
Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 11: 20-26, DOI: 10.25236/AJCIS.2024.071103

Published by Francis Academic Press, UK

-20-

A Retentive Hawkes Process for Long Event

Sequence Prediction

Zeyu Huang1,a, Zhaoman Zhong1,b,*, Xinru Cui1,c

1School of Computer Engineering, Jiangsu Ocean University, Lianyungang, China
a2022210905@jou.edu.cn, bzhongzhaoman@163.com, c2022210903@jou.edu.cn
*Corresponding author

Abstract: Predicting event sequences is crucial across various domains. However, most existing

transformer-based point process models struggle with longer sequences due to their quadratic memory

complexity. To address this, we propose the Retentive Hawkes Process (RHP) model. The RHP uses a

retention mechanism to simplify computations, enable a recurrent formulation, resulting in linear

memory complexity and reduced inference latency while effectively modeling the self-exciting nature of

event sequences and capturing both temporal dynamics and long-range dependencies. Numerical

experiments demonstrate that RHP significantly outperforms traditional Transformer-based models and

Hawkes Processes variants across diverse datasets. Furthermore, RHP shows promising scaling results

in computational paradigms.

Keywords: hawkes process; event prediction; retention mechanism

1. Introduction

Analyzing event sequences is crucial for understanding complex temporal dynamics in finance,

healthcare, and social networks. The Hawkes process is notable for capturing self-exciting behavior,

where an event increases the likelihood of subsequent events in a short time. However, traditional

Hawkes processes struggle with long-term dependencies and typically assume memoryless excitation,

where past events lose influence beyond a certain time frame.

While RNN-based models have made strides in likelihood estimation and event sequence prediction,

they face challenges in capturing long-term dependencies and suffer from poor trainability. Transformer-

based models, utilizing self-attention mechanisms, effectively capture both short- and long-term

dependencies and provide computational efficiency. However, they encounter inefficient inference and

difficulties with very long sequences due to their quadratic complexity.

To address these issues, we propose the Retentive Hawkes Process (RHP), which integrates a

retention mechanism with the classic Hawkes process. This mechanism allows the model to retain

memory of past events over extended periods, improving its ability to capture long-range dependencies

and complex interactions between events. RHP is particularly valuable for scenarios where events are

influenced not only by recent occurrences but also by longer sequences. Additionally, it supports parallel

training and offers low-cost inference. The main contributions of our work are as follows:

1) We introduce a novel recurrent model that integrates attention mechanisms, recurrent structures,

and Hawkes Process techniques to effectively address this problem.

2) To the best of our knowledge, the RHP model is the first to utilize the output of a retention

mechanism to redefine the conditional intensity function for predicting future events.

3) The results across datasets of varying lengths demonstrate that the proposed model successfully

captures short-term, long-term, and even extended dependencies.

4) To validate the efficiency of our model, we employ three distinct metrics: log-likelihood, accuracy,

and root-mean-square error. The numerical experiments show that the proposed model outperforms other

Hawkes Process models.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 11: 20-26, DOI: 10.25236/AJCIS.2024.071103

Published by Francis Academic Press, UK

-21-

2. Preliminaries

We will briefly review Hawkes Process[1], Transformer Hawkes Process[2], and Retentive Network[3]

in this section.

Hawkes Process, introduced by Alan G. Hawkes in 1971, is defined by its intensity function, which

captures the rate at which events occur over time. Mathematically, the intensity function $\lambda(t)$ of

a Hawkes Process can be represented as:

λ(𝑡) = μ + ∑ ϕ(𝑡 − 𝑡𝑖)𝑡𝑖<𝑡 (1)

Transformer Hawkes Process incorporates the temporal modeling capabilities of the Hawkes

Process with the representational power and flexibility of Transformers:

𝑝(𝑡|ℋ𝓉) = λ(𝑡|ℋ𝓉)𝑒𝑥𝑝 (− ∫ λ(τ|ℋτ)𝑑τ
𝑡

𝑡𝑗
) (2)

𝑡𝑗+1̂ = ∫ 𝑡
∞

𝑡𝑗
⋅ 𝑝(𝑡|ℋ𝓉)𝑑𝑡 (3)

𝑘𝑗+1
̂ = argmax

𝑘

𝜆𝑘(𝑡𝑗+1|ℋ𝒿+1)

𝜆(𝑡𝑗+1|ℋ𝒿+1)
 (4)

The prediction targets are 𝑡𝑗+1̂ andkj+1
̂ . Here, λ(𝑡) is the intensity function, K is the number of

event types, and ℋ𝓉 are the hidden states of the event sequence, obtained through a Transformer module.

While the Transformer architecture has excelled in natural language processing, enabling continuous-

time outputs, it struggles with training recurrently and balancing the capture of long-term dependencies

with efficiency, which are limitations of the Transformer Hawkes Process.

Retentive Network offers a novel solution, enhancing neural networks' ability to retain and utilize

past information. RetNet's retention mechanisms help address the limitations of Transformers. However,

this architecture requires adaptation for point process modeling, as event sequences have irregular time

intervals, unlike the regular spacing of words in natural language. Thus, RetNet must be generalized to

operate in a continuous-time domain.

3. Retentive Hawkes Process

We introduce our proposed Retentive Hawkes Process. Given a specific event 𝑠𝑗 = (𝑡𝑗 , 𝑘𝑗) where

kj for type and 𝑡𝑗 for time, let 𝒮 = {sj}j=1
L = {(tj,  kj)}j=1

L be a realization of an event sequence of L

events, the input vectors 𝒮 is first packed into 𝑆0 = [𝑠1, ⋯ , 𝑠|𝐿|] ∈ 𝑅|𝐿|×𝑑𝑚𝑜𝑑𝑒𝑙 , where 𝑑𝑚𝑜𝑑𝑒𝑙 is

hidden dimension, then we compute event vector representations 𝑆𝑙 = RetNetl(𝑆𝑙−1), 𝑙 ∈ [1, 𝐿]. Figure

1 illustrates the architecture of RHP.

Figure 1: Architecture of the Retentive Hawkes Process.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 11: 20-26, DOI: 10.25236/AJCIS.2024.071103

Published by Francis Academic Press, UK

-22-

We apply the retentive network to the domain of event sequences, incorporating recurrent structures

while preserving self-attention mechanisms to ensure computational efficiency by integrating time series

characteristics. Formally, the input sequence 𝒮 is transformed into vectors by a word embedding layer.

We then use the packed embeddings 𝒮0 as input and compute the model output 𝑆𝐿:

𝑌𝑙 = MSR (LN(𝒮ℓ)) + 𝒮ℓ (5)

𝒮ℓ+1 = FFN(LN(𝑌𝑙)) + 𝑌𝑙 (6)

In encoder layer (dotted box in Figure 1, our model has two different encoding procedure for temporal

information Trigonometric functions[2] and xPos encoding[4]. Trigonometric functions is primarily used

to capture the temporal position of events within a sequence using a fixed sinusoidal positional encoding

scheme.

Tri(𝑡𝑗) = sin (
𝑡𝑗

100002𝑖/𝑑) , cos (
𝑡𝑗

100002𝑖/𝑑) (7)

Let 𝑡𝑗 be the input vector, where j denotes the position, and 𝑑 represents the dimension of each

head in the multi-head attention mechanism. α is the scaling factor. Define 𝑘𝑗 as the one-hot

encoding[2]. Let 𝐾 = [𝑘1, 𝑘2, … , 𝑘𝐿] and 𝑍 = [𝑇𝑟𝑖(𝑡1), 𝑇𝑟𝑖(𝑡2), … , 𝑇𝑟𝑖(𝑡𝐿)] ∈ 𝑅𝑀×𝐿 . For any event

and its corresponding timestamp (𝑡𝑗 , 𝑘𝑗), the temporal encoding is represented by 𝑍, and the event

embedding is given by 𝑈𝐾, where 𝑈 is an embedding matrix. The embedding of the event sequence

𝒮 = (𝑡𝑗 , 𝑘𝑗)
𝑗=1

𝐿
 is then defined as follows:

𝑆 = (𝑈𝐾 + 𝑍)⊤ (8)

xPos Encoding modifies the query 𝑄 and key 𝐾 vectors to incorporate positional information:

 𝑥𝑃𝑜𝑠(𝑠) = (𝑠 ⋅ cos(θ𝑠)) + (rotate(𝑠) ⋅ sin(θ𝑠)), where  θ𝑠 =
(𝑗+0.4𝑑)

1.4𝑑⋅α
 (9)

𝑄 = 𝑥𝑃𝑜𝑠(𝑆 ⋅ 𝑊𝑄) (10)

 𝐾 = 𝑥𝑃𝑜𝑠(𝑆 ⋅ 𝑊𝐾) (11)

 𝑉 = 𝑆 ⋅ 𝑊𝑉 (12)

Respectively, 𝑊𝑄 , 𝑊𝐾 and 𝑊𝑉 are different weight matrices for the query, key and value

vectors.The xPos encoding modifies these vectors to include positional information. After applying xPos

encoding, the modified 𝑄, 𝐾, 𝑉 matrix are used in the retention mechanism. The retention mechanism

calculates an attention score using the dot product of 𝑊𝑄 and 𝑊𝐾, which is then scaled by a positional

scaling factor 𝐷 and 𝑉, the final output of the retention mechanism is:

Retention
𝑙(𝑄, 𝐾, 𝑉) = (𝑄 ⋅ 𝐾𝑇) ⋅ 𝐷 ⋅ 𝑉,where 𝐷 = γ|𝑖−𝑗| (13)

Here, 𝐷 is the positional scaling factor matrix with γ representing the decay factor which is same

as RetNet[3], and 𝑉 is the value vector obtained by applying another weight matrix 𝑊𝑉 to the input 𝑆.

𝑑𝑖 = ∑ Retention(𝑄𝑖 , 𝐾𝑖 , 𝑉𝑖 , 𝐷𝑖)
d
𝑖=1 (14)

 𝑌 = GroupNorm (reshape(Concat(𝑑𝑖))) (15)

 𝑀𝑆𝑅(𝑆) = (swish(𝑆 ⋅ 𝑊𝐺) ⋅ Y) ⋅ 𝑊𝑂 (16)

Here, 𝑊𝐺 and 𝑊𝑂 are learnable, GroupNorm[5] normalizes the output of each head. These outputs

are concatenated along the feature dimension to form a combined output 𝑌. A swish gate[6][7] is added to

increase non-linearity in the retention layers. Each head uses multiple γ scales, resulting in distinct

variance statistics, which require separate normalization for each head's output. Figure 2 illustrates the

architecture of Retentive Network.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 11: 20-26, DOI: 10.25236/AJCIS.2024.071103

Published by Francis Academic Press, UK

-23-

Figure 2: Architecture of the Retentive Network.

Each head in the MSR mechanism computes a retention score matrix, capturing attention weights

across the sequence. This output is then fed into layers like the Feed-Forward Network (FFN) for further

processing. A Layer Normalization (LN) step adds non-linearity and higher-order interactions.

We use the softplus activation function to capture nuanced patterns in the data. The final output,

obtained after the FFN, provides a rich representation of the input sequence, capturing local and global

dependencies across temporal scales. The hidden representations of all events are denoted by 𝐻 =
𝐹𝐹𝑁(𝑆), where each row corresponds to a specific event.

In time series forecasting, each head learns exclusively from past events through three mechanisms:

causal masking prevents future information leakage; the retention mechanism decays a matrix 𝐷 based

on temporal distance; sequential processing iteratively updates the state 𝑆 or 𝑌 using only prior

information.

From eq.(7) to eq.(16), temporal dependencies in the sequence are captured via the retention

mechanism, generating hidden representations 𝐻 for the Hawkes process.

4. Experiments

We compare the performance of the RHP against several existing models: the Recurrent Marked

Temporal Point Process[8], Neural Hawkes Process[9], Time Series Event Sequence[10], Self-Attentive

Hawkes Processes[11], Transformer Hawkes Process[2], Hyperbolic Geometric Transformer Hawkes

Process[12]. The models are evaluated based on per-event log-likelihood and event prediction accuracy

on test sets. We evaluate the model on the Nvidia 4090D-24GB GPU in our experiments.

4.1. Datasets

We evaluate the models using several real-world datasets: Retweets[13]Sequences of tweets.

MemeTrack[14]: The life cycle of a specific meme. Financial Transactions[8]: Transaction records for a

single stock over the course of one day. Electrical Medical Records[15]: The MIMIC-II medical dataset

records patient visits to a hospital's ICU over a seven-year period. Stack Overflow[14]: A question-and-

answer website.

4.2. Competing methods

To evaluate the predictive performance of our forecasting methods, we compare the Recurrent

Hawkes Process (RHP) with several Hawkes process-based models. Specifically, we examine the

Temporal Hawkes Process (THP) in Section 2, along with the other models detailed below:

RMTPP[8]: It provides a strong framework for modeling and predicting time-based events with

specific attributes. Its ability to handle event recurrence and markers makes it useful for analyzing

complex temporal patterns and forecasts.

NHP[9]: By integrating neural networks, it improves the traditional Hawkes process to model non-

linear temporal dependencies. This significantly enhances forecasting accuracy in dynamic systems.

TSES[10]: It captures temporal dependencies in event sequences using recurrent architectures. This

method improves the accuracy and flexibility of temporal pattern analysis and forecasting.

SAHP[11]: Self-attention mechanisms enhance the traditional Hawkes process, improving

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 11: 20-26, DOI: 10.25236/AJCIS.2024.071103

Published by Francis Academic Press, UK

-24-

understanding of event interactions and temporal dependencies. This leads to better predictions of long-

range and complex patterns in dynamic environments.

HGTHP[12]: Combining hyperbolic geometry with transformers, this model represents complex

temporal and relational structures more effectively. This results in higher prediction accuracy and deeper

insights into event dynamics.

4.3. Training Details and Evaluation Metrics

We selected the RMSE to assess the accuracy of time predictions made by the RHP, and used log-

likelihood and accuracy as the metric for evaluating event marker predictions, the Adam[16] served as our

optimizer, while StepLR[17] was employed as the learning rate scheduler.

4.4. Likelihood Comparison

We compared the proposed model to six existing methods using Log-likelihood, accuracy, and RMSE

metrics on real-world datasets. Log-likelihood results are in Figure 3 and Table 1, accuracy and RMSE

in Table 2. Note that likelihood-free models like TSES are excluded from Log-likelihood comparisons.

Figure 3: Architecture of the Retentive Network.

Table 1: Log-likelihood comparison.

Model Retweets Meme Financial MIMIC-II SO

RMTPP -5.99 -6.04 -3.89 -1.35 -2.6

Intensity_RNN - - -0.65 -0.92 -1.98

NHP -5.6 -6.23 -3.6 -1.38 -2.55

SAHPP -4.56 - - -0.52 -1.96

THP -2.26 -1.53 -1.11 0.82 0.042

HGTHP -3.26 -1.3 1.31 0.61 -0.42

RHP -2.06 -1.06 1.2 1.6 -0.3

Figure 3 and Table 1 show performance across six datasets. Our model consistently achieves higher

Log-likelihood than most baselines.

In the Retweets dataset, with long sequences (average length 109), RHP slightly outperforms THP in

capturing long-term dependencies. For shorter sequences, like in MemeTrack (average length 3) and

MIMIC-II (average length 4), RHP effectively handles short-term dependencies, showing significant

improvement in MIMIC-II but performing closer to the baseline in MemeTrack. We attribute this

difference to the distinct nature of the datasets: MemeTrack captures the life cycle of a meme, while

MIMIC-II involves patient visit records.

In the Financial dataset, RHP's performance is comparable to HGTHP and exceeds THP. In the Stack

Overflow dataset (average length 72), differences between models are minimal due to shorter sequences

limiting the ability to showcase their strengths. We selected the RMSE to assess the accuracy of time

predictions made by the RHP, and used log-likelihood and accuracy as the metric for evaluating event

marker predictions, the Adam[16] served as our optimizer, while StepLR[17] was employed as the learning

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 11: 20-26, DOI: 10.25236/AJCIS.2024.071103

Published by Francis Academic Press, UK

-25-

rate scheduler.

We present two datasets as examples to demonstrate the model's ability to handle longer sequences.

To ensure generalization, we did not select the best-performing training run but instead chose a random

training instance from the MemeTrack dataset and the Financial dataset, which have average sequence

lengths of 3 and 2074, respectively. As shown in Figure 4.

Figure 4: Log-likelihood comparison of THP(blue) and RHP(orange) on MemeTrack and Financial

dataset.

In the MemeTrack dataset, due to the short sequence length, the performance gap between the two

models is not significant. However, RHP converges faster than THP, achieving superior final results with

smaller fluctuations in log-likelihood. In contrast, in the Financial dataset, where sequences are much

longer, there is a substantial performance gap between the two models. RHP not only outperforms THP

in convergence speed but also in the final results, showcasing its effectiveness in optimizing long

sequences.

RHP's integration of a recurrent mechanism with the Transformer architecture enables it to scale more

efficiently with sequence length, better maintain and propagate information over time, and reduce

computational and memory demands. These advantages make RHP a more effective model than

traditional Transformer-based approaches for tasks involving long sequences.

4.5. Event Prediction Comparison

According to eq.(3) and eq.(4), in addition to Log-likelihood, we predict 𝑡𝑗+1̂ and 𝑘𝑗+1
̂ for every

event 𝑠𝑗 = (𝑡𝑗, 𝑘𝑗). Event type predictions are evaluated using accuracy, and event time predictions with

Root Mean Square Error (RMSE). The results are summarized in Table 2.

Table 2: Event type prediction accuracy (left) and Event time prediction RMSE(right).

Model FIN MIMIC-II SO Model FIN MIMIC-II SO

RMTPP 61.95 81.2 45.9 RMTPP 1.56 6.12 9.78

NHP 62.2 83.0 46.3 NHP 1.56 6.13 9.83

TSES 62.17 83.0 46.2 TSES 1.5 4.7 8.0

THP 62.64 85.3 47.0 SAHP - 3.89 5.57

HGTMP 61.9 84.9 46.9 THP 0.93 0.82 4.99

RHP 62.7 85.3 47 HGTMP 0.41 0.74 4.01

 RHP 0.5 0.7 3.89

RHP consistently outperforms the baselines across tasks. In the financial dataset, it surpasses most

models in several metrics but performs worse than HGTHP in RMSE. This is because Log-likelihood

reflects how well the model captures the data distribution, while RMSE focuses on prediction accuracy.

RHP may fit the overall distribution well (high Log-likelihood) but produce less accurate individual

predictions (higher RMSE), possibly due to overconfidence or sensitivity to outliers. In the MIMIC-II

and Stack Overflow datasets, RHP slightly outperforms other models in both accuracy and RMSE.

Overall, the results demonstrate that RHP effectively captures short-term, long-term, and extended

dependencies better than existing methods. We selected the RMSE to assess the accuracy of time

predictions made by the RHP, and used log-likelihood and accuracy as the metric for evaluating event

marker predictions, the Adam[16] served as our optimizer, while StepLR[17] was employed as the learning

rate scheduler.

Academic Journal of Computing & Information Science

ISSN 2616-5775 Vol. 7, Issue 11: 20-26, DOI: 10.25236/AJCIS.2024.071103

Published by Francis Academic Press, UK

-26-

5. Conclusions

In this paper we present Retentive Hawkes Process, by addressing the challenges identified in existing

work, RHP offers a powerful and efficient solution for analyzing complex event sequences, providing

enhanced fidelity and insight into temporal dynamics across a wide range of applications. The empirical

studies presented in this paper demonstrate the superior performance of RHP on real-world datasets,

underscoring its potential as a robust tool for long event sequence temporal modeling.

Acknowledgements

The authors acknowledge the support from the National Natural Science Foundation of China

(72174079), Jiangsu Province "Qinglan Project" Excellent Teaching Team for Big Data (2022-29) and

Lianyungang City Key Research and Development Plan (Industry Foresight and Key Core Technologies)

Project(CG2323).

References

[1] Hawkes A G. Spectra of some self-exciting and mutually exciting point processes[J]. Biometrika,

1971, 58(1): 83.

[2] Zuo S, Jiang H, Li Z, et al. Transformer hawkes process[C]//International conference on machine

learning. PMLR, 2020: 11692.

[3] Sun, Y.; Dong, L.; Huang, S.; Ma, S.; Xia, Y.; Xue, J.; Wang, J.; Wei, F. Retentive network: A

Successor to Transformer for Large Language Models. arXiv 2023, arXiv:2307.08621.

[4] Sun Y, Dong L, Patra B, et al. A Length-Extrapolatable Transformer[C]//The 61st Annual Meeting

Of The Association For Computational Linguistics. 2023.

[5] Wu Y, He K. Group normalization[C]//Proceedings of the European conference on computer vision

(ECCV). 2018: 3.

[6] Hendrycks D, Gimpel K. Gaussian error linear units (gelus)[J]. arXiv preprint arXiv:1606.08415,

2016.

[7] Ramachandran P, Zoph B, Le Q V. Searching for activation functions[J]. arXiv preprint

arXiv:1710.05941, 2017.

[8] Du N, Dai H, Trivedi R, et al. Recurrent marked temporal point processes: Embedding event history

to vector[C]//Proceedings of the 22nd ACM SIGKDD international conference on knowledge discovery

and data mining. 2016: 1555.

[9] Mei H, Eisner J M. The neural hawkes process: A neurally self-modulating multivariate point

process[J]. Advances in neural information processing systems, 2017, 30:6754.

[10] Xiao S, Yan J, Yang X, et al. Modeling the intensity function of point process via recurrent neural

networks[C]//Proceedings of the AAAI conference on artificial intelligence. 2017, 31(1).

[11] Zhang Q, Lipani A, Kirnap O, et al. Self-attentive Hawkes process[C]//International conference on

machine learning. PMLR, 2020: 11183.

[12] Xie Y, Wu J. HGTHP: a novel hyperbolic geometric transformer hawkes process for event prediction

[J]. Applied Intelligence, 2024, 54(1): 357.

[13] Zhao Q, Erdogdu M A, He H Y, et al. Seismic: A self-exciting point process model for predicting

tweet popularity[C]//Proceedings of the 21th ACM SIGKDD international conference on knowledge

discovery and data mining. 2015: 1513.

[14] Leskovec J, Krevl A. SNAP Datasets: Stanford Large Network Dataset Collection [OL]. (2014-06).

http://snap.stanford.edu/data.

[15] Johnson A E W, Pollard T J, Shen L, et al. MIMIC-III, a freely accessible critical care database[J].

Scientific data, 2016, 3(1): 1.

[16] Kingma D P. Adam: A method for stochastic optimization[J]. arXiv preprint arXiv:1412.6980, 2014.

[17] Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning

library[J]. Advances in neural information processing systems, 2019, 32.

