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Abstract: Cancer is one of the leading causes of mortality worldwide, and its inherent diversity and 
heterogeneity pose significant challenges in early diagnosis, drug development, and prognosis. Accurate 
identification of cancer subtypes has therefore become a critical aspect of personalized cancer treatment. 
With the advancement of omics technologies, multi-omics data offer a more comprehensive 
understanding of cancer's underlying mechanisms. However, effectively integrating such diverse datasets 
to identify cancer subtypes remains a significant challenge. In this study, we introduce a novel approach, 
termed HRAGNN, for cancer subtype identification through the integration of multi-omics data. 
HRAGNN first constructs an integrated graph and then leverages Relational Attention Mechanism (RAM) 
and Graph Neural Network (GNN) to capture complex features across these multi-omics layers. 
Subsequently, the Multi-view Fusion Network (MVFN) is employed to fuse the features derived from the 
different omics data. We evaluated the performance of HRAGNN on three datasets, comparing it with 
other existing methods. The experimental results demonstrate that HRAGNN outperforms other 
approaches in terms of several key evaluation metrics. 
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1. Introduction 

Cancer is a complex disease driven by genetic mutations in cells, with its development and metastasis 
involving intricate physiological processes, influenced by a wide array of factors. Cancers can arise in 
various tissues and organs, presenting with diverse types and stages, each of which directly impacts 
disease severity and prognosis. Notably, cancer remains one of the most significant threats to patient 
survival[1]. Its complexity and severity are further compounded by its inherent diversity and 
heterogeneity[2]. Emerging research has revealed that even within the same cancer type, subtypes can 
exhibit substantial variations in molecular characteristics and biological behaviors. These differences are 
critical for the design of personalized treatment regimens[3]. This heterogeneity suggests that cancer types 
should be viewed not as homogeneous entities, but as a collection of distinct subtypes, each potentially 
responding differently to therapies and exhibiting divergent clinical outcomes[4]. The goal of cancer 
subtype classification is to utilize established cancer subtypes as category labels[6], incorporate patient 
data across various biological levels as sample features, and use intelligent algorithms to train the 
classification model with the highest degree of fitting. This approach aims to facilitate the precise 
classification of patients within the same cancer type[5]. With the ongoing progress in high-throughput 
sequencing technologies, international collaborative initiatives like The Cancer Genome Atlas (TCGA), 
the International Cancer Genome Consortium (ICGC), and the Cancer Cell Line Encyclopedia (CCLE) 
have produced and consolidated a vast amount of multi-omics data.[7]. These datasets provide a 
comprehensive and diverse array of cancer-related insights, resulting in research methods targeting single 
omics data and cancer subtype identification methods combining multiple omics data. 

Cancer subtype identification methods based on single-omics data: In 2018, Guo et al[8]. proposed 
BCDForest, a deep learning model that trains classifiers using multi-class granular scanning methods 
combined with an enhancement strategy to emphasize key features. This approach effectively mitigates 
overfitting and significantly improves classification performance. In 2021, Zhong et al[9]. introduced 
LACFNForest, a classifier based on the Deep Flexible Neural Forest (DFNForest)[10]. By incorporating 
a hierarchical broadening ensemble method and an output judgment mechanism, LACFNForest 
enhanced both classification accuracy and robustness, achieving promising results in the identification 
of cancer subtypes. The following year, Shen et al[11]. developed DCGN, a model based on single-omics 
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data that integrates a Convolutional Neural Network (CNN) with a Bidirectional Gated Recurrent Unit 
(BiGRU)[12]. This combination enables the extraction of effective features from high-dimensional data, 
addresses issues of sample scarcity and sparse features, and improves model accuracy. While these 
single-omics-based methods for cancer subtype identification have demonstrated efficacy within their 
respective datasets, the inherent limitations of single-omics data, such as providing only specific levels 
of information and the inability to capture complex interactions, result in a one-sided perspective. 

Cancer subtype identification methods based on multi-omics data: Given the limitations of single-
omics data, numerous researchers have developed methods for cancer subtyping based on multi-omics 
data. In 2019, Xu et al.[13] applied a hierarchical integrated Deep Flexible Neural Forest approach to 
combine gene expression, miRNA expression, and DNA methylation data for classifying cancer subtypes 
across various TCGA datasets. The experimental results demonstrated that the combined data improved 
classification performance by 3.8%–11.5% compared to single-omics data, showcasing robust 
classification capabilities. In 2021, MOGONET[14] was introduced as an integrated Graph Convolutional 
Network (GCN) model designed for multi-omics data integration. By utilizing a unified graph structure 
and multi-layer graph convolution operations, MOGONET effectively captures the interactive features 
among various omics datasets and extracts deep feature representations from the global graph structure. 
This approach provides an efficient method for cancer subtype recognition, significantly enhancing both 
classification accuracy and generalization capabilities. In 2023, Wen and Li[15] leveraged GCN to fuse 
two types of omics data and perform deep survival prediction analysis. Their experimental results 
outperformed existing methods, confirming that the fusion of multiple omics features can generate 
higher-level feature representations. In 2024, to address the challenges of capturing characteristics 
between heterogeneous data and enhancing dynamic data representation, the model MCRGCN[16] was 
proposed. MCRGCN employs advanced graph convolution techniques and dynamic representation 
learning to effectively overcome the heterogeneity and dynamics inherent in graph data, further 
improving the accuracy and robustness of cancer subtype classification. In the same year, Shen et al[17]. 
introduced the CAEM-GBDT model, which utilizes a convolutional autoencoder and an attention module 
to extract features, followed by classification recognition using a Gradient-Enhanced Decision Tree 
(GBDT). Comparative experiments with various multi-omics and single-omics methods validated the 
feasibility of the model and underscored the necessity of multi-omics data integration. In recent years, 
an increasing number of cancer subtype recognition models have adopted multi-omics data as their 
training inputs. By integrating diverse datasets and leveraging various associations among the data, these 
models facilitate a more comprehensive understanding of the molecular characteristics and underlying 
mechanisms of cancer[18]. Consequently, this integration enhances classification performance and 
provides deeper biological insights. 

In cancer research, gene expression data reflects the transcriptional activity of genes, thereby 
revealing the molecular characteristics of cancer and playing a fundamental role in understanding tumor 
biology. DNA methylation involves the addition of methyl groups to gene promoter regions, which 
suppresses gene transcription and consequently reduces gene expression. This epigenetic modification 
identifies genes that are silenced or activated due to abnormal methylation patterns, thereby influencing 
overall gene expression levels. MicroRNAs (miRNAs) regulate gene expression by binding to the 
messenger RNA (mRNA) of target genes, inhibiting translation or promoting mRNA degradation. This 
establishes a direct regulatory relationship between miRNAs and gene expression. Abnormal miRNA 
expression can lead to the dysregulation of cancer-related genes. Additionally, miRNA genes themselves 
may be suppressed or activated through methylation[19], further modulating the expression of cancer-
related genes. 

However, in existing methods, most models consider only one type of connection, either inter-group 
or intra-group connections[20], and predominantly employ a single aggregation method during model 
integration. In multi-omics data, the identification of cancer subtypes involves not only features such as 
gene expression but also encompasses complex heterogeneous data, including gene mutations, protein 
interactions, and epigenetic information, which may exhibit highly dynamic and irregular relationships[21], 
To accurately capture the nonlinear and dynamic relationships within the data, we adopt a graph structure 
that is more suitable for describing the complex interactions inherent in biomedical data[22-24]. This 
approach facilitates more comprehensive biological information mining[25]. 

To address the challenges associated with extracting effective cancer subtype information from high-
dimensional multi-omics data, we present HRAGNN, a novel hybrid fusion method for cancer subtype 
identification that integrates multi-omics data using a Heterogeneous Relational Attention Graph Neural 
Network (HRAGNN). HRAGNN introduces a Multi-Relation Attention Mechanism, employing multiple 
Relation-Attention heads to independently capture diverse relational features between and within sample 
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groups. This multi-head approach enables the model to effectively learn and represent the complex 
relationships inherent in multi-omics data. Initially, we construct a similarity network by calculating the 
cosine similarity across different omics datasets. Subsequently, the similarity graph for each sample's 
omics data is input into the Heterogeneous Relational Attention Network (HRAN), which extracts multi-
omics features enriched with information from each omics layer. These features are then processed by a 
three-layer GNN to learn and capture complex relationships and structural information among nodes and 
their neighbors within the graph on a global scale. Finally, the multi-view omics data were integrated and 
classified using an MVFN[14] architecture augmented with gating units, enabling precise determination 
of the cancer subtype. We applied HRAGNN to datasets of invasive breast cancer (BRCA) and 
glioblastoma multiforme (GBM), integrating gene expression, miRNA expression, and DNA methylation 
data. Experimental results demonstrate that HRAGNN outperforms other integrated multi-omics data 
classification methods, underscoring its effectiveness in accurately identifying cancer subtypes. 

2. Results 

Framework of HRAGNN: We introduce HRAGNN for cancer subtype identification, which 
integrates three multi-omics datasets: gene expression, miRNA expression, and DNA methylation data. 
HRAGNN operates through five key steps: (i) Data preprocessing: The method first reduces noise and 
standardizes the data to enhance data quality; (ii) Constructing similarity graph: A similarity graph is 
created for each omics dataset, and these graphs are subsequently combined to form a final similarity 
graph; (iii) Feature extraction: The similarity graph is input into a relational attention network, followed 
by processing through a Residual Graph Neural Network (RGNN) to extract features; (iv) Feature fusion: 
Multi-omics features are fused using MVFN; (v) Identification: Finally, the fused features are processed 
through a SoftMax layer to determine the class probabilities for each sample. A flowchart of HRAGNN 
is presented in Fig. 1. 
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Figure 1. The framework of HRAGNN 

Datasets: To rigorously evaluate the performance of the Hierarchical Relational Attention Graph 
Neural Network (HRAGNN) model, we conducted analyses on a comprehensive cohort comprising 646 
cases of invasive breast carcinoma (BRCA) and 248 instances of glioblastoma multiforme (GBM). Each 
sample was characterized by three distinct multi-omics datasets: transcriptomic gene expression profiles, 
miRNA expression data, and epigenomic DNA methylation patterns. Both the BRCA and GBM datasets 
were stratified into four molecularly defined subtypes, with their nomenclature and detailed 
characteristics delineated in Table 1. The datasets were partitioned into training and testing subsets using 
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a 4:1 ratio. The HRAGNN model was trained over 1,500 epochs, with performance metrics meticulously 
recorded at every 30-epoch interval to monitor model convergence and mitigate the risk of overfitting. 
The Invasive Breast Cancer (BRCA) and Glioblastoma Multiforme (GBM) cancer samples used in this 
study are publicly available on the TCGA website (https://cancergenome.nih.gov). 

Table 1 Statistical information of two cancer datasets 

Ablation experiment: In this study, we evaluated the performance of cancer subtype classification 
using four external performance metrics: Precision, Accuracy, Recall, and F1 score, to assess the 
effectiveness of the algorithm. All methods were tested and compared across five different randomly 
generated training sets to ensure a robust performance evaluation. 

Comparative test of polymerization methods: In this study, we compared three distinct aggregation 
methods: sum aggregation, mean aggregation, and maximum aggregation, when processing graph-
structured data within the context of graph neural networks (GNNs). The performance results, 
summarized in Table 2, reveal notable differences across these methods. Specifically, in the BRCA 
dataset, sum aggregation achieved an accuracy of 0.861 and an F1 score of 0.851, while maximum 
aggregation resulted in 0.808 accuracy and 0.757 F1 score. In contrast, mean aggregation demonstrated 
superior performance with an accuracy of 0.885 and an F1 score of 0.876. Similarly, in the GBM dataset, 
sum aggregation yielded an accuracy of 0.860 and an F1 score of 0.849, whereas mean aggregation 
outperformed with an accuracy of 0.881 and an F1 score of 0.871. Maximum aggregation again showed 
the weakest results, with an accuracy of 0.800 and an F1 score of 0.771. These results suggest that mean 
aggregation consistently outperforms sum aggregation across both datasets, highlighting its capacity to 
better capture the underlying patterns in the data. Notably, the accuracy values for sum and mean 
aggregation in the BRCA dataset were 0.904 and 0.902, respectively, while in the GBM dataset, the 
corresponding values were 0.889 and 0.895. These findings underscore the importance of aggregation 
methods in optimizing model performance. They also suggest that mean aggregation enhances the 
model's ability to generalize, yielding higher accuracy and more stable results across diverse cancer 
subtypes. Overall, this analysis reinforces the effectiveness of the model proposed in this study, 
particularly in accurately identifying and distinguishing between specific cancer categories. 

Table 2 Comparative test results of polymerization methods 

Dataset Subtype Number of features Number of samples 

BRCA Luminal A, 

Luminal B, HER2, 

Negative. 

18514 (Gene) 

5000 (Meth) 

534 (miRNA) 

 

646 

GBM Classical, Proneural, 

Mesenchymal, 

Neural. 

12042 (Gene) 

5000 (Meth) 

534 (miRNA) 

 

248 

 Methods Precision Recall F1 Score Accuracy 

BRCA SUM 0.904 0.813 0.851 0.861 

MAX 0.785 0.737 0.757 0.808 

MEAN 0.902 0.856 0.876 0.885 

GBM SUM 0.889 0.836 0.849 0.860 

MAX 0.822 0.756 0.771 0.800 

MEAN 0.895 0.863 0.871 0.881 
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Ablation experiment of AN module: to evaluate the impact of the attention network on cancer 
subtype classification, we implemented three models: a graph neural network (GNN), an attention graph 
neural network (AGNN), and a relational attention graph neural network (RAGNN), along with their 
heterogeneous counterparts, HRAGNN and HRAGNN, corresponding to AGNN and RAGNN, 
respectively. As shown in Table 3, the accuracy of GNNs on the BRCA and GBM datasets reached 0.808 
and 0.800, respectively, while AGNN achieved accuracy rates of 0.829 and 0.840. In comparison, 
RAGNN exhibited an improved accuracy of 0.846 for BRCA and 0.823 for GBM. The accuracy of 
AGNN on these datasets was 0.838 and 0.823 for BRCA and GBM, respectively, while the performance 
of RAGNN was 0.868 and 0.848, respectively. When integrating heterogeneous correlation 
representations, HRAGNN and HRAGNN showed a performance improvement of 1–4% in terms of 
accuracy and other evaluation metrics, compared to AGNN and RAGNN. These results suggest that, for 
the BRCA and GBM datasets, the relational attention network outperforms the attention network and is 
better suited for the model proposed in this study. Furthermore, the inclusion of heterogeneous correlation 
representations led to higher model performance. However, to more accurately assess whether these 
improvements were due to the fusion of multiple omics data representations, we conducted the following 
ablation study. 

Table 3 Experimental results of AN module ablation 

Ablation experiment of fusion heterogeneous adjacency matrix: According to the results presented 
in Table 3, it is evident that when heterogeneous fusion correlation representations are utilized, the 
model's performance exceeds that achieved by convolutional relational attention graphs alone. To verify 
whether the fusion of heterogeneous correlation representations genuinely improves model performance 
and whether there are potential similarities between different omics samples with the same label, we 
conducted a two-part ablation study. In this experiment, we compared the results of models without 
fusion of correlation representations and with fusion of two correlation representations. The results, as 
shown in Table 4, indicate that, for the BRCA dataset, the accuracy for the three experiments were 0.846, 
0.869, and 0.885, and the corresponding F1 scores were 0.813, 0.853, and 0.876, respectively. For the 
GBM dataset, the accuracy values were 0.823, 0.863, and 0.881, and the F1 scores were 0.802, 0.849, 
and 0.871, respectively. When no similarity information is shared between the omics datasets, the model's 
performance is the lowest. However, when relevant representations of multiple omics data are fused, the 
model's performance improves significantly, with a similar percentage improvement across both datasets. 
Based on these findings, we conclude that when samples share the same label, there are inherent 
similarities between different omics data samples. Furthermore, the model's ability to select and extract 
features can be enhanced by fusing the correlation representations of multiple omics data. 

 
 

 Methods Precision Recall F1 Score Accuracy 

BRCA GNNs 0.829 0.711 0.721 0.808 

AGNN 0.868 0.774 0.808 0.838 

RAGNN 0.866 0.783 0.813 0.846 

HAGNN 0.872 0.792 0.821 0.854 

HRAGNN 0.902 0.856 0.876 0.885 

GBM GNNs 0.840 0.751 0.765 0.800 

AGNN 0.848 0.779 0.795 0.823 

RAGNN 0.853 0.785 0.802 0.823 

HAGNN 0.865 0.802 0.814 0.842 

HRAGNN 0.895 0.863 0.871 0.881 
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Table 4 Experimental results of fusion heterogeneous adjacency matrix ablation 

Comparative experiment: To assess the classification performance of the HRAGNN model, we 
compared it with five other multi-omics data classification algorithms: K-nearest neighbor (KNN), 
Support Vector Machine (SVM), Random Forest (RF), Fully Connected Neural Network (NN), 
MCRGCN, and MOGONET. The performance of these six classifiers, including HRAGNN, was 
evaluated using the same dataset. The experimental results are shown in Table 5 and Table 6. 

Table 5 Performance comparison between each model on the BRCA dataset 

Table 6 Performance comparison between each model on the GBM dataset 

As shown in Table 5 and Table 6, we evaluated the classification performance of multiple models on 

 Methods Precision Recall F1 Score Accuracy 

BRCA RAGNN 0.866 0.783 0.813 0.846 

Bis_HRAGNN 0.889 0.831 0.853 0.869 

HRAGNN 0.902 0.856 0.876 0.885 

GBM RAGNN 0.853 0.785 0.802 0.823 

Bis_HRAGNN 0.873 0.835 0.849 0.863 

HRAGNN 0.895 0.863 0.871 0.881 

Methods Precision Recall F1 Score Accuracy 

NN 0.541 0.552 0.544 0.746 

KNN 0.515 0.388 0.385 0.639 

SVM 0.812 0.754 0.773 0.824 

RF 0.808 0.637 0.631 0.645 

MOGONET 0.822 0.748 0.782 0.831 

MCRGCN 0.833 0.785 0.831 0.849 

HRAGNN 0.902 0.856 0.876 0.885 

Methods Precision Recall F1 Score Accuracy 

NN 0.707 0.650 0.661 0.701 

KNN 0.672 0.637 0.631 0.647 

SVM 0.803 0.792 0.787 0.801 

RF 0.716 0.602 0.615 0.660 

MOGONET 0.827 0.723 0.729 0.783 

MCRGCN 0.833 0.828 0.821 0.834 

HRAGNN 0.895 0.863 0.871 0.881 
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the BRCA and GBM datasets, using key metrics: accuracy, recall, F1 score, and precision. Among all the 
models, HRAGNN consistently demonstrated superior performance. For the BRCA dataset, HRAGNN 
achieved an accuracy of 0.902, recall of 0.856, F1 score of 0.876, and precision of 0.885. On the GBM 
dataset, HRAGNN reached an accuracy of 0.895, recall of 0.863, F1 score of 0.871, and precision of 
0.881. In comparison to MCRGCN, HRAGNN outperformed by 7.2%, 7.5%, and 3.6% in recall, F1 
score, and accuracy, respectively, in the BRCA dataset. When compared to MOGONET, HRAGNN 
showed improvements of 10.8%, 9.4%, and 5.4% in these metrics. In the GBM dataset, HRAGNN 
improved recall, F1 score, and accuracy by 3.5%, 0.5%, and 4.7%, respectively, over MCRGCN, and by 
1.4%, 14.2%, and 9.8% over MOGONET. The lower performance of MOGONET can be attributed to its 
failure to capture interactions between different omics features, whereas MCRGCN’s performance is also 
inferior to HRAGNN, highlighting the importance of incorporating correlations across multi-omics data. 
By fusing multi-omics data, HRAGNN leverages sample correlation to provide valuable feature 
associations, facilitating the extraction of deeper feature correlations and enhancing the relevance of the 
features identified by graph convolutional networks. These results confirm that HRAGNN, utilizing 
heterogeneous graph convolutional networks, is highly effective in fusing multi-omics data for accurate 
cancer subtype classification. 

3. Methods  

Data preprocessing: Data preprocessing is crucial for improving data quality by reducing noise and 
ensuring standardization. In this study, the HRAGNN model uses three matrices as input: Gene_M∈Rm×t, 
Meth_M∈Rm×e and MiRNA_M∈Rm×w, where m represents the number of samples, t is the number of genes, 
e is the number of methylation sites, and w is the number of miRNA molecules. a) Gene_M represents 
gene expression data, where each row corresponds to a sample, and each column corresponds to a gene. 
The element Gene_M[i, j] represents the expression level of the j-th gene in the i-th sample. b) Meth_M 
represents DNA methylation data, with each row representing a sample and each column representing a 
methylation site. The element Meth_M[i, j] indicates the methylation level at the j-th site in the i-th 
sample. c) MiRNA_M contains miRNA expression data, where each row corresponds to a sample and 
each column corresponds to an individual miRNA molecule. The element MiRNA_M[i, j] represents the 
expression level of the j-th miRNA in the i-th sample. During preprocessing, an initial filtering step 
removes any column where all the values are zero across the samples. Subsequently, for each matrix 
column, the element values are extracted and sorted in ascending order. Based on this ordered sequence, 
the lower (Q1) and upper (Q3) quartiles are calculated. Any element below Q1 is truncated to Q1, while 
any element exceeding Q3 is capped at Q3, thus correcting for outliers and extreme values. Finally, each 
column undergoes a standardization procedure, ensuring that the data across features are scaled uniformly. 
This normalization step mitigates dimensionality differences between features, thereby enhancing the 
model's training performance and generalizability.Through the implementation of these standardization 
and outlier correction techniques, the quality and comparability of the data are significantly improved, 
providing more precise and robust input for subsequent deep learning model training. 

Constructing similarity graph: In this step, HRAGNN constructs three distinct similarity graphs 
based on the matrices Gene_M, Meth_M and MiRNA_M. For the Gene_M matrix, HRAGNN first 
constructs a similarity graph, denoted as Gene_G, where each vertex represents a sample, and each edge 
between two vertices encodes the similarity between those samples. Specifically, the similarity between 
the i-th and j-th samples is computed using the cosine similarity between their respective rows in Gene_M 
(Gene_Mi and Gene_Mj). Once the Gene_G graph is constructed, HRAGNN retains only the top 10 
edges with the highest weights for each vertex, setting all other edges’ weights to zero. This procedure 
ensures that only the most significant relationships between samples are preserved. The same 
methodology is applied to construct the Methy_G and MiRNA_G graphs from the Meth_M and MiRNA_M 
matrices, respectively. For the fusion of the three similarity graphs (Gene_G, Meth_G, and MiRNA_G), 
HRAGNN adopts a novel weighted fusion approach, which incorporates the intrinsic characteristics of 
each graph and adaptively adjusts the contribution of each graph to the final fused graph G_fused. Instead 
of directly combining the adjacency matrices, the fusion process utilizes a graph attention mechanism to 
learn the optimal weights for each edge in the fused graph. This mechanism allows for the dynamic 
adjustment of the influence of each individual similarity graph based on the specific relationships 
between samples across different modalities. And the fusion of the three graphs is expressed as: 

𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓  =  𝛼𝛼 × 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺(𝑖𝑖, 𝑗𝑗) + 𝛽𝛽 × 𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀ℎ𝑦𝑦(𝑖𝑖, 𝑗𝑗) + 𝛾𝛾 × 𝐺𝐺𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀(𝑖𝑖, 𝑗𝑗)            (1) 

Where α, β, γ are the attention weights dynamically learned through the graph attention network, 
satisfying α+β+γ=1. These weights are adaptively updated during training based on the task-specific loss 



Academic Journal of Computing & Information Science 
ISSN 2616-5775 Vol. 8, Issue 2: 26-36, DOI: 10.25236/AJCIS.2025.080204 

Published by Francis Academic Press, UK 
-33- 

function, ensuring that the fused graph reflects the most relevant information from all three modalities. 
The resulting G_fused graph, in which the vertices represent samples, provides a more robust and 
context-aware representation of the relationships between samples, integrating the complementary 
information from gene expression, DNA methylation, and miRNA expression data. Previous studies have 
demonstrated that node representation learning relies on the principle that sample nodes with identical 
labels exhibit similar feature patterns[26]. In this section, we extend this concept by simultaneously 
constructing both inter-group and intra-group connections across multiple omics data types. This 
approach enables the model to effectively capture and exploit the underlying relationships and latent 
features among the various omics data modalities during training, thus enhancing its ability to learn 
comprehensive and integrated representations. 

Extracting features: a) Construct relational attention network: Upon constructing the fused similarity 
graph Gfused

 for the samples, HRAGNN integrates Gfused alongside the multi-omics data matrices Gene_M, 
Meth_M and MiRNA_M into Relational Attention Network (RAN) to elucidate the intricate relationships 
among samples. Initially, HRAGNN inputs Gfused and Gene_M into the RAN. We define two pivotal 
parameters: W and a. Here W represents a linear transformation weight matrix that maps input features 
to a higher-dimensional feature space, while a is a learnable parameter vector utilized to compute 
attention coefficients. In the Gene_M matrix, each row hi={d1, d2, d3, d4, … , dn} denotes the feature 
vector of the i-th sample, After applying the linear transformation, the transformed feature vector is 
represented as Whi={ D1,D2, D3, D4, … , Dn }. To ascertain the attention score between any pair of samples 
i and j, the transformed feature vectors Whi and Whj are concatenated and subsequently passed through a 
LeakyReLU activation function following a linear combination with a. This process yields the raw 
attention coefficient eij  defined as: 

𝑒𝑒𝑖𝑖𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿(𝑎𝑎𝑇𝑇 × [𝑊𝑊ℎ𝑖𝑖||𝑊𝑊ℎ𝑗𝑗])                          (2) 

Where "||" denotes the concatenation of vectors. Subsequently, attention coefficients corresponding 
to non-connected sample pairs in Gfused are filtered by setting e`ij to eij if Gfused (i, j) > 0, and to negative 
infinity (−∞) otherwise. Formally, the filtered attention coefficients e`ij are expressed as: 

𝑒𝑒𝑖𝑖𝑖𝑖′ =  �
𝑒𝑒𝑖𝑖𝑖𝑖 ,          𝑖𝑖𝑖𝑖 𝐺𝐺𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖𝑖𝑖 > 0
−∞,          𝑜𝑜𝑜𝑜ℎ𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒𝑒      

                             (3) 

This filtering mechanism ensures that only pertinent edges, as delineated by Gfused, contribute to the 
attention computation. The normalized attention coefficients a`ij are then obtained by applying the 
SoftMax function over the neighborhood Ni of each node i: 

𝑎𝑎𝑖𝑖𝑖𝑖′ =  
exp (𝑒𝑒𝑖𝑖𝑖𝑖

′ )

∑ exp(𝑒𝑒𝑖𝑖𝑘𝑘
′ )𝑘𝑘∈𝑁𝑁𝑖𝑖

                                     (4) 

Where Ni denotes the set of neighboring nodes of node i. Finally, Finally, the intermediate feature 
representation Gene_H is derived by aggregating the transformed features Wh weighted by the 
normalized attention coefficients. This procedure is similarly applied to the Meth_M and MiRNA_M 
matrices, resulting in the intermediate feature representations Meth_H and MiRNA_H, respectively. 
Through this multi-omics integration facilitated by the Relational Attention Network, HRAGNN 
effectively captures and models the complex relationships among samples, leveraging the 
complementary information inherent in gene expression, DNA methylation, and miRNA expression data. 
b) Construct residual GNN networkIn this section, HRAGNN constructs three residual Graph Neural 
Networks (GNNs) utilizing the intermediate feature matrices: Gene_H, Meth_H and MiRNA_H derived 
previously, alongside their corresponding multi-omics similarity graphs: Gene_G, Meth_G and 
MiRNA_G. Linear Transformation and Regularization: Focusing on Gene_H, initiates the process by 
defining a weight matrix W and applying a linear transformation to Gene_H to obtain Wh, where Whi 
represents product of W and the feature vector of the i-th sample: 

𝑊𝑊ℎ𝑖𝑖 = 𝑊𝑊 × ℎ𝑖𝑖                                       (5) 

To mitigate the risk of overfitting, L1 Regularization is imposed on Wh: 

ℒ𝐿𝐿1 = 𝜆𝜆∑ |𝑊𝑊𝑖𝑖𝑖𝑖|                                     (6) 

where λ is the regularization coefficient. Aggregation Strategies: HRAGNN employs three distinct 
aggregation strategies: mean aggregation, summation aggregation, and maximum aggregation, to process 
the similarity graphs. In the context of Gene_G, the following notations are used:a) di: Degree of the i-
th node (i.e., the number of nodes connected to node i). b) Xi: Feature vector of the i-th node. c) Gene_Gij: 
Connection weight between nodes i and j in Gene_G. For this study, mean aggregation is selected as the 
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aggregation method. The output for the i-th node is computed as: 

𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖 = 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿 � 1
𝑑𝑑𝑖𝑖
∑ 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝐺𝐺𝑖𝑖𝑖𝑖 × (𝑋𝑋𝑗𝑗𝑊𝑊)𝑗𝑗∈𝑁𝑁(𝑖𝑖) + 𝑏𝑏�                 (7) 

Where Ni denotes the set of nodes adjacent to node i. b is a bias vector. Residual Connections and 
Activation: To further prevent the model from overfitting, a residual connection is incorporated after the 
first GNN layer, linking it directly to the input of the final layer. This residual connection facilitates the 
flow of information and enhances the stability of the network during training. Subsequently, the Sigmoid 
activation function scales the output to the range [0, 1], resulting in the primary feature matrix 
Gene_prime: 

𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺_𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝𝑝 = 𝜎𝜎(𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑜)                               (8) 

where represents the Sigmoid function. The same procedure is applied to the intermediate feature 
matrices Meth_H and MiRNA_H, in conjunction with their respective similarity graphs Meth_G and 
MiRNA_G. Consequently, HRAGNN generates three primary feature matrices: Gene_prime, 
Meth_prime and MiRNA_prime. 

Fusing features: In this section, we introduce the Multi-View Fusion Neural Network (MVFN), a 
neural network model designed to perform fusion processing of multiple omics data views and generate 
final prediction outputs. Let C denote the number of cancer subtypes (classes), V represent the number 
of omics data categories. The input dimension Indim is defined as VC. The MVFN architecture employs 
gating units to dynamically modulate the contribution of each omics view during the feature fusion 
process. It comprises a sequential model consisting of two fully connected (dense) layers: 1) First Fully 
Connected Layer: Maintains both input and output dimensions at Indim. 2) Second Fully Connected Layer: 
Maps the dimension from Indim to the number of classes C. Activation and Feature Scaling: Initially, 
HRAGNN applies the Sigmoid activation function to each primary feature in the input list in_list[i], 
where i ∈ {1,2,3} corresponds to Gene_Prime, Meth_Prime, and MiRNA_Prime respectively. This 
ensures that the input values are scaled between 0 and 1: 

𝑖𝑖𝑖𝑖_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑖𝑖]   =   𝜎𝜎(𝑥𝑥)   =   1
1+𝑒𝑒−𝑥𝑥

                                (9) 

Fusion of Multi-View Features: The fusion process initiates by deploying gating units on the features 
of each view, thereby dynamically modulating their contributions based on learned weights. For each 
view i, the gated feature is determined as: 

𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔_𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑓𝑖𝑖 = 𝑖𝑖𝑖𝑖_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑖𝑖] × 𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑖𝑖                          (10) 

where gatei denotes the output of the gating unit corresponding to view i. These gating units consist 
of a linear transformation followed by a sigmoid activation function, enabling the model to assign a scalar 
weight between 0 and 1 to each feature, effectively controlling its influence in the fusion process. 
Subsequently, the gated features are integrated using high-order tensor multiplication to capture complex 
interactions across multiple views. Specifically, the outer product of the first two gated features is 
computed and reshaped to dimensions [-1, C2, 1], where C represents the number of cancer subtypes 
(classes). For datasets comprising more than two views, this process is iteratively applied within a loop. 
In each iteration, the intermediate tensor x is matrix-multiplied with the gated features of the newly 
introduced view in_list[i], and the tensor dimensions are accordingly adjusted to accommodate the 
increasing number of views: 

𝑥𝑥 = 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚(𝑥𝑥,𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢𝑢(𝑖𝑖𝑖𝑖_𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙[𝑖𝑖], 1)), (−1,𝐶𝐶𝑖𝑖+1, 1))         (11) 

Where matmul denotes matrix multiplication and unsqueeze adds a new dimension to facilitate 
appropriate matrix operations. Feature Vector Formation: After processing all views, the multi-view 
features are reshaped into one-dimensional vectors to satisfy the input dimensional requirements of the 
model's fully connected layers: 

𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚_𝑓𝑓𝑓𝑓𝑓𝑓𝑡𝑡 = 𝑟𝑟𝑟𝑟𝑟𝑟ℎ𝑎𝑎𝑎𝑎𝑎𝑎(𝑥𝑥, (−1,𝐶𝐶𝑉𝑉))                       (12) 

Through these operations, the MVFN effectively integrates features from multiple omics views, 
producing a comprehensive composite feature representation. This fused feature vector is then passed 
through the sequential fully connected layers to generate the final prediction output. The final output 
dimension is [batch_size, C], corresponding to the prediction scores for each cancer subtype. 

Identifying: Upon integrating and processing the multi-omics features, HRAGNN generates the fused 
view representations, which are subsequently transformed into probability distributions over the cancer 
subtypes using the SoftMax activation function. The SoftMax function is defined as: 
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𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠𝑠(𝑍𝑍𝑖𝑖) =  𝑒𝑒𝑍𝑍𝑗𝑗

∑ 𝑒𝑒𝑍𝑍𝑗𝑗𝐾𝐾
𝑗𝑗−1

                                (13) 

Where Zi is the raw score for class i, eZi represents the exponentiation of Zi, and K is the total number 
of cancer subtypes. This formulation ensures that the output probabilities are normalized, summing to 
one across all classes. The resultant probability distribution is then compared with the true labels to 
compute the final model performance. Specifically, the cross-entropy loss function is employed to 
quantify the discrepancy between the predicted probabilities and the actual labels. The cross-entropy loss 
is expressed as: 

ℒ =  −∑ 𝑦𝑦𝑖𝑖 · log (𝑝𝑝𝑖𝑖)𝐶𝐶
𝑖𝑖=1                                 (14) 

Where C denotes the total number of classes, 𝑦𝑦𝑖𝑖 is the true label for class i (typically represented as 
a one-hot encoded vector), pi is the predicted probability for class i. To enhance the training stability and 
prevent the learning rate from diminishing too rapidly, HRAGNN utilizes the AdaBound optimization 
algorithm. AdaBound dynamically adjusts the learning rate by setting adaptive bounds based on the 
gradients. The learning rate ηt at iteration t is updated according to the following rule: 

𝜂𝜂𝜂𝜂 = 𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚,𝑚𝑚𝑚𝑚𝑚𝑚(𝜂𝜂𝑚𝑚𝑚𝑚𝑚𝑚, 𝜂𝜂𝑏𝑏𝑏𝑏𝑏𝑏𝑏𝑏 × 1
�𝑣𝑣𝑡𝑡+𝜖𝜖

))                     (15) 

Where, ηmax and ηmin are the upper and lower bounds of the learning rate respectively, ηbase is is the 
initial learning rate, vt represents the second moment estimate of the gradient at iteration t, ϵ is a small 
constant added for numerical stability. By employing AdaBound, HRAGNN effectively regulates the 
learning rate within predefined boundaries, thereby improving the convergence behavior and overall 
training stability. 

Parameter settings: Residual Graph Neural Network Architecture: In this study, In this study, the 
Residual Graph Neural Network is architected with a layer configuration of [in_features,512,512,256] 
This structure comprises an input layer followed by two hidden layers with 512 neurons each, and an 
output layer with 256 neurons. Regularization Techniques: To prevent overfitting and improve the 
generalization capability of the model, regularization strategies are employed post each GNN layer, and 
the dropout rate is 0.3. 

Code availability: The source code and datasets of this work can be downloaded from GitHub 
(https://github.com/1book1/HRAGNN-model). 

4. Conclusion 

The key innovation of HRAGNN lies in its ability to construct a fusion correlation network by 
capturing the inter-omics relationships, allowing the graph neural network to extract deeper, more 
meaningful features for classification. Unlike existing methods, HRAGNN assigns learnable weight 
parameters to the correlation networks of each omics type and subsequently applies weighted aggregation 
during the fusion process. This approach ensures that the similarity networks of the various omics data 
samples are trained in a coordinated manner, leading to enhanced classification performance. The 
effectiveness of HRAGNN is validated through ablation studies on heterogeneous relational attention 
networks and comparison with established models such as MOGONET and MCRGCN. While HRAGNN 
shows promising results, it has limitations, particularly in unsupervised clustering tasks. Addressing these 
challenges, such as improving model adaptability and scalability in unsupervised settings, will be the 
focus of future research. 
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