
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 5: 65-71, DOI: 10.25236/AJCIS.2024.070508

Published by Francis Academic Press, UK
-65-

Deep Learning-Based Text Detection in Natural
Scenes

Lizhi Cui1,a, Honglei Tian1,b,*, Shumin Fei1,c

1Henan Polytechnic University, Jiaozuo, Henan, China
aclzh0308@hpu.cn, bvskyi@qq.com, csmfei@seu.edu.cn
*Corresponding author

Abstract: Traditional text detection mainly relies on manual features, which are only applicable to simple
environments and have limited generalisation capabilities. Although deep learning enhances the
generalisation and robustness of detection, complex contexts still face challenges. Current CNN text
detection algorithms are difficult to handle large-scale and long-distance text due to the limitation of
receiving domain and spatial information extraction. This chapter proposes the GMSTNet model, which
combines GhostNet V2, MobileNet V3, and Swin Transformer to enhance efficiency through segmented
nonlinear activation, effectively handle small-size text and detailed features while enhancing global and
local perception, and demonstrate good performance on multiple datasets.

Keywords: Deep Learning, Text Detection, Natural Scenes, Feature Fusion

1. Introduction

Existing convolutional neural network (CNN) algorithms face the challenge of limited receptive
domain and spatial information extraction capabilities when dealing with wide-ratio, widely-spaced, and
irregularly shaped text, which affects their effectiveness in detecting large-scale and long-distance text.
In this paper, we propose a scene text detection algorithm using the joint optimization of GhostNet V2[1],
MobileNet V3[2] and Swin Transform[3] and we also propose the use of segmented nonlinear activation
instead of continuous nonlinear activation to improve the efficiency of the model's execution on different
hardware, which is hereinafter referred to as the model GMSTNet.

2. The overall architecture of GMSTNet

The GMSTNet proposed in this paper is primarily composed of five parts: Cheap Operation, Light
Weight Se, Decoupled Fully Connection (DFC), Global Perception, and Light Weighted Se. Among these,
the lightweight channel attention and cheap operations are connected through the decoupled fully
connected module, integrating the five parts into a lightweight architecture. The network infrastructure
is shown in Figure 1, and the overall architecture is presented in Table 1.

1x1,NLX +

Identity

3x3
Dwise,NL

Cat

DFC

X1x1,NL STF

Light Weight SE

Cheap Operation Light Weight Se DFC Global perception

Figure 1: The structure of beck.

The model based on the MobileNet V3 Small architecture effectively captures local and global text
features by cascading eight optimized neck and STF structures. The Se module, due to its lightweight
nature, is enabled in all neck layers except the second one to dynamically extract features. The Identify
branch forms pathways under specific conditions to facilitate the fusion of information flow. To address
the detection of large-sized text, STF is activated in the first and last neck to enhance global perception

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 5: 65-71, DOI: 10.25236/AJCIS.2024.070508

Published by Francis Academic Press, UK
-66-

and text pattern fusion. The model utilizes the Transp_Interp method for feature dimension expansion
and channel reduction, with an expansion rate of 2 in each layer. Finally, scene text detection is completed
using the Dbnet++ segmentation head, Dbhead. Subsequent sections will detail these technical specifics.

Table 1: Overall Architecture. Each row represents a layer. "exp size" indicates the expansion channel
number of the first 1x1 convolution in Neck, "Se" indicates whether the lightweight channel attention is
employed in the current layer, "STF" indicates whether global perception is activated, "NL" represents

the type of activation function used in the current layer, "NxN" represents the size of the depthwise
separable convolution kernel in neck, and "S" stands for stride.

Input Operator Exp
Size

Out
channels Se NL STF S

736x736x3 conv2d, 3x3 - 16 N SES N 2
368x368x16 neck, 3x3 16 16 Y RE √ 2
368x368x24 neck, 3x3 88 24 N RE N 1
184x184x24 neck, 5x5 96 40 Y SES N 2
184x184x40 neck, 5x5 240 40 Y SES N 1
184x184x40 neck, 5x5 240 40 Y SES N 1
184x184x40 neck, 5x5 120 48 Y SES N 1
184x184x48 neck, 5x5 144 48 Y SES N 1
92x92x48 neck, 5x5 288 96 Y SES Y 1
92x92x48 Transp_Interp - - - - - -
736x736x1 Dbhead - - - - - -

2.1. Joint Optimization of DFC and Cheap Operation

DFC tokenizes feature maps conceptually, transforming the processing of two-dimensional features
into a sequence-based approach. For example, tokenizing H W CZ × ×∈ into

C
ijz ∈ , at this point, the feature

map is denoted as 11 12{ , , , }HWZ z z z=  . The corresponding attention map is denoted as 11 12{ , , , }HWA a a a=  . The
fully connected attention can be represented by the following equation:

,
,

xy xy ij ij
i j

a F z=∑ 

 (1)

Where F represents weights,  denotes the dot product, and xya
 is the xy element in A. The

computational complexity of tokenized fully connected attention is quadratic to the feature size (
2 2H W).

Equation (1) is decomposed along the dimension of the feature map into horizontal and vertical directions
as follows:

,
1

, 1, 2, , , 1, 2, ,
H

H
hw h h w h w

h

a F z h H w W′ ′
′

′

=

= = =∑   

 (2)

,
1

, 1, 2, , , 1, 2, ,
W

W
hw w hw hw

w

a F a h H w W′ ′
′

′

=

= = =∑   

 (3)

Where HF and WF are the fully connected weights along horizontal and vertical directions,
respectively. Thus, the theoretical complexity of DFC is ()H WK HW K HWο + . Next, let's discuss Cheap
Operation.

Traditional convolution can be represented by the following formula:
Y X f b= ∗ + (4)

Where c h wX × ×∈ represents the input feature map, and h ,w denote the height and width of the input
feature map respectively, c is the number of channels, out out outC h wY × ×∈ represents the number of output
feature map channels outc , outc k k cf × × ×∈ are all convolution kernels, k k× represents the height and width
of the kernel, and b is the bias.

In lightweight neural networks like MobileNet V3 Small, despite a streamlined design, the feature
map channel count of 300 can increase computational costs. To optimize feature extraction, the Cheap

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 5: 65-71, DOI: 10.25236/AJCIS.2024.070508

Published by Francis Academic Press, UK
-67-

Operation method uses regular convolution to generate intrinsic feature maps, followed by linear
operations to produce redundant feature maps, thus enhancing model performance without significantly
increasing computational burden.

For generating an intrinsic feature map with m channels, ignoring bias and using the same parameters
as in formula(4), the process can be defined by the following formula:

' 'Y X f= ∗ (5)

Where ' out outm h wY × ×∈ represents the intrinsic feature map, and
' c k k mf × × ×∈ denotes all the convolution

kernels.

2.2. Light Weighted Se

Similar to DFC and Cheap Operation, lightweight channel attention also aims to address the
contradiction between device computation and efficiency, but it has its own characteristics. Lightweight
channel attention optimizes the channel dimension, producing more focused feature aggregation attention
maps, as shown in Figure 2

AvgPool Relu Hard
Swish

X

1f
2f

Figure 2: The structure of Light Weighted Se.

The algorithm process is summarized with the following formula:

2 1((e (())))Out X handswish f R lu f X= ⊗ (6)

Here, ⊗ represents the element-wise multiplication operation. Following the literature[2], the Hard
Swish function is used, which is an approximation of the Swish function. The Swish and Hard Swish
functions are defined as follows:

Re 6(3)
6

()

LU xh swish x

swish x xσ

+
− =

= (7)

Here,σ represents the function Sigmoid. The GPU, a key hardware in the field of deep learning, has
thousands of cores. However, for computations involving continuous nonlinear activations, the GPU
requires numerical simulation to solve approximations, which cannot be optimized by traditional GPUs.
To improve efficiency, this paper proposes using a piecewise activation function to approximate the Hard
Swish function, detailed in formulas(8).

(, 3]

(3,3)

[3

3

,

0

SegHard

)

Swish()
6

x x

x

x

x

x

x

∈
+

−∞ −

∈

∞


= ⋅ −

∈ +



 (8)

Firstly, for (, 3]−∞ − , since the original function's operation (max(0,),6)Min x is simplified to an
assignment operation, the CUDA cores do not perform complex, time-consuming mathematical
operations, but instead carry out high-speed assignment operations. Secondly, for [3,)+∞ , the CUDA
cores directly execute the assignment operation. Lastly, because the segmented function is simple, the
gradient computation during backpropagation also benefits from the simplified Hard-Swish form.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 5: 65-71, DOI: 10.25236/AJCIS.2024.070508

Published by Francis Academic Press, UK
-68-

2.3. Global feature enhancement

The STF module improves the feature detection capabilities of the Neck by integrating both WMSA
and SWMSA[4]. This combination effectively captures the interrelationships among text features,
background, and text elements, as illustrated in Figure 3.

WMSA SWMSA

outE
outF

Figure 3: STF module, cascaded from 6 layers and 3 sets of Swin Transform base blocks.

The STF module includes six consecutive Swin Transformer base layers, with every two layers
forming a basic block. These basic blocks have the same structure and use LN layers to normalize the
inputs to the MSA and MLP layers. The WMSA layer captures local features by windowing feature maps
and computing self-attention within independent windows. The SWMSA layer integrates local
information from different windows.

2.4. Generating Training Labels

Figure 4: The process of generating training labels.

As illustrated in Figure 4, the training process utilizes actual labels to guide the network in the
development of maps predicting probabilities, establishing thresholds, and approximating binaries. For
this, the Vatti clipping algorithm is used to expand and contract real text polygon labels, obtaining
polygons eI and sI , respectively. The expansion and contraction use the same pixel offset, which is
calculated using the following formula:

2
o

o

Area() (1)
Perimeter()

b rm
b

× −
=

 (9)

Here, ()·Area represents the area of the polygon,)·(Perimeter represents the perimeter of the polygon,
and r represents the scaling factor, typically set at 0.4. The area between eI and sI serves as the text
boundary. Similar labels are employed to guide the training of features of probability and threshold
through measuring the spatial distance from boundary to actual text polygon labels.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 5: 65-71, DOI: 10.25236/AJCIS.2024.070508

Published by Francis Academic Press, UK
-69-

2.5. Loss function

In the model, the formulation of the loss function L consists of three distinct components, as
outlined by the equation below:

1 2bi pr thL L L Lλ λ= + + (10)

Here, biL , prL and thL correspond to the losses associated with the maps for approximate binaries,
probabilities, and thresholds, respectively. 1λ and 2λ are the weight coefficients balancing the
importance of the three types of losses. In text images in the scene, where positive and negative samples
are extremely unbalanced, the Dice loss is particularly suitable due to its focus on the overlap between
predictions and real labels, commonly used in image segmentation. To address this issue, the Dice loss
is used to compute biL , with the following formula:

1

1 1

2 ()
1

N

i i
i

bi N N

i i
i i

L
p

g

g

p

δ

=

= =

= −
+ +

∑

∑ ∑



 (11)

Here, ip and ig denote the predicted and actual values for the i-th pixel, respectively. To ensure
numerical stability and minimize the risk of overfitting, δ serves as a regularization factor. We employ

the binary cross-entropy method for calculating prL , which helps mitigate issues related to uneven

sample distribution. The computation of prL is detailed by the following formula:

 log (1) log (1)
P

pr i i i i
i S

L p gg p′ ′ ′ ′

∈

 = + − − ∑
 (12)

In this context, pS denotes the set comprising both positive and negative samples.
'
ip and

'
ig

correspond to the predicted and actual values of the i-th pixel, respectively. The L1 distance facilitates
the computation of thL , which quantifies the deviation of predictions from actual labels. The computation
is governed by the following equation:

 | |
e

th i i
i R

L g p
∈

= −∑
 (13)

In this context,


ip denotes the anticipated probability map value, while eR signifies the pixel group

contained by the expanded text polygon. The actual threshold map label is represented by


ig .

3. Experiment and Data Analysis

3.1. Datasets

The ICDAR 2017-MLT[5] dataset assembles a collection of textual visual content derived from natural
settings in a polyglot context, comprising a total of 18,000 images divided into 7,200 for training, 1,800
for validation, and 9,000 for assessment. Each image annotates the text regions with precise quadrilateral
vertex coordinates.

The ICDAR 2015[6] dataset emerges as a seminal resource for the detection of text oriented in diverse
directions. It encompasses 1,500 images, split into 1,000 for training and 500 for testing. The dataset is
distinguished by its assortment of image variables such as scale, orientation, and instances of diminished
clarity, with meticulous annotations based on the coordinates of the text vertices.

The Total Text[7] dataset is specifically engineered for the detection of text with unconventional
contours within scene contexts, containing 1,555 images—1,255 allocated for training and 300 for testing.
This dataset challenges researchers with its varied backgrounds and the frequent occurrence of text in
curved layouts.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 5: 65-71, DOI: 10.25236/AJCIS.2024.070508

Published by Francis Academic Press, UK
-70-

3.2. Experimental Setup

In experiments, a dual-stage training protocol was adopted. Initial training was conducted using the
training and validation collections from the ICDAR 2017-MLT dataset. This was followed by a
refinement phase where models were fine-tuned using two subsequent datasets, specifically ICDAR 2015
and Total Text, across a total of 1,200 iterations. Throughout these stages, batches were processed in
groups of eight, employing Stochastic Gradient Descent (SGD) as the optimization technique. An
adaptive mechanism was implemented for the modulation of the learning rate, utilizing a Polynomial
Learning Rate Policy(14), starting at a rate 0l of 0.001 with a decay parameter p set at 0.9.

0 (1)
max_

p
r

epochl l
epoch

= × −
 (14)

During the model's training phase, its capacity for generalization is enhanced through the
implementation of three distinct data modification techniques: random rotations, random flips, and
random crops adjusted to 640x640 pixels. In the subsequent inference phase, the procedure initiates with
the segmentation predictions, subsequently generating a binary map. The experimental apparatus
comprises a computing unit equipped with an Intel Core i7-8700K CPU, which features six cores and
twelve threads, complemented by an NVIDIA GeForce RTX 3090 GPU, and bolstered by 32GB of DDR4
memory.

3.3. Experimental Analysis

In order to evaluate the stability and performance metrics of the newly introduced approach, datasets
ICDAR 2015 and Total Text are used for comparison and analysis with recent methods. Hyperparameters
Z are set to 5 and 6. Since different methods may use different hardware, the FPS listed in the tests are
for reference only.

Table 2: Results in ICDAR 2015.

Model Conference/Journal ICDAR 2015
P% R% F% FPS

PSENet[8] CVPR2019 84.5 86.9 85.7 1.6
PAN[9] ICCV2019 84.0 81.9 82.9 26.1

ContourNet[10] CVPR2020 87.6 86.1 86.9 3.5
DBnet[11] AAAI2020 91.8 83.2 87.3 12.0
FAST[12] arXiv2021 89.7 84.6 87.1 15.7
DText[13] PR2022 88.5 85.6 87.0 -

DBnet++[14] TPAMI2022 90.9 83.9 87.3 10.0
LPAP[15] TOMM2023 88.7 84.8 86.5 -

Leaf Text[16] TMM2023 88.9 82.3 86.1 -
Ours – 91.0 84.3 87.5 4.6

Multi-directional text detection assessment: As shown in Table 2, our method achieves good
performance in the F-measure, scoring 87.5%. Compared to classic segmentation methods such as
PSENet and PAN, our method shows an improvement of 1.8% and 4.6% in F-measure. Compared to
DBnet and DBnet++, our method increases the F-measure by 0.2% through improved recall rates.

Table 3: Results in Total Text.

Model Conference/Journal Total Text
P R F FPS

PSENet[8] CVPR2019 84.0 80.0 80.9 3.9
PAN[9] CVPR2019 89.3 81.0 85.0 39.6

ContourNet[17] CVPR2020 86.9 83.9 85.4 3.8
DBnet[11] AAAI2020 87.1 82.5 84.7 32.0
KPN[18] TNNLS2022 88.0 82.3 85.1 22.7

DBnet++[14] TPAMI2022 88.9 83.2 86.0 28
FS[19] TIP2022 88.7 79.9 84.1 24.3

LPAP[15] TOMM2023 87.3 79.8 83.4 -
Ours – 89.4 83.6 86.4 15.8

Curved text detection assessment: Detecting curved text and complex scenes is more challenging than

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 7, Issue 5: 65-71, DOI: 10.25236/AJCIS.2024.070508

Published by Francis Academic Press, UK
-71-

quadrilateral text. Test results on Total Text are shown in Table 3. Our proposed method achieves good
results in F-measure, scoring 86.4%. Additionally, compared to DBnet and DBnet++, our method
improves the F-measure by 1.7% and 0.4%, respectively. Our method also shows advantages over other
methods.

4. Conclusion

This paper introduces the GMSTNet algorithm, optimized with GhostNet V2, MobileNet V3, and
Swin Transform for scene text detection. The algorithm efficiently acquires features through Cheap
Operation and dynamically calculates feature weights using Light Weight Se, ensuring effective
utilization of all features. DFC technology is employed for precise localization and fusion of scene text
features, reducing computation and parameter volume. The STF module extracts overall context
information, optimizing processing of small-size and fine details. The effectiveness of the algorithm is
validated through experiments on public datasets.

References

[1] Tang Y, Han K, Guo J, et al. GhostNetV2: Enhance cheap operation with long-range attention[J].
arXiv, 2022.
[2] Howard A, Sandler M, Chu G, et al. Searching for MobileNetV3[M/OL]. arXiv, 2019.
[3] Liu Z, Lin Y, Cao Y, et al. Swin transformer: Hierarchical vision transformer using shifted
windows[EB/OL]//arXiv.org. (2021-03-25).
[4] Li X, Yao X, Liu Y. Combining swin transformer and attention-weighted fusion for scene text
detection[J/OL]. Neural Processing Letters, 2024, 56(2): 52.
[5] Nayef N, Yin F, Bizid I, et al. ICDAR2017 robust reading challenge on multi-lingual scene text
detection and script identification - RRC-MLT[C/OL]. 2017: 1454-1459.
[6] Karatzas D, Bigorda L G I, Nicolaou A, et al. ICDAR 2015 competition on Robust Reading[J/OL].
2015 13th International Conference on Document Analysis and Recognition (ICDAR), 2015, null: 1156-
1160.
[7] Ch’ng C K, Chan C S. Total-text: A comprehensive dataset for scene text detection and
recognition[C/OL]//2017 14th IAPR International Conference on Document Analysis and Recognition
(ICDAR): Vol. 01. 2017: 935-942.
[8] Wang W, Xie E, Li X, et al. Shape robust text detection with progressive scale expansion
network[M/OL]. arXiv, 2019.
[9] Wang W, Xie E, Song X, et al. Efficient and Accurate Arbitrary-Shaped Text Detection With Pixel
Aggregation Network[J/OL]. 2019 IEEE/CVF International Conference on Computer Vision (ICCV),
2019, null: 8439-8448.
[10] Wang Y, Xie H, Zha Z, et al. ContourNet: Taking a Further Step Toward Accurate Arbitrary-Shaped
Scene Text Detection[J/OL]. 2020 IEEE/CVF Conference on Computer Vision and Pattern Recognition
(CVPR), 2020, null: 11750-11759.
[11] Liao M, Wan Z, Yao C, et al. Real-time scene text detection with differentiable binarization[M/OL].
arXiv, 2019.
[12] Chen Z, Wang J, Wang W, et al. FAST: Faster Arbitrarily-Shaped Text Detector with Minimalist
Kernel Representation[M/OL]. arXiv, 2023.
[13] Cai Y, Liu Y, Shen C, et al. Arbitrarily shaped scene text detection with dynamic convolution[J/OL].
Pattern Recognition, 2022, 127: 108608.
[14] Liao M, Zou Z, Wan Z, et al. Real-time scene text detection with differentiable binarization and
adaptive scale fusion[M/OL]. arXiv, 2022.
[15] Fu Z, Xie H, Fang S, et al. Learning pixel affinity pyramid for arbitrary-shaped text detection[J/OL].
ACM Transactions on Multimedia Computing, Communications, and Applications, 2022, 19.
[16] Yang C, Chen M, Yuan Y, et al. Text Growing on Leaf[J/OL]. ArXiv, 2022, abs/2209.03016: null.
[17] Deng D, Liu H, Li X, et al. PixelLink: Detecting Scene Text via Instance Segmentation[J/OL].
Proceedings of the AAAI Conference on Artificial Intelligence, 2018, 32(1).
[18] Zhang S X, Zhu X, Hou J B, et al. Kernel Proposal Network for Arbitrary Shape Text
Detection[J/OL]. IEEE transactions on neural networks and learning systems, 2022, PP: null.
[19] Wang F, Xu X, Chen Y, et al. Fuzzy semantics for arbitrary-shaped scene text detection[J/OL].
IEEE transactions on image processing, 2023, 32: 1-12.

	1. Introduction
	2. The overall architecture of GMSTNet
	2.1. Joint Optimization of DFC and Cheap Operation
	2.2. Light Weighted Se
	2.3. Global feature enhancement
	2.4. Generating Training Labels
	2.5. Loss function
	3. Experiment and Data Analysis
	3.1. Datasets
	3.2. Experimental Setup
	3.3. Experimental Analysis
	4. Conclusion
	References

