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Abstract: The COVID-19 outbreak highlighted the importance of mRNA vaccines; however, the thermal 
instability of mRNAs poses many challenges for vaccine production, storage, and transport, and 
accurately predicting their degradation is critical to safeguarding vaccine quality and efficacy. 
Traditional prediction methods always have the disadvantages of long experimental periods, excessive 
errors and unstable biological environments. Although machine learning and deep learning 
approaches can compensate for the shortcomings of traditional methods, using only one of these 
models to predict COVID-19 mRNA vaccine degradation is not effective. So, we propose a fusion model 
GGTC of GRU, GNN, Transformer and CNN. The results show that our fusion of GRU, CNN, 
Transformer and GNN models not only improves the accuracy of model prediction, but also improves 
the generalisation ability of the model. 
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1. Introduction 

Messenger ribonucleic acid vaccines (mRNA vaccines) are a novel vaccine technology that play an 
important role in disease prevention, for example in the fight against infectious diseases [1]. The core 
component of an mRNA vaccine is a piece of messenger ribonucleic acid (mRNA) that encodes an 
antigenic protein. When the vaccine is injected into the body, the mRNA enters the cell and uses the 
cell's own ribosomal translation mechanism to translate the genetic information carried by the mRNA 
into antigenic proteins. These antigenic proteins are processed inside the cell and displayed on the cell 
surface, activating the body's immune system. The immune system recognizes these foreign antigens 
and produces a specific immune response involving the production of antibodies and the activation of 
immune cells such as T-cells [2]. The immune system is able to quickly recognise and eliminate a real 
pathogen when it invades the body, preventing disease. In the COVID - 19 mRNA vaccine, the mRNA 
encodes the spiny protein (S protein) of the new coronavirus [3]. 

The development cycle for mRNA vaccines can be significantly shortened compared to traditional 
vaccines [4]. This is because they do not require the cultivation of large numbers of pathogens or the 
complex protein purification process of conventional vaccines. mRNA itself is a non-replicating 
nucleic acid with no ability to infect [5]. It is also degraded in the body by normal cellular metabolic 
processes and does not integrate into the human genome. This is a clear safety advantage over some 
traditional vaccines, such as live attenuated vaccines, which may have the risk of responding to 
mutations that cause disease. mRNA is a relatively unstable molecule, which places high demands on 
the storage and transport conditions of mRNA vaccines [6]. Many mRNA vaccines need to be stored at 
ultra-low temperatures to ensure mRNA integrity and vaccine efficacy. It is therefore important for us 
to study the degradation of the COVID-19 mRNA vaccine. 

There are three main methods for predicting COVID-19 mRNA vaccine degradation; methods 
based on physicochemical properties, methods based on nucleic acid sequence characterisation and 
methods based on enzymatic reactions [7-10]. According to the Arrhenius equation, the degradation of 
mRNA was observed by incubating the vaccine at different high temperatures and then extrapolating 
the degradation rate at normal storage temperature, but the experimental period is long and the 
extrapolation results may have errors. Bioinformatics software was used to predict the secondary 
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structure of mRNAs and analyse their structural features such as stem-loop and hairpin. mRNAs with 
more double-stranded regions are relatively more stable, but the secondary structure of mRNAs 
changes dynamically and does not reflect their true stability in complex biological environments [11]. Of 
course, we can also calculate the GC content of the mRNA, and a higher GC content may make the 
mRNA more thermally stable, but the base composition is only one of the influencing factors, and we 
cannot accurately predict the degradation based on this alone [12]. Different types of nucleases were 
added to mRNA vaccine samples to simulate nuclease degradation of mRNA to understand the 
sensitivity of mRNA to different nuclease, but in vitro tests cannot fully simulate the complex 
enzymatic environment in vivo [13]. The above three traditional methods have problems in predicting 
COVID-19 mRNA vaccine degradation, leading to excessive errors between the final prediction and 
the real results. 

In mRNA vaccine degradation prediction, the support vector machine (SVM) algorithm attempts to 
find an optimal hyperplane such that the sum of the distances of all sample points to that hyperplane is 
minimised. Features related to vaccine degradation are used as input vectors to train the SVM model to 
predict the extent of vaccine degradation [14]. However, SVM can suffer from high computational 
complexity on a large scale and has limited ability to model complex non-linear relationships. 
Recurrent Neural Networks (RNN) are able to take into account the sequence information of the bases 
in a sequence when processing mRNA sequences [15]. At each time step, the RNN receives one base 
information and computes the next hidden state based on the current input and hidden state. For 
COVID - 19 mRNA vaccine degradation prediction, the RNN can learn the pattern of the effect of 
bases at different positions in the sequence on degradation. However, traditional RNNs suffer from the 
problem of gradient vanishing or gradient explosion, and it can be difficult to effectively learn long-
term dependencies when dealing with long sequences. Long Short-Term Memory Networks (LSTM) is 
an improvement of RNNs by introducing gating units to solve the gradient problem of traditional 
RNNs [16]. In predicting mRNA vaccine degradation, LSTM is better able to remember key information 
in long sequences. LSTM remembers important degradation-related features that appear at the 
beginning of mRNA sequences and consistently uses this information in subsequent calculations to 
predict degradation rates [17]. LSTM is able to capture the complex temporal dependencies in sequences 
more accurately, which is beneficial for analysing the effects of interactions between distant bases on 
the degradation of mRNA sequences. However, the LSTM structure is more complex and less 
computationally efficient, so another variant of the RNN, the Gated Control Loop Unit (GRU) neural 
network, emerged to solve this problem.  

In the COVID-19 mRNA vaccine degradation prediction task, the GRU controls the delivery and 
updating of information through update and reset gates, and the GRU is able to rapidly learn the feature 
representations of the mRNA sequences and predict degradation based on these features [18]. To predict 
mRNA vaccine degradation, the mRNA molecule can be represented as a graph structure, with bases as 
nodes and interactions between bases as edges. By propagating information through the graph, the 
graph neural network (GNN) is able to learn the feature representations of the nodes and edges and 
predict the degradation of the whole mRNA molecule accordingly [19-20]. Transformer's self-attention 
mechanism is able to compute the degree of association between any two positions in a sequence 
directly, without having to process the sequence step by step like an RNN [21]. When predicting mRNA 
vaccine degradation, it can comprehensively capture the interactions between individual bases in a 
sequence, and both close and distant relationships can be effectively modelled. For mRNA vaccine 
degradation prediction, CNNs can treat mRNA sequences as one-dimensional signals and perform 
feature extraction by sliding the convolution kernel over the sequence. Attention networks are better at 
capturing global features, while traditional convolutional neural networks (CNNs) are better at 
capturing local features [22]. For mRNA vaccine degradation prediction, CNNs can treat mRNA 
sequences as one-dimensional signals and perform feature extraction by sliding the convolution kernel 
over the sequence. 

We select four different types of models - GRU, CNN, Transformer and GNN - for fusion. The 
GRU model works well with time-series data such as mRNA sequences, capturing information about 
the order of bases in the sequence as well as patterns of base combinations. CNNs are good at 
extracting local features and can identify specific structures in mRNA sequences. Transformer excels at 
capturing global sequence information and complex relationships. GNN uses information about the 
graph structure of mRNA molecules to learn the association of base interactions with degradation. 
Model fusion can integrate the advantages of different models and compensate for the shortcomings of 
a single model, thus improving the accuracy and stability of the forecast. 
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2. Method 

2.1 Dataset 

The COVID-19 mRNA vaccine dataset was derived from the RMDM database [23]. There are a total 
of 6,034 samples in this data set. The training set has a total of 2,400 samples with a length of 68 
sequences. The test set has 3,634 samples with sequences of length 91. The details of this dataset are 
presented in Table 1. 

Table 1: COVID-19 mRNA vaccine dataset 

Parameters Explanation 
id_seqpos An arbitrary identifier for each sample. 
reactivity Reaction values for the first 68 bases in the sequence are used to determine 

the likely secondary structure of the RNA sample. 
deg_Mg_pH10 Reactivity values for the first 68 bases as denoted in sequence, and used to 

determine the likelihood of degradation at the base/linkage after incubating 
with magnesium at high pH (pH 10). 

deg_pH10 Reactivity values for the first 68 bases as denoted in sequence, and used to 
determine the likelihood of degradation at the base/linkage after incubating 
without magnesium at high pH (pH 10). 

deg_Mg_50C Reactivity values for the first 68 bases as denoted in sequence, and used to 
determine the likelihood of degradation at the base/linkage after incubating 
with magnesium at high temperature (50 degrees Celsius). 

deg_50C Reactivity values for the first 68 bases as denoted in sequence, and used to 
determine the likelihood of degradation at the base/linkage after incubating 
without magnesium at high temperature (50 degrees Celsius). 

Table 1 contains the meanings indicated by the six columns in the dataset. The experimental data 
were all obtained for the first 68 bases under the five conditions in Table 1. Minimum value across all 5 
conditions must be greater than -0.5. Mean signal/noise across all 5 conditions must be greater than 1.0. 
Signal/noise is defined as mean (measurement value over 68 nts) / mean (statistical error in 
measurement value over 68 nts). To help ensure sequence diversity, the resulting sequences were 
clustered into clusters with less than 50% sequence similarity, and the 629 test set sequences were 
chosen from clusters with 3 or fewer members. That is, any sequence in the test set should be sequence 
similar to at most 2 other sequences. 

In mRNA vaccine degradation studies, a matrix of class correlation coefficients for mRNA genes 
can help identify which genes are associated with mRNA vaccine stability [24-25]. The matrix of class 
correlation coefficients of mRNA genes can be used to extract very useful features. Highly correlated 
genomes may have redundant information, and representative genes from them can be selected as 
features to reduce the dimensionality of the data while preserving important information [26]. We 
selected the class correlation coefficient matrix of the mRNA gene with the serial number 
id_0a2bbe37e and visualised the results as shown in 1. 

 
Figure 1: Matrix of class correlation coefficients for mRNA genes 
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We can see that the colours in Figure 1 gradually change from dark blue in the lower left corner to 
yellow in the upper right corner. Dark blue indicates lower correlation coefficients, close to 0 or 
negative, and yellow indicates higher correlation coefficients, close to 1. Dark blue areas indicate low 
or negative correlation coefficients between genes. Yellow areas indicate a high positive correlation 
between genes. 

We selected the mRNA sequence with the sequence number id_0a2bbe37e and estimated the 
structural sequence of the mRNA using the gamma parameter, as shown in 2. The secondary structure 
of the mRNA is visualised as shown in Figure 3. 

 
Figure 2: Estimation of structural sequence of mRNA by gamma parameter 

 
Figure 3: mRNA secondary structure visualisation 

Figures 2 and 3 illustrate the mRNA secondary structure. The secondary structure of mRNA plays 
an important role in predicting mRNA degradation in neural networks such as graph neural networks 
and CNNs, which can provide a structural building block for graph neural networks and help capture 
long-range interactions. Provides CNNs and transformers with local feature patterns and increased 
feature dimensions. It also helps GRUs capture information about sequence and structure dynamics and 
account for long-term dependencies, helping each neural network to better mine and degrade relevant 
features to improve prediction accuracy. 

2.2 Feature Engineering 

Feature engineering plays a multifaceted role in predicting mRNA degradation using neural 
networks. It is capable of representing and transforming data, encoding biological information such as 
the sequence and structure of mRNAs into numerical forms that can be processed by neural networks, 
and integrating features from different sources and dimensions to construct comprehensive feature 
matrices. By using clustering analysis to extract complex features based on graph structure and mining 
potential feature relationships, neural networks can capture long-range interactions, spatial 
relationships and common differences within mRNA molecules [27]. The rich features provide diverse 
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inputs to the model, increasing the model's generalisation ability and training effect, and improving 
prediction accuracy on new data. 

Feature engineering in the prediction of mRNA vaccine degradation mainly consists of the 
following steps: 

1) Feature extraction from .npy files. 

2) Addition of features to the dataset. 

3) Data pre-processing and feature integration. 

4) Clustering and data segmentation. 

5) Data storage. 

Specific secondary structure patterns, some combinations of stem-loop structures, can affect the 
binding site and affinity of the degrading enzyme to the mRNA and thus the rate of degradation, and 
extraction of these structural features can provide neural networks with critical information to predict 
degradation. 

We chose to use the KMeans clustering algorithm for the clustering operation, which groups the 
mRNA molecules based on the similarity of the data, adding the cluster_id column to the data. This 
helps to reveal natural grouping structures in the data, and the neural network can use this clustering 
information to learn common features of molecules within different groups, and different features 
between groups, to better capture potential patterns associated with degradation. 

Different types of features can reflect different aspects of mRNA molecules, which helps to 
improve the generalisation ability of the model to adapt to the task of predicting degradation of 
different types of mRNA molecules and reduce the risk of overfitting. In addition to sequence features, 
structure-related features can help the neural network to distinguish the effect of changes in the 
secondary structure of mRNA on degradation under different environmental conditions, such as 
different pH and temperature, and thus predict degradation more accurately. 

The data segmentation combines a variety of factors, such as the reactivity column and the 
cluster_id column, generating fold5 and fold10 columns for labelling data in different folds. This 
allows a cross-validation strategy to be used during model training, making rational use of the data for 
multiple training and evaluation. Data partitioning in the feature engineering phase ensures that the 
training and validation sets are representative in terms of data distribution and feature combinations, 
providing a reliable data base for neural network training. 

3. Experiments 

We first train the model using Gated Recurrent Unit (GRU). The GRU gated recurrent unit is a 
recurrent neural network that slightly improves on the LSTM by combining the forget gate and the 
input gate into a single “update gate”, as well as combining the cell state and the hidden state [28]. 

 
Figure 4: GRU Framework 

As shown in Figure 4, we design a GRU network with multiple bi-directional GRU layers stacked 
together, and each bi-directional GRU layer consists of bi-directional GRU units inside, which can 
capture both forward and reverse sequence information. Each bi-directional GRU layer receives the 
data output from the previous layer, and the final output is information about the entire sequence, with 
the shape keeping the sequence length dimension constant. 
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We chose to use four neural network structures, GRU, GNN, Transformer and CNN, for fusion to 
obtain the GGTC model. 

 
Figure 5: GGTC Architecture 

As shown in Figure 5, in Conv1, the convolution kernel slides over the raw data in certain steps to 
extract preliminary local features. The data passed from Conv1 to Conv2 is the feature map after the 
first layer of convolutional processing. Conv2 builds on this by using different convolutional kernels to 
further extract more complex and abstract features. 

The feature map output from Conv2 is a multi-dimensional array representing features extracted at 
different locations and on different channels. Before passing to FC Layer1, these feature maps need to 
be spread into one-dimensional vectors. This process actually converts the spatially distributed feature 
information into a long vector so that the fully connected layer can process it. Each neuron in FC 
Layer1 is connected to all the elements in this one-dimensional vector, and the local features extracted 
by the convolutional layer are combined into a higher-level feature representation through the operation 
of weighted summation and activation function. This step is an important conversion from local to 
global features. 

There are paths from Conv1 and Conv2 to the BPP Matrix and Nodes, respectively. The BPP Matrix 
represents the probability of base pair formation in an mRNA sequence, and is an important tool for 
describing the secondary structure of mRNAs. The Nodes represent the key feature points in the 
structure of mRNAs. GRU and Attention Blocks are used to address long-range dependencies in 
mRNA sequences and focus on sequence regions that are important for degradation rates. Graph Block 
is used to process the secondary structure of mRNA. It converts the structural information of mRNA 
into a graph representation and processes it through a graph neural network (GNN) to extract structure-
related features. 

 
Figure 6: GGTC Training History 

As shown in Figure 6, the degradation process of mRNA vaccines involves many factors, including 
sequence information, secondary structure, etc. GRU processes sequence order information, GNN 
processes structural information, Transformer captures global associations, and CNN extracts local 
patterns. This fusion can make full use of the multi-modal information of mRNA data, more 
comprehensively understand the characteristics of mRNA vaccines, and thus more accurately predict 
the degradation rate. 
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4. Discussion and Conclusion 

The GGTC model proposed in this study combines four different types of model architectures: 
GRU, GNN, Transformer and CNN. GRU is able to effectively deal with long-term dependencies in 
sequence data and capture temporal features of mRNA sequences, which is a powerful support for 
understanding the dynamics of the degradation process, while GNN focuses on modelling the complex 
network of relationships, such as the molecular structure, by analysing the interactions within and 
between mRNA molecules. GNN focuses on the modelling of complex networks such as molecular 
structures, and explores the potential structural factors affecting degradation through the analysis of 
intra- and inter-molecular interactions of mRNAs. Transformer, with its powerful parallel computing 
capability and ability to capture global information, is able to comprehensively integrate multi-
dimensional information related to mRNAs and enhance the model's capability of recognizing complex 
patterns. CNN, with its convolutional operation, is good at extracting local features, which is very 
helpful in analysing the local structures and the global information of mRNA sequences. The 
convolution operation of CNN is good at extracting local features and has unique advantages in 
analysing the local structure and patterns of mRNA sequences. By fusing these four models, the GGTC 
model can fully utilize the strengths of each model and make up for the deficiencies of a single model. 

However, there is still room for further improvement of the GGTC model. In terms of data 
acquisition, we used a relatively comprehensive public dataset of mRNA vaccines, but due to the 
complexity and limitations of biological experiments, the scale and diversity of the data still need to be 
improved. There is also model interpretability, which requires more research to develop effective 
interpretation methods to improve the understanding of the decision-making process of GGTC models. 
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