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Abstract: Lumbar disc herniation (LDH) is a prevalent spinal disorder. Although empirical 
investigations have indicated correlations between circulating proteins/metabolites and LDH, their 
causal roles remain unclear. To elucidate these potential causal relationships, we employed Mendelian 
randomization (MR) methodology. Specifically, we conducted a comprehensive two-sample MR study to 
assess the causality of 4,907 circulating proteins and 1,400 plasma metabolites on LDH risk within a 
European-ancestry population. We validated significant associations using sensitivity analyses 
(weighted median, MR-Egger, MR-PRESSO) and consolidated primary findings via comprehensive 
analysis with multiple-testing-corrected thresholds. Then, reverse MR analysis was used to test for 
bidirectional causal relationships between LDH and the identified proteins. This was followed by the 
construction of a protein-protein interaction network and enrichment analysis, aimed at deciphering the 
biological relevance of these proteins to LDH. Genetic instruments for the circulating proteins were 
derived from a large-scale pQTL (protein quantitative trait loci) investigation involving 35,559 
individuals, which provided data on 4,907 proteins. Data for plasma metabolites were obtained from a 
relevant GWAS of 14,296 subjects. Meanwhile, summary statistics for LDH were sourced from the large-
scale FinnGen R12 database. Our analysis identified 44 plasma proteins and 23 plasma metabolites with 
putative causal effects on LDH. For the most significant results derived from the two sets of MR analyses, 
the inverse-variance weighted method was applied, followed by a meta-analysis. Subsequent pathway 
analysis delineated four key metabolic pathways, unveiling promising therapeutic targets for LDH 
intervention (ENPP2, FTMT, PAPOLG). 

Keywords: Causality verification, blood metabolites, plasma proteins, multi-omics, lumbar disc 
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1. Introduction 

Lumbar disc herniation (LDH) is a prevalent spinal disorder mostly resulting from degenerative 
alterations or external impacts. The syndrome results in the nucleus pulposus herniating through the 
annulus fibrosus into the spinal canal, subsequently compressing the nerve roots or spinal cord. This 
leads to many clinical manifestations, such as lumbar discomfort, radicular leg pain, paraesthesia, 
muscular weakness, and failure of bowel or bladder control.[1] Annually, around 50 individuals per 1000 
are newly diagnosed with LDH, corresponding to an approximate global incidence rate of 5%. The 
lifetime prevalence is estimated at 2% to 3%, suggesting that 2 to 3 persons per 100 will encounter LDH 
at some stage in their lives.[2] Researchers have determined that the morbidity of LDH is somewhat 
greater in males than in women, with a male-to-female ratio ranging from around 1.2:1 to 1.5:1. 
Construction workers, chauffeurs, and office personnel are among the occupations that are associated 
with an elevated risk of developing LDH. These occupations are characterized by protracted sitting or 
standing, significant physical exertion, and repetitive actions such as bending and lifting.[3–5] A 
combination of critical pathological processes is the principal cause of LDH development. Intervertebral 
degeneration of discs is a critical element, as the water content of the pulposus nuclei diminishes with 
age, leading to a reduction in their suppleness and ability to absorb mechanical strain. The degeneration 
of the annulus fibrosus is a critical element; over time, the fibrous outer circle thins and becomes more 
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susceptible, hence elevating the likelihood of ripping and allowing the nucleus pulposus to herniate 
through the compromised region.[6,7] The pathogenesis of LDH involves a combination of mechanical, 
metabolic, genetic, and inflammation-related factors. Prolonged mechanical strain and incorrect body 
position, including extended standing, sitting, or constantly bending, can impose too much pressure on 
the lumbar vertebral discs, resulting in disc rupture and protrusion. Annulus fibrosus tears may also be 
the consequence of acute trauma, such as the abrupt raising of heavy objects or tumbles, allowing the 
nucleus pulposus to herniate into the spinal canal and pressure neuronal tissues. Furthermore, genetic 
susceptibility is acknowledged as an important danger factor, with those possessing relatives with a 
history of LDH demonstrating increased sensitivity.[8]In addition, alterations in the biochemical 
constituents of lumbar discs, such as proteoglycans and collagen fibers, drive structural and functional 
changes within the disc. Also, the protrusion of the nucleus pulposus can trigger a localized inflammation 
response, which results in the release of numerous mediators of inflammation that exacerbate 
compression of the nerve root and injury.[9]  

The pathophysiological changes of the LDH include the following: The nucleus pulposus protrudes 
through the ruptured annulus fibrosus into the spinal canal, applying direct pressure on the nerve roots 
or spinal cord, leading to discomfort and dysfunction.[10] Neural root entrapment transpires when the 
protruding nucleus pulposus applies pressure on the neural roots, resulting in edema, inflammation, and 
ischemia, which manifest as muscular weakness, numbness, and radiated pain.[11] On the other hand, the 
degenerative modifications and intervertebral disc herniation disrupt spinal stability, potentially 
contributing to the compromise of spinal stability and alignment, hence aggravating symptoms.[12] Disc 
herniation can cause discomfort and dysfunction, leading to reflex spasm of the lower back muscles, 
which intensifies pain and restricts mobility.[13]  

For LDH, management strategies focus on two aspects: prevention through weight control, proper 
posture, and tailored exercise; and treatment, which ranges from conservative care to surgery.[14–19]  

Metabolomics and proteomics have gained recognition in recent years for their capacity to elucidate 
the molecular complexities of LDH, presenting identifying potential therapeutic targets. Metabolomic 
sequencing and bioinformatics have identified distinct metabolic and proteomic changes in LDH, 
primarily related to inflammation-mediated pathways and amino acid metabolism, in the context of a 
preliminary, exploratory investigation. Plasma proteomic profiling in patients with lumbar disc 
herniation has uncovered marked perturbations in specific protein expression patterns and antioxidant 
metabolic processes, underscoring their potential utility as biomarkers and mechanistic mediators in the 
pathogenesis of lumbar disc herniation and its associated complications. Currently, research mostly 
focuses on association studies, with a burgeoning interest in exploring causal relationships.  

To date, there is scant direct study on the causal link among metabolites, proteins, and LDH; 
nonetheless, available studies suggest that metabolites and proteins significantly contribute to disc 
degradation and inflammatory responses. The distinct functions of various metabolites and protein 
phenotypes in LDH are inadequately investigated, as the majority of research emphasises general 
processes and mechanisms of inflammation, neglecting comprehensive analyses of phenotypic variations, 
functional characteristics of diverse cytokines, and how they interact with the disease level of severity. 
This gap raises unanswered concerns regarding the precise metabolites and proteins essential for disease 
development, the presence of high-risk phenotypes, and the differential impacts of various metabolite 
and protein phenotypes in patients. 

Recent years have seen advancements in research on gene polymorphisms associated with LDH, 
utilizing methodologies such as genome-wide association studies (GWAS) and single-gene analyses. The 
results of these investigations indicate that some gene polymorphisms may elevate the risk for developing 
LDH by influencing extracellular matrix metabolism or related signaling pathways in intervertebral 
discs.[20] Large-scale GWAS on human genotype data offer novel insights into the genetic variations 
linked to LDH, thereby improving our comprehension of the disease's genetic foundation. In addition, 
gene polymorphisms may modulate inflammation-related genes, thereby affecting the expression and 
release of metabolites and proteins that are essential for the inflammatory response in disc 
degeneration.[21]  

MR employs genetic variation to furnish instrumental factors for exposure assessments, hence 
evaluating the causal relationship between exposure and outcomes.[22–24] The stochastic distribution of 
alleles, unaffected by traditional confounders, supports these causal claims.[25] Accordingly, the present 
study will make use of publicly available GWAS data to identify potential causality between the plasma 
proteome, metabolome, and LDH. A preliminary two-sample Mendelian randomisation strategy will 
determine the causal relationships among the proteome, metabolome, and LDH. A subsequent analysis 
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of metabolic pathways assessment will elucidate the intricate interactions between the proteome and 
metabolome in the context of LDH. 

In this study, we leveraged GWAS data and integrated Mendelian randomization (MR) analysis with 
meta-analytic approaches to investigate the potential causal relationships between 4,907 proteins, 1,091 
plasma metabolites, and LDH. The objective is to uncover the causal interactions between certain 
proteins and metabolites with LDH, propose potential pathogenic mechanisms, and offer novel pathways 
for the development of tailored therapy solutions centred on these metabolites and proteins. 

2. Methods and materials 

2.1. Study design 

This study used a two-sample Mendelian Randomisation (TSMR) paradigm to examine the causal 
links among the plasma proteome, metabolome, and LDH in a European cohort. Data was obtained from 
a variety of repositories. The three primary assumptions of MR analysis were rigorously adhered to 
during the research procedure in this paper: 1) We screened using a threshold p-value of less than 5×10-
8, as single-nucleotide polymorphisms (SNPs) are significantly correlated with exposure factors. 2) We 
excluded SNPs that were significantly correlated with other LDH-related exposures, so SNPs would not 
be affected by confounding factors. 3) The exposure factor is the sole mechanism by which SNPs can 
influence the outcome. Consequently, SNPs influence LDH (the outcome of this study) solely by 
mediating the exposure (plasma proteins or metabolites).[26]  

After identifying positive causal linkages, we examined the interaction between the plasma proteome 
and metabolome concerning LDH, employing a metabolic pathway analysis. In parallel, we also 
performed enrichment analysis following the construction of the differential protein-protein interaction 
(PPI) network. The study entails the examination of data from the GWAS database; hence, an ethical 
evaluation is unnecessary. A flowchart Fig.1) was developed to elucidate the research process. 

 
Figure 1: The flowchart of the study. 

2.2. Data source 

2.2.1. Plasma Proteome GWAS Dataset 

The plasma proteomic data were derived from a GWAS conducted in 35,559 participants of the 
Icelandic Decode cohort.[27] This study assessed 4,907 plasma protein concentrations using the SomaScan 
aptamer-based test, which evaluated 4,907 aptamers directed at 4,719 unique proteins. Genotyping was 
conducted on all participants, and comprehensive phenotypic data was compiled. The subsequent 
integration of genetic data with protein measurements facilitated the identification of associations 
between genetic variants and protein expression levels, which are classified as protein quantitative trait 
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loci (pQTL).[28] Overall, 18,084 pQTL associations were identified through this analysis. 

2.2.2. Plasma Metabolome GWAS Dataset 

The GWAS dataset for the plasma metabolome was obtained from the Canadian Longitudinal Study 
of Ageing (CLSA), which includes 8,299 European individuals. The study cohort comprised unrelated 
European individuals aged 45 to 85 years to reduce any bias in demographic stratification. To mitigate 
bias in the analysis, Europeans with first- and second-degree relatives were excluded using kinship-based 
inference from the KING package (https://www.kingrelatedness.com/manual.shtml).[29] This dataset 
comprised quantitative measurements of 1,091 metabolites categorised into nine groups: lipids, 
xenobiotics, nucleotides, carbohydrates, amino acids, cofactors and vitamins, energy substrates, peptides, 
and metabolites of unclear classifications.[30] These measurements were conducted using ultra-high-
performance liquid chromatography-tandem mass spectrometry (UPLC-MS/MS). The data was 
subjected to uniform normalisation and noise reduction procedures after meeting the selection criteria of 
having less than 50% missing values. Furthermore, 309 metabolite ratios were obtained from the Human 
Metabolome Database (HMDB), which can be accessed at 
http://www.hmdb.ca/system/downloads/current/serum_metabolites.zip. The fastGWA algorithm was 
implemented in the GWAS analysis, which examined 1,400 metabolite profiles. Linear regression was 
employed to control for covariates such as sex, age, fasting duration, genotyping batch, and the first ten 
genetic principal components. We acquired GWAS data for the plasma metabolome from 1400 European 
samples in the GWAS catalogue (https://www.ebi.ac.uk/gwas/), with accession numbers spanning from 
ebi-a-GCST90199621 to ebi-a-GCST90201020.  

2.2.3. LDH GWAS Dataset 

In a separate research, it was shown that when the ancestry of the exposed cohort and the result were 
the same in the MR analysis, and the samples either did not overlap or overlapped by less than 10%, the 
bias from multiple variables was diminished in comparison to that of single-source samples. 
Consequently, the population samples used for the LDH cohort in this study do not intersect with the 
population exhibiting plasma proteomes and metabolites, thereby mitigating several possible biases. The 
GWAS dataset for LDH was procured from the Finngen R12 database, encompassing data on 35,290 
LDH patients, 353,224 controls, and 21,325,323 SNPs. The data selection criteria included: prioritisation 
of higher sample numbers, assurance of representative data sources, and alignment of the research 
population with the exposure data. 

2.3. Identification of Instrumental Variables (IVs) 

Stringent criteria were employed to evaluate SNPs within the plasma proteome and metabolome as 
prospective genetic proxies and select them as instrumental variables (IVs). Initially, SNPs were required 
to exhibit robust associations in GWAS data, with p-values less than 5 × 10^-8. To reduce the probability 
of linkage disequilibrium, we utilized the TwoSampleMR software, establishing a clumping threshold of 
r^2 = 0.001 and a distance of 10,000 kilobases (kb), prioritizing SNPs with lower p-values during 
selection.[31,32] It is crucial to acknowledge that the selection of IV agents differed among plasma 
subgroups. The selection of strongly correlated instrumental variables in the protein subgroup was 
predicated on pQTLs located in both cis and trans regions. In contrast, the metabolome subgroup did not 
restrict the selection of SNPs with high correlation to transcribed regions, which facilitated the 
identification of more dependable protein-based drug targets.[33]  

To mitigate the influence of weak IVs on the robustness of the MR analyses, we computed the F 
statistic utilizing the formula F = (n - k - 1)/k × (R²/(1-R²)), which evaluates the strength of the IVs. Here, 
R² denotes the cumulative explained variance of the chosen SNPs, n represents the sample size, and k 
indicates the quantity of analyzed SNPs.[34] Only SNPs with an F value greater than 10 were preserved, 
a measure that helps exclude poor instruments and strengthens the reliability of the study findings. 

3. Mendelian Randomization Analysis 

We primarily employed TSMR to elucidate the interplay between the plasma proteome, metabolome, 
and LDH. Our analytical framework consisted of five unique MR tests: Inverse Variance Weighted 
(IVW), MR Egger, Weighted median, Simple mode, and Weighted mode. Specifically, the primary 
analytical instrument for assessing the relationship between multiple SNP proxies and LDH was the IVW 
random-effects model, while the Wald ratio was chosen as the primary method for investigating the 
association between single SNP proxies and LDH.[35] The stability and reliability of our findings were 
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significantly supported by the results obtained from the supplementary methodologies. 

For data analysis, we utilized the "TwoSampleMR" package for the analysis, while the "tidyverse," 
"data. table," and "R.utils" packages facilitated data processing. The "ggplot2" package was employed 
for data visualization. Finally, we used Adobe Illustrator to arrange and number the visualizations 
generated in the R language.[36] We implemented a Benjamini–Hochberg false discovery rate (FDR) 
correction to adjust for multiple comparisons involving four exposures. The FDR, defined as the 
anticipated proportion of findings that are erroneously rejected, has been recently introduced as an 
alternative statistic for controlling multiple testing. The FDR demonstrates superior efficacy in 
identifying true positives while maintaining the fraction of type I errors at a predetermined threshold.[37] 
P values below 0.05 that did not survive the FDR adjustment were deemed indicative of a possible 
connection. Analyses were executed utilizing R version 4.5.0, with the MR analysis carried out via the 
“TwoSampleMR” package version 0.6.15.  

3.1. Statistical analysis 

A complete sensitivity analysis was undertaken to determine the trustworthiness of our findings and 
to reduce potential biases from heterogeneity and pleiotropy. The Cochran Q-test was used to assess the 
homogeneity among the SNPs, with a p-value over 0.05 indicating a lack of heterogeneity. The 
intersection of the MR-Egger and IVW techniques was analyzed for pleiotropy assessment; a p-value 
beyond 0.05 signified the lack of horizontal pleiotropy. The MR Polygenic Risk Score Summarization-
Outlier (MR-PRESSO) test was utilized to identify outlier SNPs affected by horizontal pleiotropy, with 
a p-value above 0.05 in the Global test indicating the existence of these outliers.[38] Considering that 
SNPs may influence exposure through outcomes, resulting in inaccurate causal conclusions, especially 
in complex biological interactions, the Steiger test was conducted to ascertain the directionality of the 
link among the proteome, metabolome, and LDH. 

Simultaneously, we employed the TwoSampleMR package to generate funnel plots and leave-one-
out plots of the SNP distributions in the MR analyses, which were utilized to evaluate the robustness of 
the MR analyses' conclusions.[39,40] 

3.2. Functional annotation and pathway enrichment analysis 

In order to identify the proteins that are involved in the causal relationship between proteins and LDH, 
we conducted functional annotation to determine their biological significance. Utilizing the R packages 
"clusterProfiler" and "org.Hs.eg.db," pathway enrichment studies were conducted to identify pathways 
that were enriched with the identified proteins in the Gene Ontology (GO) and Kyoto Encyclopedia of 
Genes and Genomes (KEGG). Furthermore, we developed a Protein-Protein Interaction (PPI) network 
utilizing data from the GENEMANIA database. Finally, we utilized Cytoscape software to investigate 
the putative pathways involving the identified proteins and metabolites. 

 
Figure 2: Differential expression of plasma proteins associated with LDH. Blue represents 

downregulated genes, while red represents upregulated genes. 
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4. Results 

4.1. MR analysis of plasma proteome and LDH 

Following the screening of IVs, we identified a total of 31,315 SNPs associated with cis-pQTLs in 
the plasma proteome. All identified IVs demonstrated robustness, with F-values exceeding 29.7, derived 
from 3,595 proteins. We employed the IVW method as an absolute evaluation metric. The proteins with 
consistent OR values from the five methods were extracted, and the multi-effect results were excluded, 
using the filtering criteria of IVW-pvalue < 0.005 and FDR < 0.2. The OR value greater than 1 indicates 
that the exposure is a risk factor for the outcome, while the OR value less than 1 suggests that the exposure 
serves as a protective factor. Ultimately, 44 significant proteins were screened for a causal association 
with LDH. Fig.2 shows that, after p-value adjustment, 36 proteins, including PAPOLG (p value=2.76E-
03, FDR=0.19, OR=1.24, 95%CI=1.08-1.43), remained associated with LDH as a risk factor, and 8 
proteins, including ENPP2 (p value=6.60E-04, FDR=0.13, OR=0.82, 95%CI=0.73-0.92), were 
associated with LDH as a protective factor. A volcano plot in Fig.2 visually displays the association of 
the 44 proteins with LDH risk, coded by blue for protective effects and red for risk factors. The SNPs are 
uniformly distributed on either side of the funnel plot, whereas the leave-one-out method points are 
predominantly located on one side, reinforcing the robustness of the findings. The directionality 
assessment verified that all 44 proteins (as shown in Fig.3) identified through analysis had the expected 
causal relationship with LDH. The results of the heterogeneity and pleiotropy assessments revealed no 
heterogeneity or pleiotropy within the dataset, except for the identified heterogeneity in CSF1R, ITIH1, 
and FTMT. Notably, although a certain degree of heterogeneity was observed in our analysis, the use of 
a random-effects model (IVW) effectively mitigated its impact on the overall results. Consequently, our 
conclusions remain primarily based on the IVW method, which demonstrated a significant association 
between these genetic instruments and the exposure or outcome variable. Using FTMT as an example, 
inspection of the forest plot (Fig.4A) clearly demonstrates that the confidence intervals for the majority 
of individual SNPs do not encompass zero, thereby indicating that their effects are statistically significant. 
The results from both the MR Egger and IVW analyses indicated no evidence of significant horizontal 
pleiotropy. Fig.4B illustrates the leave-one-out sensitivity analysis, which involved iteratively excluding 
each SNP to evaluate whether the overall causal estimate was unduly influenced by any single genetic 
variant. In this plot, the central overall effect estimate is represented by the red dot, with its corresponding 
confidence interval indicated by the horizontal line. The plot shows little change in the effect estimates 
upon the removal of each SNP, with all values remaining on the left of zero, indicating that no individual 
variant significantly altered the overall results and attesting to the stability of the MR effect. The Funnel 
Plot (Fig.4C) is a graphical tool primarily used to assess the presence of pleiotropy, a potential source of 
bias in MR studies. The overall symmetry of the funnel plot, with no significant skewness or outlier 
aggregation, suggests there is no compelling evidence for horizontal pleiotropy or selection bias that 
would invalidate the causal inference. The consistent effect estimates observed between the MR Egger 
and IVW methods further strengthen the evidence for a robust and reliable causal effect. This scatter plot 
depicts the bivariate relationships between the exposure and outcome effect estimates for all instrumental 
variables. Herein, the fitted lines, differentiated by color, correspond to the aggregated causal effect 
estimates generated by various MR methods, including IVW, MR Egger, and weighted median. Observed 
in Fig.4D, the majority of data points fall below zero with a relatively concentrated distribution, a pattern 
notably suggestive of specific SNP effects. Consistently negative slopes across the various MR methods 
provide robust evidence supporting a significant causal effect of FTMT on LDH. Furthermore, the 
observed concordance in the directional estimates attests to the robustness of the underlying MR analysis. 
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Figure 3: Causal effect of Plasma protein-regulated gene on LDH. OR Odds Ratio; CI Confidence 

Interval. 

 
Figure 4: Causal Effects of LDH on FTMT. (A. Forest Plot B. leave-one-out Plot C. funnel plot D. 

scatter Plot). 
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4.2. Reverse MR analysis of plasma proteome and LDH 

Figure 3 illustrates the causative relationship between the plasma proteome and LDH; this section 
will examine the inverse relationship between the plasma proteome and LDH. We performed a study on 
the 44 proteins utilizing the LDH previously reported as having substantial causal connections. The 
GWAS data of LDH were examined independently using the aforementioned approach, with a p-value 
threshold of less than 5e-8. Subsequently, linkage disequilibrium was eliminated. The collected data were 
filtered based on F > 10 to exclude weak instrumental variables; ultimately, we identified 30 SNPs as 
instrumental variables. The MR analysis, heterogeneity, and pleiotropy assessments were performed on 
the 30 SNPs instrumental variables and the GWAS data for 44 protein types acquired. Following the 
removal of proteins PNPO and COTL1 due to pleiotropy identified in the pleiotropy and heterogeneity 
tests, the IVW results suggest revealed that FAM210A, PSMA7, RLBP1, SMURF1, UBE2C, COPS2, 
and MYNN may be consequences of LDH(OR: 0.923, 95%CI: 0.871-0.978, P=0.007; OR: 0.931, 95%CI: 
0.871-0.995, P=0.035; OR: 0.912, 95%CI: 0.860-0.967, P=0.002; OR: 0.928, 95%CI: 0.876-0.982, 
P=0.010; OR: 0.934, 95%CI: 0.883-0.989, P=0.018; OR: 0.939, 95%CI: 0.886-0.995, P=0.033; OR: 
0.943, 95%CI: 0.891-0.998, P=0.029). Subsequently, we conducted tests for pleiotropy and heterogeneity 
on the obtained data. The leave-one-out analysis validated the robustness of our MR analysis, since it 
remained unaffected by any particular SNP.  

4.3. MR analysis of plasma metabolome and LDH  

By setting the p-value threshold to 1 × 10⁻⁵ and removing linkage disequilibrium, our instrumental 
variable selection identified 34,843 genetic instrument SNPs, with a minimum F-statistic exceeding 19. 
By establishing a filtering criterion of IVW-pvalue < 0.01, we identified metabolites with consistent odds 
ratios across the five methodologies and eliminated multiple-effect outcomes. Subsequently, we 
evaluated 23 metabolites for significant causal relationships from 1400 metabolite profiles that were 
amenable to causal analysis, which are shown in Figure 5 The outcomes of the heterogeneity and 
pleiotropy analyses indicated the presence of heterogeneity among the N6-methyllysine levels, Inosine 
5'-monophosphate (IMP) to phosphate ratio, and Octadecenedioate (C18:1-DC) levels. Consistent with 
the previous approach, these results were included in the subsequent analysis, given that the application 
of a random-effects model, which was predominantly used in this study, effectively minimized the impact 
of heterogeneity on the overall results. Egger's intercept revealed an absence of pleiotropy across all 
tested variables. Similarly, the leave-one-out analysis provided evidence for the reliability of the 
Mendelian randomization results. 

 
Figure 5: Causal effect of Plasma metabolite-regulated gene on LDH. OR Odds Ratio; CI Confidence 

Interval. 
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4.4. PPI and enriched pathways of the proteins 

Utilizing the GeneMANIA database, we established a PPI network to investigate the functionality of 
these proteins (Fig.6). The interactions between these MR-identified proteins, which contained 44 nodes, 
are depicted in the PPI network plot. Then, using the clusterProfiler R package, we conducted GO 
analysis on the positive plasma protein genes identified in the forward MR investigation. The results 
indicated that a total of 9 CC, 29 MF, and 316 BP terms were significantly enriched, with all differences 
exhibiting statistical significance (P < 0.05). Figure 7A presents an annular chart that encapsulates the 
findings of the GO study of positively identified plasma protein genes from forward MR investigations. 
The illustration has four circular rings: the outermost layer displays the 18 most enriched categories from 
the GO analysis. Various hues denote the GO categories: purple for Molecular Function (MF), yellow 
for Cellular Component (CC), and green for Biological Process (BP). The second ring denotes the entire 
gene count inside the genomic context, along with the Q values of up-regulated genes associated with a 
certain biological event. Significantly, GO: 0062023 (extracellular matrix containing collagen) exhibited 
the largest gene count (432) and demonstrated the greatest enrichment. The third ring illustrates the 
quantity of differential genes inside every enrichment pathway. The picture illustrates that the cytokine 
receptor binding in MF exhibits the greatest gene counts, underscoring their significant importance in 
LDH pathogenesis. The last ring illustrates the enrichment factor for every GO. The concentrations of 
GO: 0072203 (cell proliferation involved in metanephros development) and GO: 2001054 (negative 
regulation of mesenchymal cell apoptotic process) were the highest, suggesting the potential mechanisms 
of LDH involving cellular proliferation and inflammatory-immune responses. Figure 7B illustrates the 
top 10 biological processes in the Gene Ontology analysis, determined by the lowest P values. The first 
two components of the CC are the collagen-containing extracellular matrix and the ciliary membrane. 
The top five MF are cytokine receptor binding, cytokine binding, growth factor receptor binding, 
cytokine activity, and ubiquitin-like protein ligase binding. The top three BP are cell surface receptor 
signaling pathway via JAK−STAT, cell surface receptor signaling pathway via STAT, and positive 
regulation of leukocyte proliferation. Utilizing KEGG Pathway analysis, we discovered nine signal 
transduction pathways (P < 0.05) (Fig.7C). The top signaling pathway is the Cytokine-Cytokine receptor 
interaction. These pathways are crucial to the disease's genesis and progression, as they collectively 
regulate inflammatory responses, signal transmission, metabolic processes, and cell proliferation and 
apoptosis. 

 
Figure 6: Protein-protein interaction network. 
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Figure 7: GO and KEGG enrichment of plasma protein genes (A. The cycle diagram of GO 
enrichment, B. the barplot of GO enrichment, C. the bubble diagram of KEGG enrichment). 

5. Discussion 

This study performed the first Mendelian randomization (MR) analysis of the plasma proteome and 
metabolome in relation to lumbar disc herniation (LDH) using European GWAS data. We identified 
potential protein targets and employed linkage disequilibrium removal and pleiotropy testing to minimize 
confounding bias. 

Proteomic MR analysis identified 44 protein markers: genetically predicted levels of 36 circulating 
proteins (e.g., CHCHD10, STAT1, IL23R) were associated with increased LDH risk, while 8 proteins 
(e.g., PSMA7, HHIP, ENPP2) were associated with decreased risk. Reverse MR suggested nine proteins, 
including FAM210A and PSMA7, might be consequences of LDH, with COTL1 and PNPO showing 
pleiotropy. PPI network and enrichment analyses indicated these proteins are primarily involved in 
immune responses. 

Metabolomic MR analysis identified 23 significant circulating metabolites. Subsequently, using the 
Cytoscape 3.10.3 software, pathway analysis was performed on the identified metabolites and target 
proteins to elucidate potential relevant pathways. Construction using the Metscape plugin within 
Cytoscape suggested four potential metabolic pathways: the ENPP2-Cystine pathway involved in the 
vitamin B5-CoA biosynthesis from panthenate (Fig.8A); the ENPP2-NAG (N-acetyl-L-glutamine) 
pathway participating in vitamin B3 (niacin and nicotinamide) metabolism (Fig.8B); the FTMT-Cystine 
pathway implicated in the metabolism of methionine and cysteine (Fig.8C); and the PAPOLG-IMP 
pathway associated with purine metabolism (Fig.8D). 
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Figure 8: The metabolic pathways constructed by Cytoscape (A. The ENPP2-Cystine pathway; B. the 

ENPP2-NAG pathway; C. the FTMT-Cystine pathway; D. the PAPOLG-IMP pathway). 

Autotaxin (ATX) is encoded by the ENPP2 gene in the human chromosomal region 8q24 and is a 
125-kD-secreted glycoprotein. ENPP2/Autotaxin is widely present in biological fluids, including blood, 
with pyrophosphatase/phosphodiesterase activities and lysophospholipase D activity.[41] 
Lysophosphatidic acid (LPA) is produced from lysophosphatidylcholines (LPC) through the action of 
the enzyme ATX.[42] Furthermore, ATX is proposed to interact with integrins on the cell surface, so 
evading clearance and potentially guiding LPA to neighboring receptors, thereby localizing the actions 
of LPA.[43–45] The ATX/LPA axis has demonstrated significant involvement in various pathological 
processes, particularly relevant to chronic inflammation, including chronic neuropathic pain.[46] Human 
correlational data, along with genetic and pharmacological research in mice and numerous in vitro 
investigations, indicate that ATX and LPA signaling are significant contributors to chronic inflammation 
and potential therapeutic targets in various disorders.[41] An analysis of LPA levels in female patients 
with fibromyalgia and other pain conditions revealed that the LDH group exhibited significantly higher 
LPA levels compared to the degenerative disc disease group (p = 0.04), but showed no significant 
difference when compared to the healthy control group (p = 0.8).[47] In both our MR and reverse MR 
analyses, ENPP2 (OR: 0.821, 95%CI: 0.734-0.920, P=6.6E-04) was found to be a protective factor for 
LDH, and there was no reverse causal relationship between ENPP2 and LDH, which aligns with the 
findings of the previously cited study.  

The TSMR analysis conducted later regarding plasma circulating metabolites and LDH revealed a 
theoretical causal relationship between the ratio of cysteine and 5-oxoproline and LDH ( GCST90200785, 
OR: 1.050, 95%CI: 1.013-1.088, P=8.2E-03), which indicates that the cysteine to 50oxoproline ratio is 
a theoretical risk factor for LDH. The relationship between the ratio and LDH has not been reported by 
any relevant studies yet. But as an endogenous cysteine metabolite, N-Acetyl-L-cysteine (NAC) has 
demonstrated analgesic effects in both inflammatory pain models and in a neuropathic pain model 
induced by chronic constriction injury.[48] A randomized controlled clinical trial demonstrated that NAC, 
when used as an adjunct to NSAIDs, may alleviate pain and enhance pain-related impairment in 
individuals with acute lumbar radiculopathy due to disc herniation.[49] Moreover, numerous studies have 
substantiated that reactive oxygen species (ROS) facilitate matrix breakdown and inflammation, resulting 
in an increase in senescent cells and a decrease in viable cells within the intervertebral disc milieu, hence 
exacerbating disc degeneration. ROS are highly reactive oxygen-containing molecules that encompass: 
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hydrogen peroxide (H₂O₂), singlet oxygen (¹O₂), superoxide anion (O₂•⁻), and hydroxyl radical (•OH). 
Their primary functions are to regulate cell matrix metabolism, inflammation, apoptosis, autophagy, and 
aging.[50] Recent reports indicate that NAC, as an antioxidant, significantly contributes to the 
postponement of intervertebral disc degeneration, a primary factor in LDH. A study including animal 
experimentation has demonstrated that NAC mitigates the catabolism of reactive oxygen species (ROS) 
during intervertebral disc degeneration in rats, thereby preventing the denaturation of the intervertebral 
disc.[51] Meanwhile, in vivo studies of imaging and tissue morphology indicated that the disc height index, 
magnetic resonance imaging grade, and histology score considerably improved compared to degenerative 
models following the application of N-acetylcysteine-derived carbon dots.[52] When conducting the 
integrated analysis of proteomics and metabolomics using Cytoscape, we identified this possible 
metabolic pathway involving ENPP2 and cysteine, which reveals how they interact with each other to 
contribute to LDH. As the reduction of Cysteine occurs through its conversion into N-Acetyl-L-cysteine 
and Pantetheine 4'-phosphate via distinct metabolic pathways, N-Acetyl-L-cysteine reduces the risk of 
intervertebral disc degeneration by acting as an antioxidant. Concurrently, Pantetheine 4'-phosphate—a 
metabolite of ENPP2—inhibits the R03036 pathway, thereby increasing ENPP2, which serves as a 
protective factor for LDH (Fig.8A). 

Acetylglutamine (N-acetyl-L-glutamine, NAG), produced via the acetylation of glutamine, functions 
as a metabolic precursor that can be degraded into two principal metabolites: glutamic acid (Glu) and γ-
aminobutyric acid (GABA).[53] GABA has the capacity to maintain the brain's normal function and 
increase the activity of acetylcholine.[54] Furthermore, Glu serves as an excitatory neurotransmitter that 
is closely linked to neural plasticity and is essential in processes such as neuronal growth and 
synaptogenesis.[55] Growing data suggest that NAG has a crucial neuroprotective role against cerebral 
ischemia-reperfusion injury by decreasing neuronal death and inflammation.[53] In addition, Guhong 
Injection (GHI), mostly composed of NAG and safflower extract, has demonstrated efficacy in 
augmenting fracture healing through the stimulation of osteoblast differentiation and proliferation, along 
with the activation of the Wnt/beta-catenin signaling pathway by GHI.[56] Experimental evidence from a 
rat model demonstrates that NAG suppresses inflammatory responses and improves the survival of motor 
neurons[57], suggesting a potential mechanism for its protective effects in LDH(OR: 0.969, 95%CI: 0.946-
0.992, P=9.33E-03). As illustrated in Figure 8B, the network constructed using Cytoscape reveals that 
N-acetyl-L-glutamine (NAG) participates in vitamin B3 metabolism in conjunction with ENPP2 through 
its conversion to glutamine, thereby collectively exerting protective effects against LDH. However, the 
precise underlying mechanism of action requires further investigation to be fully elucidated. 

The mitochondrial ferritin (FTMT) was recognized about 20 years ago as a particular protein 
responsible for iron deposition in mitochondria.[58] The human FTMT gene is located on chromosome 
5q23.1 and encodes a precursor of a ferritin H-like protein consisting of 242 amino acids. The principal 
role of FTMT is not the storage of cellular iron, but rather the protection of mitochondria from iron-
dependent oxidative damage.[59] The overexpression of FTMT has been demonstrated to facilitate the 
translocation of iron from the cytosol to the mitochondria.[60] The mitochondrial location of FTMT aligns 
with its principal role of regulating ROS production via managing mitochondrial iron supply.[61] In other 
words, FTMT reduced the level of ROS and had a positive effect on cell viability, thereby inhibiting the 
role of ROS in aggravating intervertebral disc degeneration. Corroborating the above findings, our MR 
and reverse MR analyses indicate that FTMT is a putative protective factor (OR: 0.904, 95%CI: 0.850-
0.960, P=1.02E-03) for LDH without reverse causation. Similarly, Figure 8C illustrates the potential 
metabolic pathway through which Cysteine and FTMT jointly act on LDH. 

Poly(A) polymerase gamma (PAPOLG), a constituent of the poly(A) polymerase (PAP) family, is 
crucial for mRNA stability and translational alterations.[62] The poly(A) tail is essential for mRNA 
stability, as it assists in mRNA transport to the cytoplasm and promotes efficient translation.[63] A separate 
investigation demonstrated that PAPOLG modulates NF‐κB expression and fosters a prolonged 
inflammatory response, which is characterized by elevated levels of IL-6 and TNF-α. Thus, 
pharmacological treatments or small compounds that inhibit PAPOLG may alleviate excessive 
inflammatory reactions.[64] In our proteome-wide MR analysis for LDH, PAPOLG was revealed as a risk 
factor and potential therapeutic target (OR: 1.239, 95%CI:1.077- 1.425, P=2.76E-03). To date, no studies 
have clearly confirmed how PAPOLG influences LDH. Considering the pathological processes 
underlying LDH and the biochemical action of PAPOLG, we reasonably infer that this is related to 
PAPOLG's promotion of inflammatory responses. The identification of PAPOLG as a therapeutic target 
presents a novel conceptual approach for the treatment of LDH, though this proposition warrants further 
investigation to validate its clinical applicability.  

Inosine 5′-monophosphate (5′-IMP) is a crucial nucleotide for de novo nucleotide production and the 
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metabolism of energy and proteins.[65] It can also allow animals to detect novel flavors.[66] Zhang et al. 
discovered that the oral administration of IMP to mice facilitated the uptake of exogenous fatty acids and 
their conversion to triglycerides, while also augmenting the phosphorylation of liver IMP-activated 
protein kinase, leading to hyperplasia of adipose tissue.[67] A separate study revealed the role of IMP 
metabolism in regulating UCP-1 expression and adipocyte growth, offering new insights that indicate 
IMP metabolism as a viable therapeutic target for obesity treatment.[68] Obesity and excess weight are 
risk factors for lumbar radiculopathy and sciatica in both genders, exhibiting a dose-response connection, 
as indicated by a meta-analysis encompassing data from 26 clinical studies. Similarly, analogous results 
were derived from a recent meta-analysis encompassing ten cohort studies.[69] This is consistent with our 
results, which demonstrate IMP as a risk factor contributing to LDH. Nevertheless, it is important to 
acknowledge that certain heterogeneity was observed within our analytical findings; however, its 
influence on the overall findings was negligible. Similarly, Figure 8D of purine metabolism delineates 
the putative metabolic pathway through which PAPOLG and IMP cooperatively influence LDH, though 
this mechanistic model requires experimental validation to confirm its biological relevance.  

In this study, employing multivariate MR for a comprehensive exploration of the associations among 
circulating plasma proteins, metabolites, and LDH risk provided several key advantages. TS MR 
provides significant advantages owing to its comprehensive proteome coverage, large sample size, and 
reduced confounding bias and possibility of reverse causality. The robustness of our findings was 
supported by a comprehensive analytical framework that included evaluations for validity, sensitivity, 
and pleiotropy. Furthermore, the integration of metabolomics and proteomics data yielded significant 
insights into the pathological mechanisms of LDH from a metabolic pathway viewpoint, which 
contributes to pinpointing potential therapeutic targets. The originality of the current study resides in the 
amalgamation of two-sample MR analysis with multi-omics analysis, offering a distinctive analytical 
framework for determining causal correlations among circulating plasma proteins, plasma metabolites, 
and LDH. A key distinction of our study lies in this dual approach, which facilitates a more accurate 
pinpointing of protein biomarkers and therapeutic targets, contrasting with previous studies that were 
mainly dependent on observational data. This establishes a new paradigm for the future discovery of 
biomarkers and identification of therapeutic targets for LDH and other complex diseases. Nevertheless, 
specific limits must be recognized. Firstly, our MR findings, derived from whole-blood circulating 
proteins and metabolites, necessitate validation through in vivo and in vitro research, together with 
randomized controlled trials (RCTs), to furnish more direct proof substantiating our claims. Secondly, as 
our study focused exclusively on individuals of European ancestry, validation in diverse populations is 
essential prior to any generalization of the findings. The interplay between genetic factors and 
environmental influences may constrain the applicability of our results.  

6. Conclusions 

Through MR analysis, we identified 44 plasma proteins and 23 plasma metabolites significantly 
associated with LDH. To further interpret these findings, we employed an integrated bioinformatic 
approach including PPI network construction, GO enrichment, and KEGG pathway analyses. These 
investigations revealed that the identified proteins not only engage in functional interactions but are also 
enriched in pathways related to inflammatory response, signal transduction, and cytokine-cytokine 
interactions. Additionally, using Cytoscape software, we mapped potential theoretical metabolic 
pathways involving specific molecular pairs such as ENPP2 and cysteine, ENPP2 and NAG, FTMT and 
cysteine, and PAPOLG and IMP. Consequently, we identified three potential therapeutic targets for LDH: 
ENPP2, FTMT, and PAPOLG. While these results suggest plausible biological mechanisms, the 
functional interactions among these molecules require further experimental validation. 
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