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Abstract: With the expansion of sports industry, more and more athletes begin to use mathematical 
models to study sports process, in order to improve sports performance. To characterize the abilities of 
cyclists, this paper defines the Power Profile and plot the radar diagrams to describe sprint abilities, 
anaerobic capacity, VO2 max capacity and FTP (Function Threshold Power) of different riders. In 
order to optimize the output power of cyclists in different stages of the race, an effective Cycling Model 
was established to provide the relationship between the rider’s position on the course and the power 
the rider applies. 
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1. Introduction 

It has been a trend to use Mathematical Models to improve athletes’ performance since 1970s[1]. 
American math scientist Joseph B. Keller published an article called A theory of competitive 
running[2], which proposed a model that could represent the characteristics of different runners and 
was a great guide to the sport of running at that time, thus the athletes greatly improved their 
performance [3]. Andrew M. Jones et al. described the power curve into intermittent high-intensity 
exercise and used existing two-parameter models (hyperbolic relationship between power and duration) 
to make better predictions for athlete fatigue monitoring[4]. Morton extended the two-parameter model 
to a three-parameter model and developed a new power curve model [5]. Dr. Andrew Coggan et al. 
used a three-parameter model to analyze the strengths and weaknesses of different types of riders 
through statistical data and obtained the corresponding power curve[6]. In addition to this, there is also 
a lot of research on how to distribute power wisely so that the rider can win. 

Our team believe that there are many similarities between running and cycling, for example, they 
both test the ability to combine aerobic and anaerobic exercise, and they are both competitive sports, so 
we modified J. B. Keller’s running model[2] appropriately and set more control parameters to reflect 
the various situations encountered in cycling, which is different from running. 

Dajo Sanders et al. used maximal aerobic force, peak sprint force output, and an exponential 
constant describing the decay of force over time to establish force-duration relationships for each 
participant[7]. 

Consequently, a definition of Power Profile needs to be considered in our model, which is to 
describe the comprehensive ability of different kinds of riders. Use it to describe at least two types of 
riders and a Cycling Model also needs to be established to describe the relationship between the rider’s 
position on the course and the power the rider applies. 

On the definition of Power Profile, this paper plans to use the work of Hunter Allen, Andrew 
Coggan, PhD, and Stephen McGregor, PhD as a reference[8]. We should build relationships between 
the four parameters in their concept and the four parameters in our model to describe riders’ abilities, 
thus define our Power Profile. 

On the question of describing the relationship between the rider’s position on the course and the 
power the rider applies, this paper establishes the Cycling Model to describe the ideal speed at every 
point of the course using the parameters we define in Power Profile. This model can provide a well-
established cycling strategy to assist coaches to guide cyclists to have an excellent performance in the 
competition and break the best results. 
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2. Analysis and Modelling 

2.1 Power Profile in Cycling Model  

According to Hunter Allen, Andrew Coggan, PhD, and Stephen McGregor, PhD’s research on 
Training and Racing with a Power Meter, Power Profile tells us about athletes’ abilities on cycling [8]. 
It contains four very important values telling us about: sprint abilities (5s), anaerobic capacity 
described by 1 minute maximum power, 5 minutes to tell us about VO2 max capability and 20 minutes 
to describe the FTP. We abbreviate the above parameters as SA, AC, VO2 and FTP. 

Using the known data, we can easily plot the Figure 1 to describe the Power Profile of different 
athletes. 

 

 
Figure 1: Power Profile of different athletes 

However, in our model, it’s not a best choice to consider the four values directly, so we try to build 
a connection between the four values and the four physiological parameters: the maximum force F, the 
rate of energy recovery 𝜉𝜉, the coefficient 𝜏𝜏 and the energy stored before the competition E0.  

After analyzing previous researches, we are able to build connections between three of the 
physiological parameters. The sprint ability of a rider corresponds to his explosive power to accelerate 
in a short time, which is related to the maximum impulse force F. It is known that the relationship is 
linear. Consequently, we did fitting in (1) and the R-square is 0.9457. Figure 2 shows the fitting result 
of F and SA. 

𝐹𝐹 = 0.01957 ∙ 𝑆𝑆𝑆𝑆 + 0.8132 (1) 
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Figure 2: The fitting result of F and SA 

In addition, we transform the value of FTP into the recovery coefficient 𝜉𝜉 to describe the change in 
rider’s energy. Also, VO2 reflects the aerobic capacity of a rider, and we define 𝜏𝜏 to represent the 
internal and external resistance coefficient of a rider in riding. The relationships are indicated below. 

𝜉𝜉 = 0.1467 ∙ 𝐹𝐹𝐹𝐹𝐹𝐹 + 0.3006 (2) 

𝜏𝜏 = −4.929 ∙ 𝑉𝑉𝑂𝑂2 + 37.02 (3) 

Finally, we are able to establish our Power Profile. In our model, Power Profile is a combined-value 
to introduce the physical abilities of athletes, which depends on the individual only. Power Profile 
contains four values: the maximum impulse force F, the rate of energy recovery 𝜉𝜉, the coefficient 𝜏𝜏 and 
the energy stored before the competition E0. 

2.2 Cycling Model 

After defining our Power Profile, we are ready to build a Cycling Model. Having analyzed the 
model given by J. B. Keller in 1973[2], we can divide the cycling course into three sections. In the 
primary section, riders try their best to accelerate. Then they complete the middle section at a relatively 
stable speed. Finally, before they finish the whole course, riders use up their energy and dash across the 
finish line with inertance.  

2.2.1 Preliminary Modelling 

According to the mathematical relationship between speed, time, and distance in physics, the 
distance of the course can be defined as follows. 

𝐷𝐷 = � 𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑇𝑇

0
(4) 

Then we need to analyze how to use the least time to cover the course. This question equals to how 
far the bicycle can travel within the given time. To simplify the question, we decide to establish a 
model for unit mass (m = 1). According to Newton’s 2nd Law, we can describe the movement in the 
following model: 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

+
𝑣𝑣
𝜏𝜏

= 𝑓𝑓(𝑡𝑡)

𝑣𝑣(0) = 0
(5) 

where 𝑓𝑓(𝑡𝑡)  represents the impulse force, 1
𝜏𝜏

 represents the proportionality coefficient between 
velocity and internal, as well as external resistance when riding a bike. The faster a rider is, the smaller 
𝜏𝜏 will be. 

Here, the impulse force is limited by human abilities, which is related to the physiological structure, 
so the maximum impulse force of one person is fixed to a known figure, which can be calculated using 
Power Profile we have defined. We use F to represent it thus we have this restriction. 

𝑓𝑓(𝑡𝑡) ≤ 𝐹𝐹 (6) 
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Then, we take the wind resistance into consideration, for we are going to discuss the influence of it 
in the following parts. As is known, wind resistance is proportional to the speed, so we define the 
proportionality coefficient as 1

𝜆𝜆
. The stronger the wind is, the bigger the resistance will be. We can get a 

new model below. 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 +  
𝑣𝑣
𝜏𝜏

 +  
𝑣𝑣
𝜆𝜆

 =  𝑓𝑓(𝑡𝑡)

𝑣𝑣(0)  =  0
(7) 

In our model, Power Profile, which is the maximum force F, the rate of energy recovery 𝜉𝜉, the 
coefficient 𝜏𝜏 and energy E0, is referred to as the four physiological parameters for further study. 

2.2.2 Upward Slopes and Sharp Turns  

Considering the complexity of the course, we have to add parameters to describe nontrivial road 
grades and sharp turns. 

To analyze the situation of riding uphill, we need to do force analysis. As for the purpose is to find 
a way to save as much time as possible, athletes are supposed to use impulse force as much as possible 
to accelerate. What is worth to mention is that the impulse force during the race is limited by both the 
road condition and the energy consumption of a rider.  

We use f(t) to represent the impulse force at the time point t and Fn to represent the support force 
given by the ground. When riding uphill, bicycle athletes need to overcome gravity with impulse force. 
Comparing with riding on flat land, they may use the same force but move slower. Here, θ represents 
the angle between the slope and flat ground. It is related to the course itself only, and can be referred to 
as θ(s), where s represents the distance the rider has travelled. Different athlete can reach different 
distance in the same time, so s can be a function of time t. Thus the angle is finally marked as θ(s(t)) 
which satisfies following equations. 

𝑠𝑠 = � 𝑣𝑣(𝑡𝑡)𝑑𝑑𝑑𝑑
𝑡𝑡

0
(8) 

We suppose the angle is negative when the bicycle runs downhill and zero when on flat land, so the 
function θ exists through the whole course. 

In the case of sharp turns, we use r(s) to represent the curvature radius on a 3-dimension map. 
Similar to the angle θ, the curvature radius r is only related to the course itself thus can be a function of 
the time t. 

In the case when the bike is taking turns at maximum speed. fmax represents the maximum fiction of 
this turn, which can be determined by friction coefficient µ. If we suppose the curvature radius on 
straight road is infinity, the highest speed on every single point of the course is fixed. The course, as a 
curve, is relatively smooth, so the function r(s) is smooth. As a result, the speed, which can be 
calculated using fmax , m(m = 1), and r(s), is smooth. Hence, to cover the course within the shortest time, 
athletes are supposed to travel at the highest speed on every point of the course theoretically, which is 
the minimum speed limited by the turning and the energy consumption. 

After taking the ramp angle and the curvature radius into consideration, we improve the model as 
follows. 

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 +  
𝑣𝑣
𝜏𝜏

 +  
𝑣𝑣
𝜆𝜆

 =  𝑓𝑓(𝑡𝑡)  −  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝜃𝜃(𝑠𝑠)) 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  =  
𝑣𝑣2

𝑟𝑟(𝑠𝑠)
 

𝑠𝑠(𝑡𝑡) = � 𝑣𝑣(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑡𝑡

0
(9) 

𝑣𝑣(0) = 0 

𝑓𝑓(𝑡𝑡) ≤ 𝐹𝐹 

2.2.3 Energy Consumption 

Athletes need energy to finish the course. During the competition, the energy consumed can be 
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indicated as f · v.  𝜉𝜉 represents the rate of energy recovery. The model is as follows: 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

= 𝜉𝜉 − 𝑓𝑓(𝑡𝑡) ∙ 𝑣𝑣

𝐸𝐸(0) =  𝐸𝐸0
(10) 

where E0 represents the energy stored in the beginning. 

Therefore, there are three factors which limits the speed in total. 

• The terrain change throughout the whole course. 

• The impulse force an athlete can use when cycling. 

• The energy stored during the competition. 

3. Optimization of Model Results 

Got inspired by the running model, we separate the course into three sections divided by time point 
T1 and T2. In the primary section, athletes accelerate with their maximum impulse force. In the middle 
section, athletes change their impulse force according to the terrain changes. In the final section, 
athletes exhaust their energy and dash across the final line with inertance. 

3.1 Primary Section 

We define the section with t (0 ≤ t ≤ T1), when the athlete uses the maximum impulse force to 
accelerate. In this section, the velocity of the athlete has not reached the maximum speed limited by the 
terrain. Hence, we have the model below.  

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 +  
𝑣𝑣
𝜏𝜏

 +  
𝑣𝑣
𝜆𝜆

 =  𝐹𝐹

𝑣𝑣(0)  =  0
(11) 

This is a Cauchy problem for first-order linear differential equations. We can solve it to get v(t). 

𝑣𝑣(𝑡𝑡)  =  
𝐹𝐹𝐹𝐹𝐹𝐹
𝜏𝜏 + 𝜆𝜆

(1 − 𝑒𝑒−(1𝜏𝜏 + 1𝜆𝜆)𝑡𝑡) (12) 

Then we use (12) to solve (10), and we have the equation below. 

�
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  𝜉𝜉 −  
𝐹𝐹2𝜏𝜏𝜏𝜏
𝜏𝜏 + 𝜆𝜆

(1 − 𝑒𝑒−(1𝜏𝜏 + 1𝜆𝜆)𝑡𝑡)

𝐸𝐸(0)  =  𝐸𝐸0
(13) 

Solve this differential function, and we get the function E(t). 

𝐸𝐸(𝑡𝑡)  =  𝐸𝐸0  +  (𝜉𝜉 −  
𝐹𝐹2𝜏𝜏𝜏𝜏
𝜏𝜏 + 𝜆𝜆

)𝑡𝑡 +  (
𝐹𝐹𝐹𝐹𝐹𝐹
𝜏𝜏 + 𝜆𝜆

)2(1 − 𝑒𝑒−(1𝜏𝜏 + 1𝜆𝜆)𝑡𝑡) (14) 

Here, we need to assure that 𝜉𝜉 −  𝐹𝐹
2𝜏𝜏𝜏𝜏
𝜏𝜏+𝜆𝜆

 ≤  0, because otherwise, 

𝑙𝑙𝑙𝑙𝑙𝑙
𝑡𝑡→+∞

𝐸𝐸(𝑡𝑡)  = ∞ 

According to the assumption that E(0) = E0, We can use Figure 3 to indicate the energy change over 
time. 
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Figure 3: Energy change over time in the primary section 

From Figure 3, we can indicate that the energy finely increases and then slowly decreases in the first 
section. 

3.2 Final Section 

In the final section, athletes have exhausted their energy and dash across the final line with inertance, 
that is to say E(t) = 0, (T2 ≤ t ≤ Tt). For (10), we have the following functions. 

⎩
⎪
⎨

⎪
⎧
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  𝜉𝜉 −  𝑣𝑣(
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 +  
𝑣𝑣
𝜏𝜏

 +  
𝑣𝑣
𝜆𝜆

 +  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝜃𝜃(𝑠𝑠)))

𝑠𝑠(𝑡𝑡)  =  � 𝑣𝑣(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑡𝑡

0
𝐸𝐸(0)  =  𝐸𝐸0

(15) 

E(t) = 0, so  𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 =  0. Consequently, we have (16). 

⎩
⎪
⎨

⎪
⎧𝑣𝑣(

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑

 +  
𝑣𝑣
𝜏𝜏

 +  
𝑣𝑣
𝜆𝜆

 +  𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝜃𝜃(𝑠𝑠)))𝑇𝑇2  =  𝜉𝜉𝑇𝑇2

𝑠𝑠(𝑡𝑡)  =  � 𝑣𝑣(𝑡𝑡) 𝑑𝑑𝑑𝑑
𝑡𝑡

0
𝐸𝐸(0)  =  𝐸𝐸0

(16) 

For θ(s) is a known function but s is related to t, we can use MATLAB to find the numerical solution, 
which can be the description of the relationship between velocity v and time t. Here, we leave θ(s) as a 
function to be determined. After finding the numerical solution, we can continuously find the 
relationship between velocity and time by fitting. In other words, we finally have this function. 

𝑣𝑣 = 𝑣𝑣(𝑡𝑡) (17) 

Furthermore, we use the same method to find the relationship between energy E and time t as follows. 

𝐸𝐸 = 𝐸𝐸(𝑡𝑡) (18) 

3.3 Middle Section 

Finally, we are going to talk about the middle section in a competition. According to the results in the 
previous two sections and the equation (4), the total distance a rider can reach in particular time can be 
described with the equation below. 

𝐷𝐷(𝑣𝑣(𝑡𝑡))  =  � 𝐹𝐹(
1
𝜏𝜏

 +  
1
𝜆𝜆

)−1(1 − 𝑒𝑒−(1𝜏𝜏 + 1𝜆𝜆)𝑡𝑡)
𝑇𝑇1

0
𝑑𝑑𝑑𝑑 +  � 𝑣𝑣(𝑡𝑡) 𝑑𝑑𝑑𝑑

𝑇𝑇2

𝑇𝑇1
 +  � 𝑣𝑣(𝑡𝑡) 𝑑𝑑𝑑𝑑

𝑇𝑇𝑡𝑡

𝑇𝑇2
(19) 

Using (18), we find the first condition. Considering the centripetal force when making turns, we find 
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the second condition. Consequently, the question is to figure out the maximum distance under the two 
conditions in (20). 

�𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚  =  
𝑣𝑣2

𝑟𝑟(𝑠𝑠)
𝐸𝐸(𝑇𝑇2)  =  0

(20) 

𝑓𝑓𝑚𝑚𝑚𝑚𝑚𝑚 represents the maximum friction according to the previous text, also influenced only by the 
course itself. 

Then it can be seen as an extreme value problem which can use the Lagrange multiplier method. 
Using the calculated f(t) and v(t), we can easily obtain the power P(t) using (21) for the direction of f and 
v corresponds. 

𝑃𝑃(𝑡𝑡) = 𝑓𝑓(𝑡𝑡) ∙ 𝑣𝑣(𝑡𝑡) (21) 

So far we have finished the model establishment. 

4. Conclusions 

In this paper, in order to better describe the comprehensive ability of different riders, we define the 
Power Profile and plot radar diagrams to describe sprint abilities, anaerobic capacity, VO2 max capacity 
and FTP of different riders. Linear fitting is used to build relationships with the four physiological 
coefficients in our model. The fitting results give our definition of Power Profile. 

Moreover, we have successfully built a Cycling Model to provide the relationship between the rider’s 
position on the course and the power the rider applies. The Newton’s 2nd Law helps to build the 
differential equations. We use Differential Geometry to describe the course. 

As the sports industry grows, mathematical models are being used to help athletes break their 
personal bests. We hope that our research can be used to develop track-specific race guidelines for 
different types of cyclists of different genders to achieve the best theoretical performance. 
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