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Abstract: In the Industry 4.0, smart factories often face data anomalies during the collection and 
transmission of industrial time series data. To overcome this limitation, we propose a time series anomaly 
detection model based on Hreg-VAE-LSTM. The model leverages a Variational Autoencoder (VAE) 
module to capture local features within short time windows and employs the Hreg regularization method 
to mitigate the issue of data imbalance. Subsequently, a Long Short-Term Memory (LSTM) network is 
used to model the long-term dependencies in the sequence based on the features extracted by the VAE. 
This design enables the proposed algorithm to effectively detect anomalies across multiple temporal 
scales. Extensive experiments conducted on five real-world industrial datasets proved our model 
demonstrate the effectiveness and superiority of our model. 
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1. Introduction 

In the Industry 4.0, the intelligent transformation of traditional industries presents numerous 
challenges[1]. Given that industrial data is often represented as time series, anomaly detection plays a 
critical role in the process of data acquisition and analysis[2]. In many industrial scenarios, anomaly 
detection plays a key role in identifying sensor malfunctions[3], issuing alerts for external cyberattacks 
and enabling the early detection of potentially catastrophic events. Despite its significance, designing an 
effective anomaly detection algorithm remains highly challenging. This is primarily due to the inherent 
imbalance in training data, where labeled anomalous samples are scarce[4]. Furthermore, most anomalous 
behaviors are unknown prior to deployment, requiring detection algorithms to identify previously unseen 
anomalies. Consequently, anomaly detection models are often trained in an unsupervised model[5]. 

In this paper, we proposed a anomaly detection model that integrates the representational strength of 
a deep model—specifically, a Variational Autoencoder (VAE)—with the time modeling capabilities of a 
Long Short-Term Memory (LSTM) network. The VAE module captures structural patterns within local 
windows of the time series and addresses the data imbalance problem using a Hreg regularization 
strategy.Meanwhile, the LSTM module models long-term dependencies across the sequence. Notably, 
both the VAE and LSTM components operate in an unsupervised manner, eliminating the need for labeled 
anomalies during training.In summary, the main contributions of this work are as follows: 

 We employ a Variational Autoencoder (VAE) to extract local structural information from short time 
windows and encode it into low-dimensional embeddings. 

 To address the issue of data imbalance, we incorporate the Hreg regularization method, which 
improves the robustness of the model in detecting rare anomalies. 

 By leveraging the LSTMs ability to capture both short-term and long-term dependencies, our model 
effectively detects anomalies occurring over varying temporal scales, as validated by experimental results. 

2. Related Work 

Currently, a variety of algorithms have been developed for time series anomaly detection, which can 
be broadly categorized into supervised and unsupervised approaches depending on whether labeled data 
is required[6]. Given that the application scenarios addressed in this study typically involve time series 
data without labeled anomalies, this research focuses on unsupervised methods for time series anomaly 
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detection[7]. 

Anomaly detection is a fundamental task in machine learning, which focuses on identifying data 
instances that significantly deviate from established patterns or normal behavior. This process entails the 
recognition of events or observations that do not conform to expected statistical distributions or temporal 
trends. An anomaly, or outlier, is typically characterized as a data point that diverges markedly from the 
majority of observations, suggesting it may be generated by a distinct underlying process. In the context 
of time series analysis, anomalies refer to temporal points exhibiting behaviors that substantially differ 
from those observed in preceding intervals[8]. Anomaly detection techniques are widely applicable in 
numerous domains, including industrial quality control, medical diagnostics, vehicle monitoring, and 
human activity recognition. With continuous technological advancements, research in this field has 
increasingly focused on machine learning and deep learning-based approaches due to their capacity for 
automated feature extraction and improved detection performance[9]. 

Autoencoders (AEs), a category of unsupervised neural networks, have demonstrated strong 
capabilities in anomaly detection tasks[10]. Typically trained solely on normal data, AEs learn to 
reconstruct input sequences by capturing underlying patterns[11]. At the inference stage, inputs that 
deviate from the learned distribution—such as anomalous samples—tend to yield higher reconstruction 
errors, making these errors a reliable metric for anomaly detection[12]. The Variational Autoencoder 
(VAE)extends the standard autoencoder framework by incorporating a probabilistic generative model. 
Unlike deterministic autoencoders, VAEs learn a distribution over the latent space, enabling the 
generation of new samples that resemble the original data distribution. This generative nature enhances 
the model’s utility in unsupervised anomaly detection, especially in cases where modeling uncertainty is 
important[13]. 

Training a VAE involves maximizing the Evidence Lower Bound (ELBO)[14], which comprises two 
main components: a reconstruction loss that ensures the model can accurately reproduce input data, and 
a regularization term that minimizes the Kullback-Leibler (KL)[15] divergence between the learned 
posterior distribution and a predefined prior—usually a standard normal distribution. This regularization 
encourages the formation of a continuous, well-structured latent space, which is crucial for generative 
tasks and anomaly scoring[16]. 

3. Methods 

Given an industrial time series dataset 𝑋𝑋 , which 𝑋𝑋 = {𝑥𝑥1, 𝑥𝑥2, … , 𝑥𝑥𝑁𝑁} where 𝑥𝑥𝑖𝑖 ∈ R𝑚𝑚 represents 
multivariate data from m different channels at time step i, our model aims to perform anomaly detection 
on the sequence. For any time point t such that 𝐿𝐿 ≤ 𝑡𝑡 ≤ 𝑁𝑁, we utilize the preceding 𝐿𝐿 time steps to 
construct a sliding window 𝑆𝑆𝑖𝑖 = {𝑥𝑥𝑡𝑡−𝐿𝐿+1, 𝑥𝑥𝑡𝑡−𝐿𝐿+2, … , 𝑥𝑥𝑡𝑡}. The model outputs a prediction 𝑦𝑦𝑡𝑡 ∈ (0,1), 
where 𝑦𝑦𝑡𝑡 = 1 indicates an anomaly within window 𝑆𝑆𝑡𝑡, and 𝑦𝑦𝑡𝑡 = 0 indicates normal behavior. 

 
Figure 1 Hreg-VAE-LSTM model 

An overview of the proposed model architecture for time series input and anomaly detection is 
illustrated in Figure 1. The model comprises two key components: a Variational Autoencoder (VAE) 
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model for capturing features within each window, and a Long Short-Term Memory (LSTM) network for 
modeling long-term dependencies in the sequence. During the local feature extraction process, the Hreg 
regularization technique is applied within the VAE to mitigate the effects of data imbalance, thereby 
enhancing the quality of the learned representations. These balanced features are then fed into the LSTM 
module to infer temporal dynamics across the sequence. Together, the VAE and LSTM components 
enable robust detection of anomalies in multivariate time series data. Figure 1 provides a schematic 
overview of the proposed model. 

3.1 Hreg regularization 

During the feature extraction process from streaming data, parameter values often cannot be explicitly 
controlled. This lack of control may lead to arbitrary and inconsistent final outputs across different 
categories, thereby hindering meaningful comparisons between them. In particular, features with 
inherently high magnitudes in the input data may be disproportionately emphasized by the classification 
model, resulting in overly dominant parameter weights. Such imbalance can compromise the 
generalization ability of the model, especially in multi-class classification scenarios. 

To address this issue, it is preferable to evaluate the classification output holistically, rather than 
processing each category independently. The Hreg regularization algorithm, as defined in Formula (1), 
is designed to mitigate this problem by introducing a regularization term that constrains the model’s 
behavior during feature extraction. By doing so, it helps balance the influence of different features and 
ensures more stable and comparable outputs across categories. Formula (1) presents the formal definition 
of the Hreg regularization algorithm. 

𝐻𝐻𝐻𝐻𝐻𝐻𝐻𝐻 = 𝑥𝑥~ℙ𝑥𝑥𝔼𝔼||𝛻𝛻𝑥𝑥𝑓𝑓(𝑥𝑥)||2𝑛𝑛                           (1) 

In this context, 𝛻𝛻𝑥𝑥𝑓𝑓(𝑥𝑥) denotes the gradient of the model output with respect to the input features, 
which reflects the sensitivity or importance of each feature in determining the model's prediction. The 
symbol 𝔼𝔼 represents the mathematical expectation, computed under two standard forms. Features with 
large input values are often assigned high importance by the classifier, which in turn leads to 
disproportionately large associated parameter weights. However, such features may not necessarily be 
crucial for identifying the correct class label. This misalignment can negatively impact the models overall 
performance and generalization. 

To address this issue, we adopt the Hreg (High-importance Regularization) method, which introduces 
a regularization mechanism to balance the influence of features with different magnitudes. Specifically, 
Hreg imposes anL2-norm penalty that is stronger for features associated with high gradient values and 
weaker for those with low gradient values. This penalization helps suppress the undue influence of 
dominant but less relevant features, thereby improving the robustness and accuracy of the model. 

3.2 Proposed Hreg-VAE-LSTM model 

In this experiment, in order to train our model in an unsupervised manner, we first determined the 
relevant training set and test set. The training data we provided in the training set did not contain 
anomalies, and the remaining time series data were used as the data for our test set. 

The VAE model is composed of an encoder-decoder architecture. It processes a local segment 
consisting of P consecutive time series readings, where the encoder maps the input to a low-dimensional 
latent representation of Q dimensions, and the decoder attempts to reconstruct the original input window 
from this latent space. To facilitate training, a series of rolling windows are extracted from the training 
dataset. Let 𝑤𝑤𝑖𝑖 = {𝑥𝑥𝑡𝑡−𝑝𝑝+1, 𝑥𝑥𝑡𝑡−𝑝𝑝+2, … , 𝑥𝑥𝑡𝑡} denote the time window of length p ending at time step t. And 
the LSTM model operates over a sequence of embeddings generated by the VAE, which are derived from 
k non-overlapping windows. We define the sequence of such windows ending at time t as: 𝑊𝑊𝑡𝑡 =
{𝑊𝑊𝑡𝑡−(𝑘𝑘−1)∗𝑝𝑝, … ,𝑊𝑊𝑡𝑡}, where each 𝑊𝑊𝑡𝑡−(𝑘𝑘−1)∗𝑝𝑝 represents a window of length p sampled at an interval of 
p time steps. The corresponding embedding sequence is denoted by 𝐸𝐸𝑡𝑡 = {𝑒𝑒𝑡𝑡1, … , 𝑒𝑒𝑡𝑡𝑘𝑘}, where 𝑒𝑒𝑡𝑡𝑖𝑖 is the 
embedding of the i-th window in 𝑊𝑊𝑡𝑡 generated by the VAE. 

For a training set containing NTrain time steps, we can extract approximately Ntrain-P windows to train 
the VAE module, and approximately NTRAIN-P*K sequences of k non-overlapping windows to train the 
LSTM module. To validate model performance and mitigate overfitting, we randomly reserve 10% subset 
of the sequences from the training dataset is reserved for validation purposes. To ensure unbiased model 
evaluation, all windows and sequences within this validation subset are excluded from the training 
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process. 

In the remaining windows of the training set, we optimize the parameters of the VAE model by 
maximizing the Evidence Lower Bound (ELBO) loss, which balances the reconstruction loss and the 
Kullback–Leibler (KL) divergence. Each data window is passed through the VAE, and once the VAE 
model is well trained, we utilize its encoder to generate latent embeddings 𝐸𝐸𝑇𝑇 for all windows in the 
training set. 

To train the LSTM model, we construct sequences of embeddings from 𝐸𝐸𝑇𝑇. Specifically, the LSTM 
takes the first 𝑘𝑘 − 1 embeddings in each sequence as input and learns to predict the subsequent 𝑘𝑘 − 1 
embeddings. This sequence-to-sequence prediction task enables the LSTM to capture the temporal 
dependencies in the embedding space inferred by the VAE, thereby facilitating the modeling of long-
term trends and aiding in the detection of temporal anomalies. 

[𝑒̂𝑒𝑡𝑡2, … , 𝑒̂𝑒𝑡𝑡𝑘𝑘] = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿([𝑒𝑒𝑡𝑡1, … , 𝑒𝑒𝑡𝑡𝑘𝑘−1])                            (2) 

The parameters of the LSTM model are optimized by minimizing the prediction error between the 
predicted and actual embeddings. Specifically, the objective is to minimize the following loss function: 
min||𝑒̂𝑒𝑡𝑡𝑘𝑘 − 𝑒𝑒𝑡𝑡𝑘𝑘||, where 𝑒̂𝑒𝑡𝑡𝑘𝑘 denotes the LSTM-predicted embedding for the k-th position in the sequence, 
and 𝑒𝑒𝑡𝑡𝑘𝑘  is the corresponding ground truth embedding obtained from the VAE encoder. This loss 
encourages the LSTM to accurately model temporal dynamics within the latent space defined by the 
VAE.It is important to note that all parameters in both the VAE and LSTM components are optimized in 
an unsupervised manner—no anomaly labels are required during training. 

After the training phase, our model can be deployed for real-time anomaly detection. At each time 
step 𝑡𝑡, the Hreg-VAE-LSTM model processes a time series segment𝑊𝑊𝑡𝑡, which consists of the previous 
k×p time points leading up to 𝑡𝑡. First, the encoder of the trained VAE module is used to compute the 
embedding sequence 𝐸𝐸𝑡𝑡 from 𝑊𝑊𝑡𝑡. The first 𝑘𝑘 − 1 embeddings from 𝐸𝐸𝑡𝑡 are then input into the LSTM 
module, which predicts the subsequent 𝑘𝑘 − 1 embeddings, denoted as: [𝑒̂𝑒𝑡𝑡2, … , 𝑒̂𝑒𝑡𝑡𝑘𝑘]. Finally, the decoder 
component of the VAE is used to reconstruct the input data from the predicted embeddings. This process 
is formally represented as: 

𝑤𝑤�𝑡𝑡−(𝑘𝑘−𝑖𝑖)∗𝑝𝑝 = 𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷𝐷(𝑒̂𝑒𝑡𝑡𝑖𝑖), i=2,…k.                       (3) 

By utilizing the reconstructed windows, we can determine whether the input window 𝑊𝑊𝑡𝑡 contains 
anomalies by computing an anomaly score denoted as 𝑑𝑑𝑡𝑡. This score reflects the discrepancy between 
the original and reconstructed data, and serves as the basis for anomaly detection. Specifically 𝑑𝑑𝑡𝑡 is 
defined as follows: 

𝑑𝑑𝑡𝑡 = � ||𝑤𝑤�𝑡𝑡−(𝑘𝑘−𝑖𝑖)∗𝑝𝑝 − 𝑤𝑤𝑡𝑡−(𝑘𝑘−𝑖𝑖)∗𝑝𝑝||2
𝑘𝑘
𝑖𝑖=2                       (4) 

To detect anomalies, we define a threshold θ on the anomaly score function 𝑑𝑑𝑡𝑡 . If the computed 
score exceeds this threshold, an anomaly alarm is triggered by assigning 𝑦𝑦𝑡𝑡=1, indicating that the current 
time window 𝑊𝑊𝑡𝑡 is considered suspicious and may contain abnormal events. 

In practice, the threshold θ should be selected based on a validation subset comprising both typical 
and anomalous instances, if such data is available. This enables more accurate calibration of the detection 
sensitivity and helps reduce both false positives and false negatives.Ultimately, the performance of the 
proposed model is evaluated on the validation or test set using standard anomaly detection metrics, such 
as the F1 score, precision or recall, depending on the evaluation criteria of the specific application domain. 

4. Experiment 

4.1 Datasets 

We evaluated the performance of our proposed Hreg-VAE-LSTM algorithm on five real-world time 
series datasets. A brief description of each dataset is provided below: 

Ambient Temperature (Office): This dataset records indoor environmental temperature readings 
collected from sensors in an office environment. Anomalies typically arise from HVAC system faults or 
external environmental influences. 

AWS CPU Utilization: This dataset contains CPU usage metrics from Amazon Web Services (AWS) 
instances. Anomalies include workload spikes, unexpected traffic loads, or misconfigurations. 
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Amazon East Server Metrics: This dataset comprises server monitoring statistics (e.g., temperature, 
CPU, memory) from an Amazon East Coast data center. Anomalous behavior often indicates system 
faults or external attacks. 

Industrial Machine Internal Temperature: This dataset includes internal temperature sensor readings 
from industrial machinery during normal and faulty operations. Anomalies may indicate overheating or 
early signs of equipment failure. 

New York City Taxi Demand: This dataset records the number of taxi passengers over time in New 
York City. Anomalies are typically caused by holidays, weather events, or major public incidents. 

Each time series was normalized prior to training, and sliding windows were applied to segment the 
data for Hreg-VAE- LSTM models. Ground truth anomaly labels provided with the datasets were used 
for evaluation purposes only and not for training, as our model operates in an unsupervised learning 
setting. 

4.2 Evaluation Criteria 

Our method was compared against three widely used time series anomaly detection algorithms: 
Variational Autoencoder (VAE), LSTM-based Anomaly Detection (LSTM-AD), and the Auto 
Regressive Moving Average model (ARMA). Table 1 presents the numerical results for all models, along 
with the length of the detection window used in each case. 

Table 1 Experimental results (Precision, recall, F1 score and Win-l: detection window length). 

Dataset Method Win-l Prec Recall F1 

Ambient 
temperature 

Ours 168 0.812 1.0 0.895 
VAE 24 0.686 0.5 0.573 

ARMA 24 0.184 1.0 0.311 
LSTM-AD 24 1.0 0.5 0.666 

Cpu 
utilization 

AWS 

Ours 144 0.773 1.0 0.873 
VAE 24 0.348 0.5 0.410 

ARMA 24 0.234 1.0 0.380 
LSTM-AD 24 0.274 1.0 0.430 

Cpu request 
EC2 

Ours 192 0.979 1.0 0.990 
VAE 24 0.949 1.0 0.996 

ARMA 24 0.938 1.0 0.968 
LSTM-AD 24 1.0 0.436 0.608 

Machine 
temperature 

Ours 288 0.986 1.0 0.986 
VAE 24 0.211 1.0 0.207 

ARMA 24 0.142 1.0 0.248 
LSTM-AD 24 1.0 0.5 0.667 

NYC taxi 

Ours 168 0.994 1.0 0.997 
VAE 24 0.662 0.8 0.725 

ARMA 24 0.769 0.4 0.526 
LSTM-AD 24 1.0 0.2 0.333 

We evaluated performance using three standard metrics: precision, recall, and F1 score. For 
consistency and fairness, the detection window length was kept the same across all methods for each 
dataset. Note that the overall time span covered by our model appears longer, which is attributed to its 
hierarchical architecture that enables detection of long-duration events spanning multiple time steps. 

A notable challenge in evaluation arises from the fact that many anomalies occur at a single 
timestamp,while all detection methods operate on sliding windows. This discrepancy complicates the 
accurate computation of true positives, false positives, and false negatives. To address this, we adopted 
the evaluation strategy proposed by, which provides a simplified and consistent mechanism for aligning 
detected windows with timestamp-level anomaly labels. The formula for calculating accuracy is shown 
in Formula 5. 

𝑃𝑃𝑃𝑃𝑃𝑃 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                    (5) 

The calculation formula for recall rate is shown in Formula 6. 

𝑅𝑅𝑅𝑅𝑅𝑅 = 𝑇𝑇𝑇𝑇
𝑇𝑇𝑇𝑇+𝐹𝐹𝐹𝐹

                                    (6) 
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In formulas 5 and 6, True Positive (TP) denotes the number of instances that are correctly identified 
as belonging to class A. False Positive (FP) refers to the number of instances incorrectly classified as 
class A, despite originating from other classes. False Negative (FN) represents the number of class A 
instances that were mistakenly identified as belonging to other categories. The F1 score, being the 
harmonic mean of precision and recall, offers a balanced evaluation by simultaneously accounting for 
both metrics. As a result, it is often regarded as a more reliable performance indicator than individual 
measures. The formula for computing the F1 score is presented in Formula 7. 

𝐹𝐹1 = 2∗𝑃𝑃𝑃𝑃𝑃𝑃∗𝑅𝑅𝑅𝑅𝑅𝑅
𝑃𝑃𝑃𝑃𝑃𝑃+𝑅𝑅𝑅𝑅𝑅𝑅

                                (7) 

 
(a) 

 
(b) 

 
(c) 

Figure 2 Comparison of models. 

4.3 Experimental Results 

Our proposed model performs best in five public datasets,The final experimental results are shown 
in Table 1.As shown in Table 1, our proposed Hreg-VAE-LSTM model has the highest F1 score in all 
five datasets. The Precision, recall, and F1 scores for each model are shown in Figure 2. In Figure 2, the 
performance of various anomaly detection models is compared across different evaluation metrics. The 
blue line represents the proposed Hreg-VAE-LSTM model, while the green, orange, and purple lines 
correspond to the VAE, ARMA, and LSTM-AD models, respectively. Figure 2(a) illustrates the precision 
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of each method, and Figure 2(b) presents the recall scores. As shown in Figure 2(c), our proposed model 
achieves the highest F1 score among all evaluated approaches, demonstrating its superior overall 
detection performance. 

Figure 3 illustrates representative examples of anomaly detection results produced by our proposed 
model across five real-world time series datasets. In each subplot, the blue curve denotes the raw input 
data, red vertical lines indicate the ground truth anomaly points, orange vertical lines mark the anomalies 
detected by our model, and the red-shaded areas highlight the anomalous regions over time. Specifically, 
Figure 3(a) corresponds to ambient temperature data, Figure 3(b) shows the results for CPU utilization 
from AWS, Figure 3(c) presents detection results on the EC2 CPU request dataset, Figure 3(d) illustrates 
anomaly detection for industrial machine temperature, and Figure 3(e) shows results for the NYC taxi 
passenger dataset. Our model demonstrates the capability to identify anomalies with high accuracy, 
particularly by effectively capturing the contextual relationships surrounding anomalous points. 

 
(a) 

 
(b) 

 
(c) 

 
(d) 
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(e) 

Figure 3 Anomalies detected by our model. 

5. Conclusion 

In this work, we proposed the Hreg-VAE-LSTM model to address key challenges in time series 
anomaly detection. As an unsupervised learning framework, our model integrates three components: a 
Variational Autoencoder (VAE) for extracting robust local features within short sliding windows, a novel 
Hreg regularization technique to mitigate the effects of imbalanced feature distributions, and a Long 
Short-Term Memory (LSTM) network to capture long-term dependencies across time. This design 
enables the model to detect anomalies occurring across multiple temporal scales. Extensive experiments 
conducted on five real-world datasets demonstrate the effectiveness and generalizability of our approach. 
The proposed model consistently outperforms several widely-used baseline methods, confirming its 
superiority in both detection accuracy and robustness. 
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