k , 1, 2,...j T , 1, 2,...k K ) 

[ ( )] :t

ij W Tp t P the kill-probability matrix( ( )ijp t  denotes the probability that weapon i  destroys target 

j  when assigned to it at stage t , 1, 2, ...i W , 1, 2,...j T , 1, 2, ...t S ) 

:jm the maximal number of weapons that can be assigned to target j  at a stage, 1, 2,...j T  

:iN the maximal number of missiles that weapon i  can launch 

:iC the value that each missile of weapon i  costs 

[ ( )] :t

ij W Tf t F the engagement feasibility matrix at stage t  ( ( ) 0ijf t  if weapon i  cannot shoot 

target j ,and ( ) 1ijf t   otherwise) 

( ) :ijx h the number of weapons i  that assigned to target j at stage h  

javascript:;
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3.2. Objective function 

In the given scenario above, we consider following multiple indicators as the objective function. The 

mathematical formula of them is as follows.  

( )
( )

1

1 1 1

max ( ) 1 (1 ( )) ij

T t S WK
x ht

k jk ij

k j h t i

J X v q p h
   

 
   

 
                                                   (1) 

( )

2

1 1

max ( ) 1 (1 ( )) ij

S WT
x ht

j ij

j h t i

J X w p h
  

 
   

 
                                                          (2) 

3

1 1

min ( )
W T

t

i ij

i j

J X C x
 

 
  

 
                                                                                         (3) 

where 1 ( )J  stands for the total expected surviving value of protected assets， 2 ( )J  stands for the 

expected effectiveness of destroying incoming targets ， 3 ( )J  stands for the operation cost; 

1[ , , ..., ]t

t t SX X X X  with [ ( )]k ij W TX x k   is the decision matrix at stage k  ( ( )ijx k denotes the 

number of missiles that weapon i  allocates to target j  at stage k ). 

Notice that 
tX  just represent the global decision matrix at stage t . When it gets to the 1t   stage, 

the status parameters of targets and weapons need to be updated. For example, if some targets were 

destroyed in stage t , then it is necessary to generate a new decision matrix 1

1 2[ , , ..., ]t

t t SX X X X

   

with updated targets state in stage 1t  . If no state parameter changes in stage 1t  , The distribution of 

weapons and targets is still carried out according to the 
tX  decision matrix. In this way, commanders 

can adjust the assignment scheme according to the changes of actual battlefield conditions. 

3.3. Constraint 

The DWTA needs to satisfy the following constraints. 

   
1

( ( )) 1, 1, 2, ..., , 1, 2, ...,
T

ij

j

x t t S i W


                                                  (4) 

   
1

( ) , 1,2,..., , 1, 2,...,
W

ij j

i

x t m t S j T


                                                      (5) 

 
1 1

( ) , 1,2,...,
S T

ij i

t j

x t N i W
 

                                                                        (6) 

 ( ( )) ( ), 1, 2,..., ,ij ijx t f t t S                                                                    

   1, 2,..., , 1, 2,...,i W j T                                                                        (7) 

where 
1, 0

( )
0, 0


 




 


. 

Constraint (4) means that each weapon can only be assigned to one target at each stage. If a weapon 

can assign missiles to multiple targets at one stage, it can be regarded as multiple weapons units; 

constraint (5) limits the maximum number of missiles that weapons can launch to a target at each stage, 

and it is aimed to  prevent too many missiles from being assigned to one target and resulting in resource 

shortages in subsequent  stage; constraint (6) limits the maximum number of missiles that each weapon 

can assign, and it is determined by missile stock of the weapon; constraint (7) reflect the influence of 

time window on the engagement feasibility of weapons ( ( ) 1ijf t   denotes that is feasible; otherwise is 

infeasible), and if a weapon is to be assigned to a target, it must satisfy this constraint. Noted that, above 
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constraints increase the complexity of solving DWTA and the make it harder to design an algorithm to 

generate a feasible solution. 

3.4. Improved DWTA based on uncertainty theory 

In the above model, the threat value of target is  determined by many factors of targets like the type, 

the flight speed, the track angle and the maneuverability, etc. Thus, the threat value of target 

( 1, 2, ..., )jw j T  are treated as uncertain variables defined in the uncertain space ( , , ) . The 

uncertain distribution function of each uncertain variable is obtained by the experience of experts using 

uncertain statistical method [25]. It is denoted by 

~ ( 1, 2..., )j j j T    

Meanwhile, the probability jkq  are determined by targets performance which can not be obtained 

accurately, and they can be treated as uncertain variables, too. The uncertain distribution functions of 

them can be obtained by using the same method as above. It is denoted by 

~ ( 1, 2..., , 1, 2..., )jk jk j T k K     

Then, the above model in (1)(2)(3) can be rewritten as follows 

( )
( )

1

1 1 1

max ( ) 1 (1 ( )) ij

T t S WK
x ht

k jk ij

k j h t i

J X v p h
   

 
   

 
                                                 (8) 

( )

2

1 1

max ( , )) 1 (1 ( )) ij

S WT
x ht

j ij

j h t i

J X p h 
  

 
   

 
                                                  (9) 

3

1 1 1

min ( ) ( )
W T S

t

i ij

i j h

J X C x h
  

 
  

 
                                                                          (10) 

In the above model, the performance of each target is independent of each other, so the uncertain 

variables 1 2, , ..., T    and 11 12, , ..., TK   are also independent of each other. Generally, the uncertain 

distribution of each uncertain variable obtained by uncertain statistical method are regular. In equation (8) 

and (9) , if the 
tX  is a known value, 1J  and 2J  become the function of 11 12, , ..., TK    and the function 

of 1 2, , ..., T   ,respectively, denoted as 1 11 12( , , ..., )TKJ     and 2 1 2( , , ..., )TJ w w w . Furthermore, both 

1 ( )J  and 2 ( )J  are measurable function, then 1J  and 2J  are also uncertain variables(Theorem 2.2) 

whose uncertain distributions are denoted as 1  and 2 , respectively. 

Different problems have different meanings of valuation and need appropriate principle to define the 

valuation principle. In equation (8) and (9), the objective functions 1J  and 2J  can be converted to 

determinate form by using the Expected-Value principle, denoted by ( [ ( )]E J ). Additionally, 1J  is a 

measurable function which is strictly decreasing with respect to 11 12, , ..., TK   , and 2J  is a measurable 

function which is strictly increasing with respect to 1 2, , ..., T   . Combined with the theorem2.3 and 

theorem2.4, it can be proved that the inverse function of uncertain distribution 1

1

  and 1

2

  satisfy 

1 1 1 1

1 1 11 12( ) ( ( ), ( ), ..., ( ))TKJ            

1 1 1 1

2 2 1 2( ) ( ( ), ( ), ..., ( ))TJ            

where 
1 1 1

1 2( ), ( ), ..., ( )T        and 
1 1

11 12( ), ( ),     
1..., ( )TK   are the inverse uncertainty 

distribution of 1 2, , ..., T    and 11 12, , ..., TK   respectively. Then the equation (8) (9) can be rewritten as 

follows 
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( )
1 ( )1

1
0

1 1 1

max [ ( )] 1 (1 ) (1 ( )) dij

T t S WK
x ht

k jk ij

k j h t i

E J X v p h 

   

 
    

 
                             (11) 

1 ( )1

2
0

1 1

max [ ( , )] ( ) 1 (1 ( )) dij

S WT
x ht

j ij

j h t i

E J X p h  

  

 
    

 
                                        (12) 

Finally, the DWTA based on uncertainty theory (UDWTA) can be summarized as equations 

(10)(11)(12) with the constraints (4)-(7). As it can be seen from the UDWTA, the three objective 

functions are positively correlated, that is, the larger the total expected surviving value or the expected 

effectiveness of destroying targets means more resource consumption. In other word, (10) and (11) are 

conflict with (12). 

4. MOEA/D-URAM for solving UDWTA 

Considering the uncertain, multi-objective and combinatorial nature in UDWTA, in order to improve 

the quality and spread of the solutions, an improved multi-objective evolutionary algorithm is proposed 

for multi-objective optimization problem in this section. 

In this section, through adding the optimization displacement mechanism of firefly algorithm and 

uniformly randomly adjustment mechanism into the traditional multi-objective optimization 

evolutionary algorithm based on decomposition (MOEA/D), the convergence and distribution 

uniformity of the algorithm are improved effectively. 

4.1. Tchebycheff Approach 

A multi-objective optimization problem with M-dimensional decision vectors and N objective 

functions is described as follows (minimization problem here) 

1

1

Minimize ( ) ( ( ), ..., ( ))

( ...., )

n

m

f f f

x x

 

 

y x x x

x X
                                                         (13) 

where X  is the range of feasible solutions. The set of corresponding target function vectors is 

denoted by , { ( ) }f  z x x X .A decision vector a X is said to dominate another decision 

vector b X  (denoted as a < b ) if and only if 

{1,..., }: ( ) ( )

{1,..., }: ( ) ( )

i i

j j

i n f f

and j n f f

  

  

a b

a b
 

In order to find the pareto solution of the above model effectively, we first decompose a multi-

objective optimization problem into multiple single-objective optimization problems by using the 

Tchebycheff approach [20]. The multi-objective optimization model is replaced as follows 

2

1

min ( , ) ( ( ) )
n

i i i

i

g x f f x f  



                                                               (14) 

where 1 2( , , ... )nf f f f     is the optimal value vector of the objective functions, and i denotes the 

weight value of the i-th objective function which satisfies 
1

1
n

i

i




 . 

Theorem 4.1 The optimal solution of model (14) must be a pareto-optimal solution of model (13). 

The prove of Theorem 4.1 is in reference[18] requires that the optimal value 
jf   of each objective 

function exists; Additionally, the distance formula with ideal point in (14) can also be replaced by 

following and theorem 4.1 still holds. 
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1

1

( , ) ( ( ) )
n q

q

i i i

i

g x f f x f  



 
  
 
  

 
0

( , ) max ( )i i i
i n

g x f f x f  

 
   

If a multi-objective optimization problem in (13) is decomposed into multiple single-objective 

models in (14) with different weight vectors, the optimization algorithm can guide each individual to 

approach different pareto-optimal solution. Generally, the optimal solutions of subproblems with 

similar weight vectors are small apart in the solution space. This method could improve the 

distribution uniformity of output. In addition, compared with the method of adding the weights to the 

objective function directly, the Tchebycheff approach can better overcome the shortcoming of uneven 

distribution, which is caused by the non-convex set of true pareto-front[20]. 

4.2. Firely Algorithm 

Firefly algorithm is a new intelligent algorithm proposed by Yang of Cambridge University in 

2008[29]. It mainly imitates the luminous behavior of fireflies in nature. By observing the brightness 

and attractiveness of other individuals in the neighborhood, firefly chooses its own direction of 

movement, so as to continuously update its position and achieve the ultimate goal optimization 

location. The relevant definitions of firefly algorithm are as follows. 

Different from PSO algorithm, this algorithm has the advantages of local attraction and automatic 

recombination. This is because the light intensity in this algorithm decreases with the increase of 

distance. By adjusting the absorption coefficient of light intensity, the attraction between individuals 

can be local or global. Therefore, firefly algorithm is more suitable for multi-mode global 

optimization problem and in this paper we use the optimization mechanism of firefly algorithm to 

generate offspring. 

4.3. Weight Vector Generator and Uniformly Randomly Adaptive Weight Mechanism 

When using the Tchebycheff approach to decompose the multi-objective optimization problem, most 

scholars use the constant weight vector. This leads to a problem that when solving complex multi-

objective optimization problems (the true pareto front are discontinuous or they not uniformly 

distributed, etc.), the output does not perform well in the distribution uniformity [20]. A weight vector 

generation method and a uniformly randomly adjustment mechanism are introduced in this part, which is 

to improve the performance of the output. 

(1) Weight vector generator 

Here, N weight vectors are generated by uniform random method [21]. The specific process is as 

follows 

1) Randomly generate 5,000 weight vectors to construct the set 1 , and initialize a vector set   that 

contains all the dimensional unit weight vector include (1 0 ... 0) , (0 1 ... 0) ,…, (0 0 ... 1) . 

2) Find the weight vector 1

k in 1  which has the longest distance with the vectors in  v (Euclidean 

distance), and move 1

k  to  . 

3) If the number of vectors in   reaches N  (population size), stop the operation; Otherwise repeat 

step 2. 

Then, normalize the weight vector in   to obtain the generated weight vector, and the normalized 

formula is as follows 

1

1 1

11

( ) ( ... )
1 1

m

m m

i i
i i

WS


  

  

 
                                                            (15) 
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(2) Uniformly randomly adjustment mechanism 

The weight vector of the individual is adjusted based on the sparsity level of the individual. It is 

proposed to adjust once every 5% of the total number in each iteration, and it is not executed in the last 

10% iterations. During each adjustment, the 5% individuals with the lowest sparsity level were removed 

from the current population. Then, choose the individual from external population (EP which stores the 

nondominant solutions founded so far) sp
x  which has the lowest sparsity level to current population, 

and give it a new weight vector by following equation (17). Finally, add the new individual with new 

weight vector sp  to current population. Repeat the process until the number of individuals in the 

population reaches N . Individual sparsity level [21] is defined as follows 

2

1

( , )
j

i

m
NNj

i

SL ind pop L


                                                                  (16) 

where 2

j
iNN

L  is the j-th individual Euclidean distance, jind  ,along with its i-th nearest neighbor of the 

population, pop . 

The update formula of the weight vector sp  of the new individual sp
x  is as follows 

1 1

1 1

11

( ... )
1 1

spsp
sp m m

m m

sp spi i
i i i i

f ff f

f f f f



  




 
 

                                                      (17) 

4.4. The Franmework of MOFA/D-URAM 

Start

 Initialize the population P and a weight vectors set λ;

Determine the neighbors of each weight vector of λ;

Calculate the reference point z* according to P ;

EP←Ø；Gen←0；

If Gen<Genmax

For  each  popula t ion ,  set t ing   its 

neighborhood with probability δ  to be 

B(i); otherwise {1,…,N} 

Generation of offspring: for each individual xi, 

calculate the objective value g(x) in (14) of  B(i) 

with weight vector λi and  generate offspring 

individual xi’ by firefly algorithm; Update the 

reference point z* ’.

Cross of offspring: for each individual  xj of 

offspring, randomly select another one `x in 

B(j) and compare the value g(`x) and g(xj)  with 

weight vector λj ,if g(`x)<g(xj)  replace xj with 

`x; 

Update EP and papulation with the offspring(EP 

is used to store non-dominated solution so far, 

a n d  i f  the number of individuals in the EP 

exceeds 2N,  deleted  t h e  individual with the 

highest sparsity level until EP<2N)

Gen<=Genmax×90%

and 

Gen%(Genmax×5%)

Update weight vectors λ and 

population P using uniformly 

randomly adaptive weights 

mechanism 

Gen=Gen+1

Yes

OUTPUT

Yes

No

No

 

Figure1: The framework of MOFA/D-URAMFirstly. 

A multi-objective optimization problem is decomposed into multiple single-objective optimization 

problem by generating a weight vector for each individual. Then, the displacement mechanism of 
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firefly algorithm is used to generate new progeny individual, and some individual in the parent 

population is replaced in a certain proportion according to the respective optimization problem( ( )iB  is 

the serial number of the i-th individual’s neighbor, whose weight vectors is close to that of i-th 

individual). Then update the EP which stores the nondominant solutions founded so far(elitism). In 

addition, the weight vector and individual of the population are adjusted every 5% iteration period.  

Through the above discussion, a multi-objective firefly algorithm based on decomposition is 

proposed(MOFA/D-URAM). This algorithm add the displacement mechanism of firefly algorithm, 

which has the advantage of the global and local optimization. When the population iterates, uniformly 

randomly adjusting the individual and weight vector of population could avoid overcrowded population 

and improve the distribution uniformity of output. Finally, the output uniformly converges to the true 

pareto front. 

The framework of MOFA/D-URAM is shown in Figure.1 

5. Simulation and Analysis 

In this section, two simulation experiments are designed to verify the convergence and uniformity 

of solutions obtained by the algorithm and the feasibility of UDWTA in section 3. 

5.1. Performance test 

Here we choose ZDT1∼ZDT4 [18] as the test function, then set the variables number d  of test 

functions ZDT1∼ZDT3 as 30 and that of the test function ZDT4 is 10. For ZDT1, the pareto-optimal 

solution is obtained when 1g  ,and the pareto front is represented as 2 11f f   (convex set); for 

ZDT2, the pareto-optimal solution is obtained when 1g   and the pareto front is represented as 

2

2 1(1 )f f   (non-convex set); for ZDT3, the pareto-optimal solution is obtained when 1g  ,but its 

pareto front is discontinuous. The range of 1f  is [0,0.852] and 2f  is [-0.773,1]; for ZDT4, its pareto-

optimal solution and Pareto front are the same as ZDT1, but ZDT4 has many local pareto-optional 

sets. Here we choose NSGA-Ⅱ [31] as the comparison algorithm, which is widely applied for solving 

multi-objective optimization problems.  

Set the population number of the two algorithms to 100 and the number of iterations as 300. The 

EP capacity was set to twice the population size. For MOFA/D-URAW, take the dynamic step length 

coefficient 0( ) 0.99tt   with 0 0.5   (it is beneficial to global optimization in the early stage of 

population iteration and local convergence in the later stage). Each algorithm runs independently for 

30 times, and randomly select one in 30 results. The comparison simulation results are shown in 

Figure.2. 

In order to compare the performance of two algorithms, Inverse Generational Distance(IGD) and 

Spacing Metric (SP) [22] are selected as performance parameters to measure the convergence and 

uniform distribution of the algorithm respectively.  

The definition of IGD is as follows 

( , )
( , )

t

t

v Qt t

t

d v Q
IGD Q Q

Q







                                                          (18) 

where tQ   denotes true pareto front, tQ  denotes the pareto front obtained by the algorithm; tQ   

is the collection of tQ  , and here taking the number of elements in the set; 

( , ) min ( ) ( )t

t

u Q
d v Q F v F u


   denotes the minimum distance from tu Q  to v . 

The definition of SP is as follows 
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2

1

1
( )

1

pn

k

kp

SP d d
n 

 

                                                                  (19) 

1

min ( ) ( ) , ( 1, 2..., )
m

t

k k r k p
r k

d f f Q k n 





 
    

 
 x x x                                      (20) 

1

1 pn

k

kp

d d
n 

                                                                              (21) 

According to the above definition, the smaller the IGD value is, the better the convergence of the 

algorithm is; the smaller the SP value is, the better the uniformity of pareto front distribution is. The 

comparison average of the results of the 30 runs is shown in Table 2 and Table 3. 

Table 2: IGD of two algorithms 

Algorithm 
Test Function 

ZDT1 ZDT2 ZDT3 ZDT4 

MOFA/D-URAM 0.0083 0.0093 0.1942 1.0947 

NSGA-Ⅱ 0.0071 0.0351 0.2114 1.6870 

Table 3: SP of two algorithms 

Algorithm 
Test Function 

ZDT1 ZDT2 ZDT3 ZDT4 

MOFA/D-URAM 0.0058 0.0081 0.0129 0.0083 

NSGA-Ⅱ 0.0109 0.0249 0.0294 0.3374 

It can be seen from Table 2 and Table 3 and Figure.2 that, under the same population size and 

iteration times, IGD and SP of MOFA/ D-URAM are generally smaller than those of NSGA-II, which 

indicate that the algorithm can effectively converge to the true pareto front. Specifically, figure(b) and 

figure(c) show that the uniformity of pareto front obtained by MOFA/D-URAW is superior than that of 

NSGA-II; figure(d) shows that the MOFA/D-URAW has a better performance in  jumping out of the 

local Pareto optimal solution and approaching to the global optimal solution. The above simulation 

results show that the multi-objective optimization algorithm based on decomposition and firefly 

algorithm displacement mechanism can better guide the population convergence to different Pareto 

optimal solutions, and the weight adaptive adjustment mechanism is added to avoid population 

overcrowding. 

5.2. Solving UDWTA problem with MOFA/D-URAM 

(1) Coding for population 

The above UDWTA problem is a discrete model with discrete variable, hence the variables in the 

problem need to be coded before using the algorithm. Here a matrix is used to encode the assignment 

scheme as follows 

11 1

1

1 1

11 1

1 1

1

11 1

1

t t

T

t t

W WT

t t
t T

S S
S W WT

S S

T

S S

W WT

x x

x x

X x x

X

X x x

x x

x x

 

 

 
 
 
 
 

   
       
    

 
 
 
  
 

 

where k

ijx  has the same meaning with ( )ijx k  in section 3. 
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(2) Adjusting illegal individual 

In the iteration of population, some individuals not meet the constraints (4)-(7) will be generated. 

Therefore, it is necessary to check the position of the individual and adjust the position of the illegal 

individual. For example, the adjustment mechanism for constraint (5) is as follows. 

If the individual does not satisfy the constraint (5), which means  

    '

1

' 1, 2, ..., ' 1, 2, ..., , ( ')
W

ij j

i

t S and j T x t m


      

Step1. Pick a non-zero element ' ( )kjx t  randomly from ' ( '), {1, 2, ..., }ijx t i W , and do 

' '( ) ( ) 1kj kjx t x t  ; 

Step2. Check to see if it satisfies '

1

( ')
W

ij j

i

x t m


 . If not satisfied, continue to repeat Step1; 

Otherwise, the adjustment ends. 

The adjustment process for constraints (4), (6) and (7) is similar to the above mechanism and will 

not be repeated here. Finally, output the new individual which satisfies all constraints. 

(3) The displacement mechanism of discrete variable 

For the discreteness of the problem, the standard displacement mechanism of firefly algorithm 

needs to be improved. The displacement mechanism in reference[23] is adopted in this section, which is 

not repeated here. 

In the above mechanism, although the decision variables in the UDWTA problem are discrete 

variables, it has the same properties as the continuous variable. Firstly, the values of each objective 

function corresponding to adjacent discrete variables are close. Further, the optimal solutions of 

subproblems with similar weight vectors still are small apart in the solution space. Above properties 

indicate that MOFA/ D-URAW is still suitable for solving UDWTA model. 

(4) Scene description 

In order to verify the feasibility of UDWTA, the following air and missile defense combat scenarios 

are presented. Suppose that at some point, 10 incoming targets ( 1, 2...,10)j   are detected by radar, and 

here are 5 weapon units ( 1, 2..., 5)i   on the ground to protect 3 ground assets ( 1, 2, 3)k   by 

intercepting the targets; the interception process can be decomposed into four stages ( 1, 2, 3, 4)t  ; 

based on the detected targets information and the resource constraints of the ground weapon units, jm  is 

all set to 3; ( )ijf t  is all set to 1. The remaining parameters are shown in Table 4~Table 6. 

(5) The results and analysis 

The algorithm runs 30 times at different population sizes. The average running time of the algorithm 

is shown in Table7. It can be seen from Table 6 that the real-time performance of the algorithm satisfies 

the requirement. 

The algorithm outputs a set of pareto-optimal solutions which corresponds to the allocation scheme 

in Figure.3. Generally, the survival efficiency of assets damage probability of targets increases as the 

combat cost increases. Here list the solutions with maximal survival efficiency of assets found by the 

algorithm, and the Table 8 shows which targets each weapon was assigned to at each stage and the 

number of missiles assigned. 

The output of MOFA/D-URAW provides the commander with a set of alternative assignment 

schemes, and each scheme is relatively optimal. The commander can choose one according to different 

preferences. Compared with the single objective optimization algorithm which can only output a single 

optimal solution, the multi-objective optimization algorithm is more suitable to the actual requirement in 

the changing battlefield. 
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Figure (a) ZTD1 

 
Figure (b) ZTD2 

 
Figure (c) ZTD3 

 
Figure (d) ZTD4 

Figure 2: Pareto front of ZDT1∼ZDT4 obtained by two algorithms. (MOFA/D-URAM on the left, 

NSGA-II on the right) 

Table 4: Average running time 

The scale of 

population 

Iterations times 

50 100 200 

50 3.3652 5.5396 10.0772 
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Table 5: The damage probability and uncertain distribution of threat value of targets 

ijp  
1T  2T  3T  4T  5T  6T  7T  8T  9T  10T  

1W  0.45 0.32 0.54 0.47 0.75 0.10 0.17 0.26 0.68 0.59 

2W  0.38 0.55 0.18 0.66 0.52 0.41 0.35 0.68 0.13 0.64 

3W  0.85 0.76 0.69 0.42 0.33 0.58 0.74 0.70 0.35 0.15 

4W  0.28 0.62 0.58 0.56 0.57 0.13 0.55 0.85 0.70 0.63 

5W  0.50 0.27 0.73 0.78 0.27 0.86 0.34 0.27 0.88 0.65 

w  
(0.41, 0.43

, 0.45)

z
 

(0.48, 0.51

, 0.54)

z
 

(0.33, 0.35

, 0.37)

z
 

(0.87, 0.89

, 0.91)

z
 

(0.90, 0.92

, 0.94)

z
 

(0.41, 0.43

, 0.45)

z
 

(0.65, 0.67

, 0.69)

z
 

(0.73, 0.75

, 0.77)

z
 

(0.52, 0.54

, 0.56)

z
 

(0.31, 0.33

, 0.35)

z
 

Table 6:The damage probability and the value of assets 

 

1T  2T  3T  4T  5T  6T  7T  8T  9T  10T  
Value of the 

asset 

1K  0 0.58 0.76 0 0 0.26 0 0.34 0 0 0.75 

2K  0.64 0 0 0 0.25 0.31 0.58 0.28 0 0.85 0.6 

3K  0.36 0.69 0 0.65 0.73 0.14 0 0 0.52 0 0.85 

 

Figure 3: Pareto-optimal solutions of MOFA/D-URAM for solving the UDWTA. 

Table 7: Average running time 

The scale of 

population 

Iterations times 

50 100 200 

50 3.3652 5.5396 10.0772 

Table 8: Solutions with maximal survival efficiency of assets 

Weapon 
Target/the number of missiles 

Stage1 Stage2 Stage3 Stage4 

W1 9/1 2/3 9/2 5/2 

W2 2/2 4/2 0 1/3 

W3 7/3 2/2 3/1 4/2 

W4 8/3 9/3 3/1 4/1 

W5 2/1 10/3 4/3 6/3 
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6. Conclution 

In this paper, the uncertain factors in the dynamic WTA problem is discussed based on uncertainty 

theory and the UDWTA is proposed. Aiming at solving the multi-objective problem, the MOFA/D-

URAW algorithm is proposed by adding the firefly algorithm displacement mechanism and uniformly 

randomly adjustment mechanism. Then, it is verified by the test function that the convergence and 

uniform distribution of the algorithm are improved. Finally, the algorithm is applied to UDWTA model 

to verify its feasibility. 
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