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ABSTRACT. The randomness of wind generation is one of the main factors restricting 
gird connection of wind generation. The involvements of energy storage systems and 
resources used for demand response in the process of optimization for wind power 
are useful means to enhance its regulation capacity. Considering the uncertainty of 
wind generation in day-ahead plans, this paper proposes a coordinated scheduling 
optimization model for Wind-ES hybrid systems with demand response via electric 
vehicles. The model can be used to apply energy storage systems and electric 
vehicles simultaneously to both peak shaving/valley filling and wind generation plan 
tracking to achieve the coordination between the on-grid revenue and penalty cost 
of the hybrid system, so as to develop the optimal strategy for maximum benefits. 
The wind power is modeled by using scenario analysis method, and the mixed 
integer programming problem of this paper is solved via CPLEX software. The case 
study results show that the coordinated scheduling optimization model can not only 
earn additional revenue for electric vehicle owners, but also effectively improve the 
economy of wind power grid connection, which provides an important reference for 
scheduling the demand response resources of electric vehicles to consume wind 
generation. 

KEYWORDS: V2G; Wind-ES hybrid systems; scenario reduction; uncertainty; mixed 
integer programming  

 

1. Introduction 

Due to environmental pollution and fossil resources exhaustion, China has 
vigorously developed power generation via renewable energy, such as wind. As of 
the end of 2017, Wind power installed capacity reached 188.82GW, achieving 
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leaping development. However, serious wind curtailment exposed. According to data 
from the National Bureau of Statistics, the total amount of wind curtailment in 2017 
was 41.9 billion  , the average annual wind curtailment rate was 11.9% [1], and the 
amount of wind curtailment was over 10% for three consecutive years. 

The energy storage system with large capacity has the ability of rapid two-way 
regulation. It is an effective way to alleviate wind curtailment in wind power plants 
where energy storage devices are employed. There have been relevant researches on 
the wind-ES hybrid system operation for wind curtailment reduction. Reference [2] 
constructed a multi-time wind-ES joint dispatch model, chasing the maximum 
expected income, and the randomness of wind generation is simulated by using 
scenario reduction technology in the paper. Reference [3] considered the risk of load 
loss in the meantime of purchasing the maximum revenue of the wind-ES hybrid 
system, and constructed a multi-objective scheduling model for the hybrid system 
operation. Reference [4] constructed a two-stage stochastic optimization model 
considering the influences of wind power forecast error and uncertainty of electricity 
price on the system benefits. Reference [5] proposed an intraday rolling coordinated 
dispatching mode and a two-stage optimization model, based on ultra-short-term 
output forecast of wind power plants, which is conducive to benefit increase, as well 
as wind curtailment reduction and operation cost reduction. Reference [6] constructed 
a cooperated optimization model and applied it to alleviating wind curtailment and 
providing grid secondary frequency modulation service, and the conclusion was 
drawn that energy storage for dispatching can reduce wind curtailment in wind-
power-restricted periods, and increase the income from on-grid operation via 
frequency modulation when wind power generation is free. Reference [7], 
considering the applications of energy storage systems to two modes of peak 
regulation and plan tracking, conducted a multi-mode coordination optimization.  

The above literature mainly studied how power generation side promoted wind 
power consumption via energy storage systems. However, it is not enough for large-
scale grid to alleviate fluctuation of wind power output only via energy storage [8-9]. 
Research on coordinated dispatch of wind-ES hybrid systems with demand response 
(DR) is conducive to further enhance the wind power consumption ability of power 
systems. Reference [10] considered price elasticity matrix to encourage user side to 
participate in peak regulation, and constructed a wind-thermal-ES coordinated 
dispatching model with DR, which is capable of effectively increase the wind power 
consumption, in the meantime of decreasing coal consumption. However, the 
mentioned model only sketched DR and the constraints were simple. References [11-
12] concretely modeled price-based demand response (PBDR) and incentive-based 
demand response (IBDR), and conducted multi-demand-response stochastic 
optimization with the conclusion that mixed consideration of DR and energy storage 
had better economic benefits and greater wind power consumption. 

Electric vehicles, as a vital load resource, are seen as a distributed ES unit via 
“vehicle to grid” (V2G), interacting with generation side, to consume surplus wind 
power. Reference [13] proposed a wind-electric vehicle coordinated dispatching 
model in different gird connection modes of electric vehicle, and applied the 
improved constraint methods and fuzzy decision theories for model solving; yet the 
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price’s influence on the proposed model was not involved. Reference [14] used the 
time-of-use price to encourage users to orderly charge/discharge electric vehicles, and 
NSGA-II is employed for model solving; The results indicated that the orderly grid 
connection of electric vehicles can effectively narrow the peak-valley difference of 
load and the operating cost of thermal generation, but wind power uncertainty is 
absent in the paper.  

Under the above background, aiming at the maximum expected revenue of the 
wind-ES hybrid system, this paper establishes a day-ahead optimization model with 
electric vehicles (as DR resources) included. The limited output scenario generated 
by Monte Carlo simulation and scenario reduction is applied to simulating the wind 
generation uncertainty. CPLEX software is employed since the proposed model is a 
mixed integer programming (MIP) problem. Based on the case study results, the 
coordinated operation revenue of the wind-ES hybrid system under different modes is 
analyzed, and discusses the influence of the peak-valley price difference and the 
deviation penalty coefficient on the revenue of the hybrid system. 

2. Wind power prediction model based on scenario analysis  

The scenario analysis is a method that decomposes the uncertain stochastic 
process into typical scenarios with discrete probability, and the wind generation 
uncertainty through the set of determined probability scenarios is described. Its main 
content includes scenario generation and scenario reduction. The steps of simulating 
wind power output by using scenario analysis method are as follows: 

(1) According to the auto regression moving average (ARMA), the wind speed is 
predicted. 

(2) Latin hypercube stratified sampling is applied to sampling the wind speed 
prediction error, and the probability of each sample is assumed to be equal.  

(3) Backward reduction technology is used to reduce the sample set of prediction 
error scenarios and merge similar scenarios. 

(4) According to the relationship between wind speed and output, the wind 
power limited output scenario and the corresponding scenario’s probability are 
determined. 

2.1 Wind speed prediction model considering prediction error 

The ARMA model can minimize the variance to predict the wind speed [15]. 
Based on the wind farms’ historical data, wind speed prediction error is simulated 
via ARMA (1,1).  

Wind speed over time t  is set to be ,w tg , which is calculated as follow. 

( ) ( ) ( )f
w wg t g t g t= + ∆

                            
(1) 
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Where ( )wg t  stands for wind velocity, ( )f
wg t  is the predicted wind velocity, 

and ( )g t∆  is the predicted error of wind speed over time t . 

The predicted error of wind speed model is calculated as follow. 

( ) ( 1) ( ) ( 1)g t g t Z t Z t∆ = ⋅∆ − + + ⋅ −ϕ t           (2) 

Where ( 1)g t∆ −  indicates the predicted wind velocity error over time 1t − , 
( )Z t  is the random variable that obeys 2(0 )N σ， , ϕ  stands for the 

autoregressive parameter, and τ  stands for the sliding average parameter (both of 
which can be obtained via the minimum ARMA and mean square error of wind 
speed from historical data). 

2.2 Wind speed prediction error scenario generation based on Latin hypercube 
sampling 

The principle of using many scenarios to simulate wind speed error is to 
concretize the wind speed uncertainty via a random number subject to a certain 
distribution, and then obtain the wind output model. Based on the wind speed 
prediction model in Section 1.1, this section samples the wind speed error, via Latin 
hypercube sampling, in order to obtain the scenario set of wind speed prediction 
error. The schematic diagram of Latin hypercube sampling is shown in Fig. 1. 

The sample value

 

Fig. 1. Latin hypercube sampling schematic diagram 

The steps of wind speed sampling with Latin hypercube sampling technology are 
as follows [16]. 

(1) The probability density function of wind speed prediction error is divided 
into equal probability intervals, that is, [ ]0 1 N， ,[ ]1 2N N， ,[ ]1N N− ,1 ; 

(2) in respect to [ ]1i N i N− ， , 1 i N≤ ≤ (any probability interval), select a 
number randomly and take it as ip : 
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1
i

r ip
N N

−
= +                                    (3) 

Where r  stands for a random value which is between 0 and 1; 

(3) The sample value of wind speed prediction error, which is in the probability 
interval [ ]1i N i N− ， , is obtained via the inverse function 1( )F R− , i.e. 

1( )i ix F R−= . 

Through the above steps, the random variables of wind speed prediction can be 
obtained. In order to reduce the correlation of the sample data in the sampling matrix 
and get the independent sampling matrix, Cholesky decomposition method is used to 
sort the sampling matrix. The steps are detailed in [17]. 

2.3 Wind speed scenario reduction 

It is of necessity to merge/remove similar scenarios in the same set to improve 
the accuracy and efficiency of calculation, and then obtain a representative set that 
has enough samples to describe a random predicted distribution of wind speed, so 
that the typical scenario set after reduction can still represent the initial set when it 
comes to probability. 

(1) Assuming that the wind speed prediction error sample, i.e. the number of 
initial scenarios is set to be N , and the number of terminal scenarios is set to be n . 
The probability of each initial scenario is detailed as follows. 

1
ip

N
=                                          (4) 

The number of scenarios when iterating is set to be n′ , n N′ =  when 
initializing. 

(2) For any two scenarios in the n′  in the iteration process, the Kantorovich 
distance between the two scenarios is calculated by taking the 24-hour wind speed 
prediction error scenario vector as the reduction unit, which is simplified as an 
absolute value, i.e. 

( , )k i j i jd u u u u= −
                        

(5) 

(3) The wind speed prediction error scenario ju  closest to its scenario is 

calculated, i.e. ( , )k i j i jd u u u u= − ; also, the probability distance between the two 

scenarios is calculated, i.e.  

{ }min ( , )DKi k i j iP d u u i j p= ≠ ×
                

(6) 
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(4) Repeat step 3, and the minimum scenario distance is calculated, which is 
taken as 

DKSP , in respect to each wind speed prediction error scenario. 

{ }min |1DKS DKiP P i n′= ≤ ≤
                    

(7) 

(5) Update the scenario probability, i.e. i i jp p p= + , and remove the ju  from 
the wind speed prediction error set. 

(6) Update the scenario set number, i.e. n n I′ ′= − , in the scenario iteration 
where I  is the scenario number that has been removed. Then repeat steps 2-5 until 
the scenarios are reduced to n  which is target number. 

(7) The wind speed prediction error in each scenario is superposed with the wind 
speed basis, and the multi-scenario model of wind speed prediction is given. 

2.4 Wind power output model construction 

On the basis of the reduced wind speed prediction scenario in section 1.3, the 
wind output is calculated according to wind speed, and the wind output model is 
non-linear. To simplify the analysis, this paper assumes that the wind output is not 
affected by interaction between fans but wind speed. The fan output characteristic 
curve is given in [18], and the approximate output formula is given as follows. 

3 2
1 2 3 4

0
( ) ( ) ( )w

t w w w

N

P a a g t a g t a g t
P


= + + +



 
( )

( )
( )

w in

in w out

w out

g t g
g g t g

g t g

≤
≤ <

≥

        (8) 

Where ( )PVP t  is the wind output, NP  is the rated output, 1a , 2a , 3a , 4a  are all the 

fitting coefficients, ing  is the minimum wind speed when it outputs, and outg  is the 
minimum wind speed when the fan operates in rated power.  

By using formula (8) and the wind speed prediction scenario generated after 
reduction, the wind power prediction output curve of the corresponding specified 
number of scenarios can be obtained. 

3. Wind-ES coordinated scheduling optimization model construction 

3.1 Objective function 

Based on the output scenario simulation of different wind farms and the 
charging/discharging power prediction curves of electric vehicles, the coordinated 
scheduling model is constructed for wind-ES hybrid system with electric vehicles, 
chasing the objective of the maximum expected revenue of the system in different 
wind speed scenarios, which is shown in formula (9). In this model, energy storage 
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system and electric vehicles play two roles: peak regulation and tracking planned 
output. When it is applied to peak regulation, energy storage system and electric 
vehicles release energy in peak periods to gain revenue, which is charged in valley 
periods. When it is applied to tracking planned output, the system chases the 
minimum penalty cost, and the planned/actual output deviation is narrowed by 
controlling energy storage. 

( ), , , , ,

1 1
max

sN T
w dis ch pun DR

t t t t t t
t

f E P P P t C C
= =

  = + − D − −   
∑ ∑w w w w w w

w

ρ p (9) 

Where ω  stands for the wind power scenario, sN  stands for the number of wind 

power farm, ωρ  stands for the probability of ω , t  stands for the time series where 
1h is seen as a period, T  stands for the total periods within a day, tπ  stands for the 

price of the wind-ES hybrid system in grid-connected operation over time t , ,w
tPw  

is the output of wind power farm in scenario ω  over time t , ,dis
tPω  and ,ch

tPω  are 
respectively the discharging/charging power in scenario ω , t∆  is the calculating 
duration, , pun

tCω  is the penalty cost in scenario ω  over time t , and ,DR
tCω  is the DR 

cost of electric vehicles over time t . 

When an electric vehicle participates in the coordinated operation of the hybrid 
system, its DR cost is expressed as follows. 

, ,

1 1

T G
DR ev g

t t t
t g

C Pωω π
= =

= ∑ ∑                   (10) 

Where ev
tπ  is the price of electric vehicles providing ancillary service in day-

ahead market over time t , ,g
tPω is the charging/discharging power of vehicle g  

over time t , G  is the number of electric vehicles. 

3.2 Constraints 

The constraints of day-ahead scheduling include penalty cost constraints, wind 
farm output constraint, day-ahead wind capacity planning constraint and energy 
storage battery constraints. 

(1) Penalty cost constraint 

The penalty cost is expressed by the linear constraint in [19], as shown in Fig. 2 
where plan

tP  refers to the day-ahead generation plan submitted by the hybrid system 

to the grid, and up
tµ  and down

tµ  are respectively the penalty prices at time t  when 

the output exceeds the upper limit or is lower than the lower limit, and devP∆  
indicates the deviation between the allowable wind farm output plan and the actual 
value. 
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plan
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t t tP P P+ −ωωω 

 

Fig. 2. The schematic of penalty cost 

The minimum in the shadow area of the figure indicates the penalty cost, which 
is detailed as follows.  
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 
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

∑

∑
    (11) 

Considering power grid security, the deviation between the actual output and the 
planned value is limited by the maximum value ,maxdevP∆ . 

,max , , , , ,max

1

G
dev plan w dis ch g dev

t t t t t
g

P P P P P P Pw w w w

=

−∆ ≤ − − + − ≤ ∆∑    (12) 

(2) Wind farm output constraint 
, , ,max0 w w

t tP Pw w≤ ≤                            (13) 

Where , ,maxw
tPw  is the predicted wind output in scenario ω  over time t . 

(3) Day-ahead wind capacity planning constraint 
max max0 plan

t dis wP P P≤ ≤ +                      (14) 

Where max
disP  is the maximum discharging output of energy storage battery, and 

max
wP  is the maximum wind output. 

(4) Energy storage battery constraints 

Energy storage battery operation constraints include battery capacity constraint, 
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capacity constraint, energy balance constraint at the beginning and end of the energy 
storage cycle, charging and discharging power constraints, and battery state 
transition constraints [20]. 

, ,
1

min max

0
, max ,

, max ,

, ,

/

0
0

1

ch dis
t t t ch t dis

t

T
ch ch

t ch t
dis dis

t dis t
ch dis

t t

E E P t P t
E E E
E E

P P U
P P U

U U

ωωωω  

ω

ωω

ωω

ωω

ωω

h h+ = + ∆ − ∆
 ≤ ≤
 =


≤ ≤
 ≤ ≤


+ =

          (15) 

Where tEω  is the electric quantity of the battery in scenario ω  during time t , 

chh  and disη  are respectively the charging/discharging efficiency, maxE  and minE  

are the limitations of the battery, 0Eω  and TEω  are respectively the initial and 

terminal states in scenario ω , ,ch
tU ω  and ,dis

tU ω  are respectively the charging and 
discharging variables of the battery in scenario ω  during time t , therein 0 stands 
for “off” while 1 stands for “on”. 

(5) State transformation of energy storage battery constraint 

To avoid the frequent charge/discharge state change and improve the life of 
energy storage battery, it is necessary to limit the charge/discharge state frequency 
as follows.  

,

1

T
bat

t bat
t

Y Nω

=

≤∑                                (16) 

, ,
1

bat dis dis
t t tY U Uωω

−= −                            (17) 

Where ,bat
tYω  is the state transformation variable in scenario ω , and batN  is the 

frequency limitation of charging/discharging of the battery.  

3.3 Case study 

(1) Basic data 

It is assumed that a wind farm consists of 200 fans, and all fans are exposed in 
the same environment at the same time. The autoregressive parameter ϕ  and sliding 
average parameter τ  in the wind speed prediction error model are respectively 0.78 
and -0.34, and σ  is set to be 1. The wind speed are set based on the wind speed data 
of a wind farm (every 10min a day), the rated output of a single fan is 3MW, and 
wind speed and wind output curve refer to [21]. 



Academic Journal of Humanities & Social Sciences 
ISSN 2616-5783 Vol.3, Issue 2: 124-138, DOI: 10.25236/AJHSS.2020.030214 

Published by Francis Academic Press, UK 

-133- 

The allowable maximum wind output deviation is 50% of the rated capacity of 
the wind farm. The capacity of energy storage battery is 50MW, the maximum 
charge and discharge power is 10MW, the charge/discharge efficiency is 90%, and 
the energy storage battery states at 20% ~ 100%.  

One thousand scenarios are generated by Monte Carlo simulation technology, 
and 10 scenarios are final-chosen via fast backward method [22]. 

Time-of-use price is used for the wind-ES system connected to grid, which is 
750 yuan/MW in peak periods (11:00-15:00 and 19:00-21:00), 500 yuan/MW in flat 
periods (08:00-10:00, 16:00-18:00 and 22:00-23:00), and 250 yuan/MW in valley 
period (0:00-7:00). The penalty price is 1.1 times of the grid-connected electricity 
price. 

Assuming that 20 thousand electric vehicles participate in the coordinated 
scheduling, the orderly charging and discharging power curves of electric vehicles 
are shown in Fig. 3 [23]. 

Orderly discharging power/MW
Orderly charging power/MW  

Fig. 3. Electric vehicle orderly charging and discharging curves 

(2) Influences of electric vehicles on scheduling results 

Set the coordinated scheduling of electric vehicles participating in the wind-ES 
hybrid system as mode 1 and not participating in the coordinated scheduling as 
mode 2. The operation results in different modes are shown in Table 1. 

Table 1.  The results under different modes  

Mode 
Expected grid-

connected 
revenue/104 yuan 

Expected 
penalty cost/104 

yuan 

Expected revenue 
from electric 

vehicles/104 yuan 

Expected 
coordinated 

operation revenue 
/104 yuan 

Mode 1 154.03 34.88 4.81 114.34 
Mode 2 150.76 42.34 — 108.42 

Comparing the results in the table, the participation of electric vehicles in the 
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coordinated operation has better economic benefits. On the one hand, electric 
vehicles involved in the coordinated operation is charged with the surplus wind 
power and discharged when insufficient wind output happens, which plays the role in 
peak shaving and valley filling, and improves the grid-connection income of the 
hybrid system. On the other hand, electric vehicles participating in the coordinated 
operation of the hybrid system makes the wind farm have greater regulation capacity, 
so that the penalty cost of wind farm due to the wind generation uncertainty is greatly 
reduced. In addition, the participation of electric vehicles in the coordinated operation 
can obtain ancillary service costs, reduce charging costs, and improve the initiative of 
electric vehicle owners to participate in grid dispatching. 

(3) Influences of different time-of-use prices on the calculation results 

The penalty fee is set to be 1.1 times of the grid-connected price, and the price in 
flat periods is 500 yuan/MW. The prices in peak and valley periods are 50% - 70% 
higher than that in flat periods. The results of electric vehicles participating in the 
coordinated operation are shown in Figs. 4-5.  

Expected revenue in coordinated operation

Expected grid-connected revenue of the system
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Fig. 4. Expected grid-connected revenue of the system and expected revenue in 
coordinated operation 

Expected revenue of electric vehicles providing ancillary service
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Fig. 5. Expected revenue of electric vehicle providing ancillary service  
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It can be seen from the figure that the greater the price difference between time-
of-use prices, the higher the expected revenue from grid-connection and the expected 
revenue in coordinated operation. The greater the price difference between time-of-
use prices, the more surplus wind power is absorbed by electric vehicles and energy 
storage system in valley periods, and the higher the revenue obtained by releasing the 
surplus wind power in peak periods. 

(4) Influence of different penalty coefficients on the results 

The peak-valley price difference is taken as 50%, and the operation results of 
mode 1 and mode 2 with different penalty coefficients are shown in the figures. Figs. 
6-7 respectively show the expected grid-connected revenue of the system and the 
expected penalty costs. 

Mode 1
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Fig. 6. Expected grid connected revenue under different penalty coefficients 
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Fig. 7. Expected penalty cost under different penalty coefficients  

The penalty coefficients reflect the controllability requirements of the grid for 
wind power grid connection. When the penalty coefficient is less than 1, the wind 
power has the priority of scheduling, but the equivalent revenue of the limitation 
crossing part will be reduced. When the penalty coefficient is greater than 1, the 
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extra power will generate penalty. According to Figs. 6-7, when the penalty 
coefficient is less than 1, the expected revenue of the hybrid system is basically the 
same under different penalty coefficients. Even if the penalty cost increases with the 
increase of the penalty coefficient, the penalty cost will not be reduced by reducing 
the wind power generation. When the penalty coefficient is greater than 1, the 
penalty cost is greater than the revenue from grid connection. The wind-ES hybrid 
system reduces the penalty cost by reducing the power that gets access to public grid. 

Mode 1
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Fig. 8. Expected revenue in different modes under different penalty coefficients  

The net expected revenue of mode 1 and mode 2 under different penalty 
coefficients are shown in Fig. 8. It can be seen from the figure that for different 
penalty coefficients, the expected revenue in coordinated operation in mode 1 is 
higher than that in mode 2. The main reason is that in mode 1, electric vehicles 
participating in the coordinated operation makes them have greater price handling 
ability to cope with the wind power fluctuation and reduce the penalty cost. 

4. Conclusions  

Based on different wind power predicting scenarios, a day-ahead scheduling 
model for wind-ES hybrid systems with electric vehicles, considering the 
uncertainty of wind power output, is proposed. Through a case study the benefits of 
electric vehicles participating in the operation of the wind-ES hybrid system are 
verified and compared, and the influences of the price factors on the operation 
results are discussed. This paper concludes as follows. 

(1) Electric vehicles, as DR resources, are employed in wind-ES hybrid systems, 
which are conducive to making the wind farm have more scheduling flexibility, 
effectively improve the economy of wind power getting access to grid, and promote 
the wind power consumption. 
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(2) The participation of electric vehicles in the operation of the wind-ES hybrid 
system can improve the regulation capacity of the wind farm, which is ultimately 
reflected in two aspects that are the grid-connected revenue via peak regulation and 
the penalty cost reduction via tracking planned output. Different price factors have a 
great influence on the revenue of the wind-ES hybrid system. Therefore, it is 
necessary to develop appropriate time-of-use price mechanism and deviation 
assessment mechanism to better promote the consumption of wind power for grid 
connection. 
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