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Abstract: In this study, we use a neural network approach instead of the traditional manual approach 

to solve the problem regarding the detection of defects on steel surfaces. We introduce several attention 

mechanisms to improve the Yolo v8 neural network trained on a steel defect detection dataset. The 

results show that our improved Yolo v8 model improves the robustness of the model more significantly 

and can detect more detailed steel surface defects. 
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1. Introduction 

The steel industry occupies a pivotal position in the global economy and is regarded as one of the 

pillars of modern industry [1]. As well as providing key materials for infrastructure construction, 

manufacturing, the automotive industry and other sectors, it is a strong guarantee of economic 

development and national defence. Steel's strength, durability and versatility make it a material that is 

used in a wide range of applications such as building bridges, manufacturing machinery and equipment, 

and producing household appliances and means of transport. 

The quality of the steel surface plays a crucial role in the production and use of steel. Defects on the 

surface of steel are mainly scratches, pits, cracks and oxidized skin, which can lead to degradation of 

material properties, affecting the aesthetics, corrosion resistance and mechanical properties of the 

product. Particularly in high-precision and demanding industries such as aerospace, automotive and 

power generation, small defects in surface quality can have a direct impact on product reliability and 

safety. 

Surface defects may affect steel properties and service life. In terms of mechanical properties, 

surface defects reduce the strength, toughness and hardness of steel, weakening its ability to withstand 

external and fatigue stresses. In terms of corrosion resistance, rust spots and areas of surface failure are 

more susceptible to environmental attack, leading to accelerated corrosion of the material, especially 

when wet [2]. The rate of corrosion is further accelerated in acid and salt spray environments. In terms 

of fatigue life, small defects such as cracks and scratches can significantly reduce the fatigue life of 

steel under repeated mechanical stress. In terms of appearance and aesthetics, surface defects can affect 

market competitiveness and consumer acceptance of products with stringent appearance requirements. 

The most used methods for detecting surface defects on steel are manual inspection and traditional 

vision inspection. Manual inspection was the earliest method of detecting defects on steel surfaces and 

relied on workers using the naked eye or simple tools to inspect steel surfaces for defects. Workers can 

make empirical judgements about complex defects with some flexibility [3]. However, some test results 

are too dependent on the experience and skill of the operator, making it difficult to ensure consistency 

and reliability. In mass production, manual inspection cannot keep up with the demands of the 

production line, especially during long hours of continuous work. Fatigue can easily lead to missed 

inspections, it is often difficult to detect small defects, and the use of manual inspection can lead to 

increased labor costs. 

Traditional vision-based inspection methods capture images of the steel surface from a camera and 
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then use pre-defined algorithms such as edge detection and threshold segmentation algorithms to 

identify surface defects. Traditional image processing inspection methods are related to manual 

inspection, the degree of automation is higher, can improve the detection speed, can detect the more 

obvious defects, applicable to the appearance of the inspection. However, traditional vision detection 

methods are less effective at detecting complex defects. And the noise immunity is poor, there is a lack 

of adaptivity, and there will be a high rate of false detections and missed detections. 

We have improved the YOLO v8 algorithm by introducing new modules, optimizing the loss 

function and enhancing the feature extraction module. The improved model is better able to cope with 

the diverse characteristics of steel surface defects and excels in identifying complex morphology and 

small defects [4]. By improving the YOLO v8 algorithm, it not only provides a more efficient and 

accurate solution for detecting steel surface defects, but also provides a practical direction for 

improving the shortcomings of traditional detection methods, which is expected to achieve a wide 

range of applications in quality inspection in the iron and steel industry. 

2. Dataset of Steel Surface Defects 

Data on rail surface defects typically include information on the type, location, size and severity of 

the defect. This data can be obtained through a variety of inspection equipment and techniques, such as 

laser scanners, high-definition cameras, and so on. These data are important for assessing the condition 

of rails, developing maintenance programmers and ensuring the safety of railway transport. By 

analysing and processing these data, accurate detection and classification of rail surface defects can be 

achieved, helping to improve the efficiency and safety of rail maintenance. 

The dataset we have collected comes from two main sources. The first part comes from the different 

stages of the steel production process, such as ironmaking, steelmaking and steel rolling, and collects 

data on the testing of steel samples at these stages. The second part comes from data on substandard 

products from several steel producers. The two sets of data together form the final image, which 

contains 4688 images of steel with surface defects [5]. Images of four different degrees and types of 

steel surface defects in the dataset are shown in Figure 1. 

 

Figure 1: Four different types of steel surface defects 

We obtain 4 classes of defective datasets that can be used for target detection tasks and are suitable 

for yolov8 algorithm model training tasks. 

3. Improvement of Yolo v8 Neural Network 

We have made changes to the Yolo v8 model structure, in three parts. The first part is the 

introduction of the attention mechanism [6]. The second part is the introduction of the improved 

pyramid structure of the void space [7].  The third part is the introduction of the CoT3 module 

incorporating the Transformer design [8]. 

The Pooling Layer is one of the important components in CNNs to reduce the spatial size of the 

input data and extract key features. In CNNs, the pooling layer is usually followed by the convolutional 

layer, and its main function is to perform spatial down sampling, i.e., to reduce the number of 

parameters in the model by reducing the size of the feature map. 

The pooling layer achieves this by performing aggregation operations within each local region. The 

common operations of the pooling layer are Max Pooling and Average Pooling. Max Pooling takes the 

maximum value of a local region as the output of that region, while Average Pooling takes the average 

value of a local region as the output of that region. Figure 2 shows the results of maximum pooling and 

average pooling. 
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Figure 2: Maximum and average pooling 

As shown in Figure 2, the size of the input feature map is 4 x 4, the size of the pooling kernel is 2 x 

2, and the step size is 2. In the Maximum Pooling operation, the pooling kernel is first located in the 

green region, and after selecting the maximum value of 8, the pooling kernel moves two steps to the 

right, enters the blue region, and takes the maximum value of 4, and so on until the entire pooling 

operation is completed. Average Pooling follows the same steps as Maximum Pooling, except that the 

maximum value is changed to the average of the 2 x 2 pooling kernels. 

SE (Squeeze and Excitation) Attention Mechanism, CA (Coordinate Attention) Attention 

Mechanism and CBAM (Convolutional Block Attention Module) Attention Mechanism are widely 

used [9]. Proper use of the attention mechanism allows the model to focus on important information 

related to steel surface defects and suppress irrelevant information that interferes with the detection of 

steel surface defects. In this paper, we improve the YOLOv8 model by introducing the three popular 

attention mechanisms mentioned above. The SE attention mechanism can be trained to automatically 

learn the importance of each channel and assign different weights to the channels in the network. 

𝑔𝐶 =  𝐹𝑠(𝑢𝐶) =
1

𝐻𝑥𝑊
∑ ∑ 𝑢𝑐(𝑖, 𝑗), 𝑔 ∈ 𝑅𝐶𝑊

𝑗=1
𝐻
𝑖=1                                     (1) 

W and H denote the width and height of the feature map, and C denotes the number of channels. 

The size of the input feature map is WxHxC. The SE attention mechanism works by first performing a 

compression operation on the feature map obtained by convolution to obtain global features for each 

channel. Excitation operations are then performed on the global features to learn the interrelationships 

between each channel and to obtain the weights of the different channels. Finally, the initial feature 

values are multiplied to get the final feature values. The structure of the SE attention module is shown 

in Figure. 3, where the formula for compression is shown in 1. Fs represents the compression operation, 

u represents the input information, C represents each channel, H represents the height of the feature 

image for a single feature channel, W represents the width of the feature image for a single feature 

channel, and uc(i, j) represents the value of each point on the feature mapping channel. 

 

Figure 3: SE Attention Mechanism Structure Diagram 

After compression, the excitation is computed as in Equation 2, where Fe represents the excitation 

operation, σ is the ReLU activation function, g represents the one-dimensional matrix obtained from Fe, 

W1, W2 are the fully connected layers, and r represents the hyper-parameter, which is 16 by default, 

and denotes the dimensionality reduction factor of the first fully connected layer. 

𝑡 =  𝐹𝑒(𝑔, 𝑊) =  𝜎 (𝑊2𝑆𝑖𝑔𝑚𝑜𝑖𝑑(𝑊1𝑔))                                             (2) 

The SE attention mechanism is embedded in the backbone part of the network after each 

convolutional layer. This is because the backbone network is responsible for extracting features from 
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the input image that are analysed and extracted in subsequent layers. By introducing the SE attention 

mechanism into the backbone network, the network can pay more attention to the important features, 

thus improving the feature representation and helping to better capture the visual features of the lung 

nodules. 

The CA attention mechanism, which not only captures the relationship between channels, but also 

captures the information related to the position, thus the CA attention mechanism can enhance the 

model's ability to perceive different positional information, thus improving the performance of the 

target detection task [10]. As shown in Figure 4, the CA module uses two one-dimensional global 

pooling operations (X: Horizontal Global Pooling, Y: Vertical Global Pooling) to aggregate the input 

features vertically and horizontally into two independent orientation-aware feature maps. The two 

feature maps embedded with directional information are then encoded into two attention maps, each of 

which captures the remote dependence of the input feature map in spatial direction. Finally, these two 

attention maps are multiplied by the input feature map to obtain the final attention feature, which 

effectively improves the feature map representation. 

 

Figure 4: CA Attention Mechanism Structure Diagram 

Since the CA attention mechanism is designed to solve the long-range feature dependency problem 

by capturing the spatial relationship between different locations in the feature map, and ultimately 

improve the model's ability to perceive the global information, this paper embeds the CA attention 

module in the larger layers of the feature map, which helps to improve the model's ability to understand 

the global information, and thus better capture the contextual information of the defective images of 

steel surfaces and the long-range dependency relationship. 

CBAM is a simple and effective attention mechanism for feed-forward convolutional neural 

networks. CBAM enhances the perceptual and expressive capabilities of the network, thereby 

improving performance and generalisation. As shown in Figure 5, CBAM consists of two modules: 

Channel Attention Module (CAM) and Spatial Attention Module (SAM). 

 

Figure 5: CBAM Attention Mechanism Structure Diagram 

Among them, the channel attention module performs average pooling and maximum pooling on the 

input feature map F∈RCx1x1 at the same time, and then passes the merged features to a shared multi-

layer perceptron with one hidden layer, and uses the Sigmoid activation function to add and activate the 

resulting features to generate a channel attention map MC∈RCx1x1, as shown in Formula 3, where MC 

represents the channel compression weight matrix, F represents the input feature map, σ represents the 

Sigmoid activation function, MLP represents the shared multi-layer perceptron, AvgPool represents the 

average pooling operation, and MaxPool represents the maximum pooling operation. 

𝑀𝑐(𝐹) =   𝜎 (𝑀𝐿𝑃(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹)) + 𝑀𝐿𝑃(𝑀𝑎𝑥𝑃𝑜𝑜𝑙(𝐹)))                                   (3) 

The improved channel attention F‘ is obtained by assigning the channel weights learnt by Mc to the 

different channels of F’. As shown in Equation 4, F’ represents the feature map for channel attention 

selection and ⊗ represents the matrix multiplication. 
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𝐹′ =   𝑀𝑐(𝐹) ⊗ 𝐹                                                                       (4) 

In SAM, average pooling and maximum pooling operations are performed on F', and then the 

collected features are subjected to a 7x7 convolution operation to perform the activation of σ. The 

computation of the spatial attention map Ms ∈ R1xHxW is shown in Equation 5, where f7x7 represents the 

7x7 convolution operation and Ms represents the spatial compression weight matrix. 

𝑀𝑠(𝐹′) =   𝜎(𝑓7𝑥7(𝐴𝑣𝑔𝑃𝑜𝑜𝑙(𝐹′); 𝑀𝑎𝑥(𝑃𝑜𝑜𝑙(𝐹′))))                                 (5) 

Finally, Ms is multiplied with F’ to obtain the feature map F’’ processed by the CBAM module. 

𝐹′′ =   𝑀𝑐(𝐹′) ⊗ 𝐹′                                                                  (6) 

The global maximum pooling and global average pooling used in CAM complement each other, 

which can effectively extract compressed information. In SAM, 7×7 convolutions are used instead of 

traditional multiple 3×3 convolutions, because the former can effectively expand the receptive field and 

better obtain spatial information. 

Transformers with self-attention mechanisms have created a sensation in the field of artificial 

intelligence [11]. However, most existing designs use self-attention directly on 2D feature maps to obtain 

attention matrices based on independent queries and key pairs at each spatial location, and do not take 

full advantage of the rich contextual information between neighbouring keys. The Context Converter 

(CoT) module is designed to make full use of the dynamic context information between adjacent keys, 

which is combined with the convolutional static context information and fused to the output. The CoT 

module absorbs the advantages of the traditional CNN and the Transformer, where the CNN captures 

the raw information of the input features, and the Transformer captures the global information of the 

input features. 

The structure of the CoT module is shown in Figure 6. Calculations are shown in equations 7,8,9. 

Firstly, a K × K convolution operation is performed on K to obtain K with local context information, 

denoted by K1. After that, a concatenation operation is performed on K1 with Q and two consecutive 1 

× 1 convolution operations are performed. 

𝑄 =   𝑋, 𝐾 = 𝑋, 𝑉 = 𝑋𝑊𝑣                                                            (7) 

𝐾1 =   [𝐾, 𝐾]𝑊𝜃                                                                  (8) 

𝑂 = [𝐾1, 𝑄]𝑊𝜃𝑊𝛿                                                                  (9) 

 

Figure 6: CoT module structure diagram 
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Multiply O by V to obtain the dynamic context information K2. The calculation is shown in 

Formula 10, where X represents the input data, H, W, C represent the height, width and number of 

channels of the input data, Q, K, V represent the query vector, key vector and value vector in the self-

attention mechanism, θ represents a 1x1 convolution with an activation function ReLU, δ represents a 

1x1 convolution, and ⊗ represents matrix multiplication.  

𝐾2 =   𝑉 ⊗ 𝑂                                                                    (10) 

Eventually, the local static context information K1 and global dynamic context information K2 are 

fused as a result for output. 

4. Evaluation and Results 

To verify the performance of the model through experiments, we evaluate the experimental results 

according to three aspects: Accuracy, Sensitivity and mAP. The calculations are shown in equations 11, 

12, 13 and 14. TP represents the number of true positive samples that are judged as positive samples, 

FP represents the number of negative samples that are misclassified as positive samples, FN represents 

the number of true positive samples that are judged as negative samples, AP represents the average 

precision of a given class of targets, APi represents the AP of class i, n represents the total number of 

classes, and p(r) represents the average precision obtained with the recall value. 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =   
𝑇𝑃

𝑇𝑃+𝐹𝑃
                                                             (11) 

𝑠𝑒𝑛𝑠𝑖𝑡𝑖𝑣𝑖𝑡𝑦 =   
𝑇𝑃

𝑇𝑃+𝐹𝑁
                                                            (12) 

𝐴𝑃 =   ∫ 𝑝(𝑟)𝑑𝑟
1

𝑜
                                                                 (13) 

𝑚𝐴𝑃 =   
1

𝑛
∑ 𝐴𝑃𝑖

𝑛
𝑖=1                                                                (14) 

In this study, the level of Precision represents the proportion of true positive nodes among all 

predicted positive nodes, the level of Sensitivity represents the proportion of the number of correctly 

predicted positive nodes among the total number of true positive nodes, and the mAP represents the 

mean accuracy of detection, with a higher mAP indicating a better detection performance of the model. 

 

Figure 7: Training results on the steel defects dataset 

 

Figure 8: Effectiveness in detecting surface defects on steel 

As shown in Figure 7 and Figure 8, when we improve the structure of the Yolo v8 network, the 

accuracy of the model can reach 97,6%, which is an improvement of 11% compared to the original 

model, and there is a significant improvement in the robustness of the model, and the defects on the 

surface of the steel can be detected in a more detailed way. 
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5. Discussion and Conclusions 

The background in the steel defect detection image is complex, and there are other background 

interferences besides the steel defects, resulting in low precision measurement accuracy. Also, the 

robustness of the model may be affected under conditions such as dealing with complex scenes and 

large brightness variations. In addition, smaller steel surface defects in the image are difficult to detect 

accurately, because small targets may lose detail on lower resolution feature maps, making detection 

difficult. 

To enhance the model's ability to suppress irrelevant information around steel surface defects, this 

study compares three popular attentional mechanisms, explores the superiority of each attentional 

mechanism, and optimises the overall network structure to improve the model's ability to pay attention 

to information about steel surface defects. 

However, the robustness of our model has not been verified in industrial scenarios, and we need to 

continue to improve the model structure and optimise the loss function and optimiser after comparing it 

with different detection algorithms before putting it into industrial scenarios for testing. 
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