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Abstract: Traditional text detection mainly relies on manual features, which are only applicable to simple 
environments and have limited generalisation capabilities. Although deep learning enhances the 
generalisation and robustness of detection, complex contexts still face challenges. Current CNN text 
detection algorithms are difficult to handle large-scale and long-distance text due to the limitation of 
receiving domain and spatial information extraction. This chapter proposes the GMSTNet model, which 
combines GhostNet V2, MobileNet V3, and Swin Transformer to enhance efficiency through segmented 
nonlinear activation, effectively handle small-size text and detailed features while enhancing global and 
local perception, and demonstrate good performance on multiple datasets. 
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1. Introduction 

Existing convolutional neural network (CNN) algorithms face the challenge of limited receptive 
domain and spatial information extraction capabilities when dealing with wide-ratio, widely-spaced, and 
irregularly shaped text, which affects their effectiveness in detecting large-scale and long-distance text. 
In this paper, we propose a scene text detection algorithm using the joint optimization of GhostNet V2[1], 
MobileNet V3[2] and Swin Transform[3] and we also propose the use of segmented nonlinear activation 
instead of continuous nonlinear activation to improve the efficiency of the model's execution on different 
hardware, which is hereinafter referred to as the model GMSTNet.  

2. The overall architecture of GMSTNet 

The GMSTNet proposed in this paper is primarily composed of five parts: Cheap Operation, Light 
Weight Se, Decoupled Fully Connection (DFC), Global Perception, and Light Weighted Se. Among these, 
the lightweight channel attention and cheap operations are connected through the decoupled fully 
connected module, integrating the five parts into a lightweight architecture. The network infrastructure 
is shown in Figure 1, and the overall architecture is presented in Table 1. 
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Figure 1: The structure of beck. 

The model based on the MobileNet V3 Small architecture effectively captures local and global text 
features by cascading eight optimized neck and STF structures. The Se module, due to its lightweight 
nature, is enabled in all neck layers except the second one to dynamically extract features. The Identify 
branch forms pathways under specific conditions to facilitate the fusion of information flow. To address 
the detection of large-sized text, STF is activated in the first and last neck to enhance global perception 
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and text pattern fusion. The model utilizes the Transp_Interp method for feature dimension expansion 
and channel reduction, with an expansion rate of 2 in each layer. Finally, scene text detection is completed 
using the Dbnet++ segmentation head, Dbhead. Subsequent sections will detail these technical specifics. 

Table 1: Overall Architecture. Each row represents a layer. "exp size" indicates the expansion channel 
number of the first 1x1 convolution in Neck, "Se" indicates whether the lightweight channel attention is 
employed in the current layer, "STF" indicates whether global perception is activated, "NL" represents 

the type of activation function used in the current layer, "NxN" represents the size of the depthwise 
separable convolution kernel in neck, and "S" stands for stride. 

Input Operator Exp 
Size 

Out 
channels Se NL STF S 

736x736x3 conv2d, 3x3 - 16 N SES N 2 
368x368x16 neck, 3x3 16 16 Y RE √ 2 
368x368x24 neck, 3x3 88 24 N RE N 1 
184x184x24 neck, 5x5 96 40 Y SES N 2 
184x184x40 neck, 5x5 240 40 Y SES N 1 
184x184x40 neck, 5x5 240 40 Y SES N 1 
184x184x40 neck, 5x5 120 48 Y SES N 1 
184x184x48 neck, 5x5 144 48 Y SES N 1 
92x92x48 neck, 5x5 288 96 Y SES Y 1 
92x92x48 Transp_Interp - - - - - - 
736x736x1 Dbhead - - - - - - 

2.1. Joint Optimization of DFC and Cheap Operation 

DFC tokenizes feature maps conceptually, transforming the processing of two-dimensional features 
into a sequence-based approach. For example, tokenizing H W CZ × ×∈  into 

C
ijz ∈ , at this point, the feature 

map  is denoted as 11 12{ , , , }HWZ z z z=  . The corresponding attention map is denoted as 11 12{ , , , }HWA a a a=  . The 
fully connected attention can be represented by the following equation: 

,
,

xy xy ij ij
i j

a F z=∑ 

                                   (1) 

Where F represents weights,  denotes the dot product, and xya
 is the xy  element in A. The 

computational complexity of tokenized fully connected attention is quadratic to the feature size (
2 2H W ). 

Equation (1) is decomposed along the dimension of the feature map into horizontal and vertical directions 
as follows: 
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Where HF  and WF  are the fully connected weights along horizontal and vertical directions, 
respectively. Thus, the theoretical complexity of DFC is ( )H WK HW K HWο + . Next, let's discuss Cheap 
Operation. 

Traditional convolution can be represented by the following formula: 
Y X f b= ∗ +                                   (4) 

Where c h wX × ×∈  represents the input feature map, and h ,w denote the height and width of the input 
feature map respectively, c is the number of channels, out out outC h wY × ×∈  represents the number of output 
feature map channels outc , outc k k cf × × ×∈ are all convolution kernels, k k× represents the height and width 
of the kernel, and b is the bias. 

In lightweight neural networks like MobileNet V3 Small, despite a streamlined design, the feature 
map channel count of 300 can increase computational costs. To optimize feature extraction, the Cheap 
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Operation method uses regular convolution to generate intrinsic feature maps, followed by linear 
operations to produce redundant feature maps, thus enhancing model performance without significantly 
increasing computational burden. 

For generating an intrinsic feature map with m channels, ignoring bias and using the same parameters 
as in formula(4), the process can be defined by the following formula: 

' 'Y X f= ∗                                     (5) 

Where ' out outm h wY × ×∈  represents the intrinsic feature map, and 
' c k k mf × × ×∈  denotes all the convolution 

kernels. 

2.2. Light Weighted Se 

Similar to DFC and Cheap Operation, lightweight channel attention also aims to address the 
contradiction between device computation and efficiency, but it has its own characteristics. Lightweight 
channel attention optimizes the channel dimension, producing more focused feature aggregation attention 
maps, as shown in Figure 2 

AvgPool Relu Hard
Swish

X

1f
2f

 
Figure 2: The structure of Light Weighted Se. 

The algorithm process is summarized with the following formula: 

2 1( ( e ( ( ))))Out X handswish f R lu f X= ⊗                          (6) 

Here, ⊗ represents the element-wise multiplication operation. Following the literature[2], the Hard 
Swish function is used, which is an approximation of the Swish function. The Swish and Hard Swish 
functions are defined as follows: 

Re 6( 3)
6

( )

LU xh swish x

swish x xσ

+
− =

=                              (7) 

Here,σ represents the function Sigmoid. The GPU, a key hardware in the field of deep learning, has 
thousands of cores. However, for computations involving continuous nonlinear activations, the GPU 
requires numerical simulation to solve approximations, which cannot be optimized by traditional GPUs. 
To improve efficiency, this paper proposes using a piecewise activation function to approximate the Hard 
Swish function, detailed in formulas(8). 
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Firstly, for ( , 3]−∞ − , since the original function's operation (max(0, ),6)Min x  is simplified to an 
assignment operation, the CUDA cores do not perform complex, time-consuming mathematical 
operations, but instead carry out high-speed assignment operations. Secondly, for [3, )+∞ , the CUDA 
cores directly execute the assignment operation. Lastly, because the segmented function is simple, the 
gradient computation during backpropagation also benefits from the simplified Hard-Swish form. 
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2.3. Global feature enhancement 

The STF module improves the feature detection capabilities of the Neck by integrating both WMSA 
and SWMSA[4]. This combination effectively captures the interrelationships among text features, 
background, and text elements, as illustrated in Figure 3. 

WMSA SWMSA 

outE
outF

 
Figure 3: STF module, cascaded from 6 layers and 3 sets of Swin Transform base blocks. 

The STF module includes six consecutive Swin Transformer base layers, with every two layers 
forming a basic block. These basic blocks have the same structure and use LN layers to normalize the 
inputs to the MSA and MLP layers. The WMSA layer captures local features by windowing feature maps 
and computing self-attention within independent windows. The SWMSA layer integrates local 
information from different windows. 

2.4. Generating Training Labels 

 
Figure 4: The process of generating training labels. 

As illustrated in Figure 4, the training process utilizes actual labels to guide the network in the 
development of maps predicting probabilities, establishing thresholds, and approximating binaries. For 
this, the Vatti clipping algorithm is used to expand and contract real text polygon labels, obtaining 
polygons eI and sI , respectively. The expansion and contraction use the same pixel offset, which is 
calculated using the following formula: 

2
o

o

Area( ) (1 )
Perimeter( )

b rm
b

× −
=

                                (9) 

Here, ( )·Area represents the area of the polygon, )·(Perimeter  represents the perimeter of the polygon, 
and r represents the scaling factor, typically set at 0.4. The area between eI and sI  serves as the text 
boundary. Similar labels are employed to guide the training of features of probability and threshold 
through measuring the spatial distance from boundary to actual text polygon labels. 
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2.5. Loss function 

In the model, the formulation of the loss function L  consists of three distinct components, as 
outlined by the equation below: 

1 2bi pr thL L L Lλ λ= + +                                (10) 

Here, biL , prL  and thL  correspond to the losses associated with the maps for approximate binaries, 
probabilities, and thresholds, respectively. 1λ  and 2λ  are the weight coefficients balancing the 
importance of the three types of losses. In text images in the scene, where positive and negative samples 
are extremely unbalanced, the Dice loss is particularly suitable due to its focus on the overlap between 
predictions and real labels, commonly used in image segmentation. To address this issue, the Dice loss 
is used to compute biL , with the following formula: 
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                             (11) 

Here,   ip  and   ig  denote the predicted and actual values for the i-th pixel, respectively. To ensure 
numerical stability and minimize the risk of overfitting, δ  serves as a regularization factor. We employ 

the binary cross-entropy method for calculating prL , which helps mitigate issues related to uneven 

sample distribution. The computation of prL  is detailed by the following formula: 

 log (1 ) log (1 )
P

pr i i i i
i S

L p gg p′ ′ ′ ′

∈

 = + − − ∑
                         (12) 

In this context, pS  denotes the set comprising both positive and negative samples.
'
ip  and 

'
ig  

correspond to the predicted and actual values of the i-th pixel, respectively. The L1 distance facilitates 
the computation of thL , which quantifies the deviation of predictions from actual labels. The computation 
is governed by the following equation: 

 | |
e

th i i
i R

L g p
∈

= −∑
                                  (13) 

In this context, 


ip  denotes the anticipated probability map value, while eR  signifies the pixel group 

contained by the expanded text polygon. The actual threshold map label is represented by 


ig . 

3. Experiment and Data Analysis 

3.1. Datasets 

The ICDAR 2017-MLT[5] dataset assembles a collection of textual visual content derived from natural 
settings in a polyglot context, comprising a total of 18,000 images divided into 7,200 for training, 1,800 
for validation, and 9,000 for assessment. Each image annotates the text regions with precise quadrilateral 
vertex coordinates. 

The ICDAR 2015[6] dataset emerges as a seminal resource for the detection of text oriented in diverse 
directions. It encompasses 1,500 images, split into 1,000 for training and 500 for testing. The dataset is 
distinguished by its assortment of image variables such as scale, orientation, and instances of diminished 
clarity, with meticulous annotations based on the coordinates of the text vertices. 

The Total Text[7] dataset is specifically engineered for the detection of text with unconventional 
contours within scene contexts, containing 1,555 images—1,255 allocated for training and 300 for testing. 
This dataset challenges researchers with its varied backgrounds and the frequent occurrence of text in 
curved layouts.  
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3.2. Experimental Setup 

In experiments, a dual-stage training protocol was adopted. Initial training was conducted using the 
training and validation collections from the ICDAR 2017-MLT dataset. This was followed by a 
refinement phase where models were fine-tuned using two subsequent datasets, specifically ICDAR 2015 
and Total Text, across a total of 1,200 iterations. Throughout these stages, batches were processed in 
groups of eight, employing Stochastic Gradient Descent (SGD) as the optimization technique. An 
adaptive mechanism was implemented for the modulation of the learning rate, utilizing a Polynomial 
Learning Rate Policy(14), starting at a rate 0l  of 0.001 with a decay parameter p  set at 0.9. 

0 (1 )
max_

p
r

epochl l
epoch

= × −
                              (14) 

During the model's training phase, its capacity for generalization is enhanced through the 
implementation of three distinct data modification techniques: random rotations, random flips, and 
random crops adjusted to 640x640 pixels. In the subsequent inference phase, the procedure initiates with 
the segmentation predictions, subsequently generating a binary map. The experimental apparatus 
comprises a computing unit equipped with an Intel Core i7-8700K CPU, which features six cores and 
twelve threads, complemented by an NVIDIA GeForce RTX 3090 GPU, and bolstered by 32GB of DDR4 
memory. 

3.3. Experimental Analysis 

In order to evaluate the stability and performance metrics of the newly introduced approach, datasets 
ICDAR 2015 and Total Text are used for comparison and analysis with recent methods. Hyperparameters 
Z are set to 5 and 6. Since different methods may use different hardware, the FPS listed in the tests are 
for reference only. 

Table 2: Results in ICDAR 2015. 

Model Conference/Journal ICDAR 2015 
P% R% F% FPS 

PSENet[8] CVPR2019 84.5 86.9 85.7 1.6 
PAN[9] ICCV2019 84.0 81.9 82.9 26.1 

ContourNet[10] CVPR2020 87.6 86.1 86.9 3.5 
DBnet[11] AAAI2020 91.8 83.2 87.3 12.0 
FAST[12] arXiv2021 89.7 84.6 87.1 15.7 
DText[13] PR2022 88.5 85.6 87.0 - 

DBnet++[14] TPAMI2022 90.9 83.9 87.3 10.0 
LPAP[15] TOMM2023 88.7 84.8 86.5 - 

Leaf Text[16] TMM2023 88.9 82.3 86.1 - 
Ours – 91.0 84.3 87.5 4.6 

Multi-directional text detection assessment: As shown in Table 2, our method achieves good 
performance in the F-measure, scoring 87.5%. Compared to classic segmentation methods such as 
PSENet and PAN, our method shows an improvement of 1.8% and 4.6% in F-measure. Compared to 
DBnet and DBnet++, our method increases the F-measure by 0.2% through improved recall rates. 

Table 3: Results in Total Text. 

Model Conference/Journal Total Text 
P R F FPS 

PSENet[8] CVPR2019 84.0 80.0 80.9 3.9 
PAN[9] CVPR2019 89.3 81.0 85.0 39.6 

ContourNet[17] CVPR2020 86.9 83.9 85.4 3.8 
DBnet[11] AAAI2020 87.1 82.5 84.7 32.0 
KPN[18] TNNLS2022 88.0 82.3 85.1 22.7 

DBnet++[14] TPAMI2022 88.9 83.2 86.0 28 
FS[19] TIP2022 88.7 79.9 84.1 24.3 

LPAP[15] TOMM2023 87.3 79.8 83.4 - 
Ours – 89.4 83.6 86.4 15.8 

Curved text detection assessment: Detecting curved text and complex scenes is more challenging than 
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quadrilateral text. Test results on Total Text are shown in Table 3. Our proposed method achieves good 
results in F-measure, scoring 86.4%. Additionally, compared to DBnet and DBnet++, our method 
improves the F-measure by 1.7% and 0.4%, respectively. Our method also shows advantages over other 
methods. 

4. Conclusion  

This paper introduces the GMSTNet algorithm, optimized with GhostNet V2, MobileNet V3, and 
Swin Transform for scene text detection. The algorithm efficiently acquires features through Cheap 
Operation and dynamically calculates feature weights using Light Weight Se, ensuring effective 
utilization of all features. DFC technology is employed for precise localization and fusion of scene text 
features, reducing computation and parameter volume. The STF module extracts overall context 
information, optimizing processing of small-size and fine details. The effectiveness of the algorithm is 
validated through experiments on public datasets. 
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