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Abstract: Although it has been established that the principal cause of death in COVID-19-infected 
patients is pneumonia and respiratory failure, little is currently known about the effects of COVID-19 on 
the lungs. Herein, we performed a single-nucleus RNA sequencing analysis of COVID-19 cases and 
controls using the human lung tissue data. Spatial transcriptomics was combined with single-nucleus 
RNA sequencing of human lung tissue to identify the specific cell subpopulations in COVID-19 cases and 
controls. We mapped ligand-receptor networks to specific cell types by combining single-cell and spatial 
data. Mapping the results revealed that fibroblasts are at the center of intercellular communication. 
These findings characterize the lung subpopulations, including fibroblasts and epithelial cells, the spatial 
niches in which they interact and the COVID-19 gene networks involved.  
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1. Introduction 

According to the Real-time Statistics website, the cumulative number of coronavirus disease 2019 
(COVID-19) deaths worldwide has exceeded 6.3 million, including more than 1 million in the United 
States [1]. The coronavirus disease pandemic has resulted in a sizable increase in individuals with acute 
respiratory distress syndrome (ARDS), associated with high morbidity and death [2-5]. 

Before, investigations of healthy persons' single nuclei RNA sequences (snRNA-seq) have shown the 
tissue effect of host receptors necessary for SARS-CoV-2 entrance [6, 7]. In a study by Blanco and Wilk 
et al., the bronchoalveolar lavage fluid and blood of patients with varying degrees of COVID-19 infection 
were analyzed to determine the impact of SARS-CoV-2 infection on immunological responses and 
cytokine dysregulation [8, 9]. Although snRNA-seq allows for a high-throughput investigation of cell 
transcriptomes, the geographical context of these transcriptomes is lost during tissue processing. In 
contrast, spatial transcriptomics (ST) enables profiling transcriptome-wide expression data and retains 
data on the spatial tissue context, which is hence well suited to studying cell interactions and spatial 
characteristics of lung gene expression. 

Accordingly, we obtained snRNA-seq datasets of lung samples from patients that died from the virus 
and those with no history of COVID 19 infection. Using annotated snRNA-seq data, we categorized the 
spots and constructed a cell-type-specific atlas for cell types present in the spatial transcriptomics data. 
Subsequently, based on the spatial distribution atlas of COVID-19 specific cell types, we constructed the 
spatial cell communication atlas of COVID-19 specific receptor-ligand pairs in the lungs, which provided 
the foothold for further research. 

2. Materials and Methods 

2.1. snRNA-seq datasets, preparation and analysis of data  

The snRNA-seq datasets were obtained from three samples of COVID-19 deaths and three non-
COVID-19 infected cases. We profiled the human lung snRNA-seq dataset (GEO dataset GSE171524), 
which consisted of 26 490 cells using the 10× Genomics platform [10]. 
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Data filtering and quality assurance were the first steps in data preparation. Low-quality cells and 
cells with outliers (in terms of library complexity) were excluded; we excluded cells from each 
sequencing library with fewer than 50 gene quantiles based on the gene distribution detected in each cell. 
Cells with more than 20% transcripts from mitochondrial genes were also eliminated. Then, genes were 
ordered by standard deviation, and the top 1500 genes with the highest variance were used for the 
research. A scale factor of 100,000 and log transformation was used to reduce dimensionality in the 
snRNA-Seq dataset; the total expression data were normalized by the log-transformed total expression 
value. 

For lung clustering recognition, “FindNeighbors”and “FindClusters” were used with 30 PCA 
dimensions and the resolution was set to 0.8. Cluster cell identity was assigned by manual annotation 
using the released human lung snRNA-seq dataset. The R package clusterProfiler [11] was used to 
analyze significantly enriched Gene Ontology (GO) terms. The hallmark signature was scored using 
Seurat's “AddModuleScore” function with the default settings. At the same time, SCENIC analysis was 
conducted using tutorial-recommended parameters [12]. 

2.2. Analysis of spatial transcriptomics data 

The human lung 10× Genomics Visium ST datasets were obtained from GSE178361[13]. Using 
Seurat, we normalized the data, extracted the 2D coordinates, and plotted the spatial pictures from the 
slices of 1,045 spots. Next, we used the Seurat package in R and custom scripts to analyze the gene point 
matrix generated by processing ST data samples [14]. Spots were screened to obtain the minimum 
detectable gene count of 200 genes for each patient's data, while genes with fewer than 10 read counts or 
expressed in fewer than two spots were eliminated. By analyzing the top 30 independent components 
(ICs), dimensions were reduced, and clustering was accomplished. 

2.3. Spatial cell-cell interaction analysis 

stLearn a unique Python toolbox, was also used to analyze ST data from human lung spatial cell 
communication [15]. It is well-established that the stLearn leverages the morphological similarity of 
adjacent spots to normalize gene expression and eliminate the "dropout" noise inherent in technical 
shortcomings in RNA-seq technology. Using the human lung ST-seq data, we eliminated genes expressed 
in less than three locations. The counts per million approach then normalized the filtered gene count 
matrix followed by log transformation and scaling. We used CellPhoneDB's default settings and a curated 
database version for L-R prediction (3.0.0) [16]. Similar to the snRNA-seq study for Cell-Cell 
communication through L-R pairings, we applied NicheNet L-R prediction to 10× Genomics Visium ST 
data. Finally, tissue morphological data was utilized to normalize the gene count matrix by executing the 
stSME function. Cell-cell interaction was discovered in the human lung, STRING database(https://string-
db.org) was used to identify ACE2 interaction genes, and stLearn was used to identify the spatial 
distribution and intensity of ACE2 interaction genes.  

3. Results  

3.1. The cell atlas of COVID-19-infected and control lungs  

To examine the associations between patients with COVID-19 disease and patient characteristics, we 
first acquired a snRNA-Seq dataset on human lung samples from three COVID-19 decedents and three 
controls (unexpected death) from a separate study. After strictly filtering the original snRNA-seq 
expression matrix data, 26490 cells remained for the subsequent analysis. Following quality control, we 
used Seurat to determine main cell clusters in lungs from a separate study, which included epithelial cells, 
myeloid cells, fibroblasts, APC-like cells, T cells, endothelial cells, mast cells, neural cells, and B cell 
clusters, based on their tissue of origin (Figure 1A–C). We conducted differential gene expression (DGE) 
analysis between cell clusters (Figure 1D; Table S1) and gene set enrichment analysis of each cluster's 
elevated genes (Figure 1E). Gene ontology (GO) terms associated with "Sphingolipid signaling" and 
"Focal adhesion" were significantly enriched in Epithelial clusters, while "Phagosome" was enriched in 
compact Myeloid cells. The fibroblast clusters were involved in Focal adhesion with significant 
enrichment in ECM receptor interaction (Figure 1E). In addition, fibroblasts exhibited differential 
expression of LAMA2 (Figure 1D), which promotes lung cell metastasis. Furthermore, the proportion of 
cells inside each cluster was constant between repeats (Figure 1F). 
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(A) t-SNE representation of 26490 individual cells from the lung (COVID-19 and control) measured 

with snRNA-seq. Each dot represents an individual cell. Different color indicates each cell type. (B) t-
SNE representation of  individual cells from  COVID-19 and control lung.(C) t-SNE clustering of 

single cells from C51ctr, C52ctr, C53ctr, L01cov, L12cov, and L16cov lung. (D) Differential gene 
expression analysis shows up-and-down-regulated genes in the nine groups. An adjusted p-value of 

0.01 is shown in black. Epithelial cells (cluster 0), myeloid (cluster 1), fibroblasts (cluster 2), APC-like 
(cluster 3), T cells (cluster 4), endothelial cells (cluster 5), mast cells (cluster 6), neural cells (cluster 
7), B cells (cluster 8). (E) A dot plot that shows overlapping between clusters and areas with labels. 

The size of the dots shows how many cluster spots are in a certain area that has been marked. 
Annotations made by a pathologist are shown on the left side of the graph, and those made by groups of 

people are shown on the right side. (F) Stacked bar charts depicting the proportions of different cell 
types in lung tissues (Epithelial cells, Myeloid cells, Fibroblasts, APC-like cells, T cells, Endothelial 

cells, Mast cells, Neural cells, and B cells). 

Figure 1: snRNA-seq atlas of the lung (COVID-19 and control). 

3.2. The analysis of specific cell subsets 

Interestingly, we found that COVID-19-infected lungs and the control lungs showed three main types 
of cells (Figure 2A, B). The proportion of cells was significantly different, including epithelial cells 
(20%), fibroblasts (14%), and myeloid cells (11%), which may be related to the recognized roles of 
epithelial cells and fibroblasts and their existence in COVID-19 and control lungs should be further 
investigated. Canonical correlation analysis [17] demonstrated that COVID-19-infected lungs and 
control lungs exhibited comparable (epithelial cells and fibroblasts) subpopulations and many common 
marker genes (Figure 2A–2C). Interestingly, COVID-19 and control cell clustering yielded a difference 
in subpopulation or cell type and a correlation between normal COVID-19 and control lungs (Figure 2D). 

Twenty of the top 50 genes that were differentially expressed between COVID-19 and control lung 
cells exhibited significantly higher expression in COVID-19 tissue (log fold change >2.7 and p 0.001) 
(Figure 2F). The epithelial cell subpopulation comprised 22.2% to 42.3% of COVID-19 cells and 
overlapped with control lung cells (Figure 2E). The Fibroblast_1 cell subpopulation exhibited more of 
COVID-19 and control lung cells across patients (Figure 2E). Many signaling pathways were 
significantly enriched in epithelial cells and fibroblasts, including the Focal adhesion PI3K-Akt signaling 
pathway, Rap1 signaling pathway, and Focal adhesion in epithelial cell and fibroblast subpopulations in 
COVID-19-infected and control lungs (Figure 2G). Epithelial cells_2 was specifically enriched in the 
interaction between cell adhesion molecules and ECM-receptor. Fibroblast subtype_2 cells were 
significantly enriched in adherens junction, Bacterial invasion, and Endocytosis of epithelial cells. Thus, 
COVID-19 and control lungs both contain Fibroblast cells that largely mimic the key cell states in normal 
lung Fibroblast and a normal-specific Epithelial subpopulation with no counterpart in normal control 
lungs. 
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The association of COVID-19 signature genes with cellular migration and extracellular matrix 
deconstruction in fibroblasts suggested an invasive behavior (Figure 2G). Moreover, Fibroblasts_2 
exhibited the greatest expression of the Hallmark COVID-19 gene signature (n=50 genes) (Figure 2F). 
A prior study similarly analyzed fibroblasts and epithelial cells, but the expression of typical COVID-19 
transcription factors (TFs) was not investigated (Figure 2H, J). Therefore, we conducted single-cell 
regulatory network inference and clustering (SCENIC), which identified key transcription factors that 
govern fibroblast transcription and gene expression (Figure 2 G and K). Our findings indicated 
dysregulated differentiation in fibroblasts and epithelial cells, which may be attributed to the following 
reasons: (1) Epithelial cells exhibit diminished proliferation capacity in COVID-19 lungs. (2) COVID-
19 virus invasion of epithelial cells is related to fibroblasts. (3) Fibroblasts and epithelial subsets 
expressing COVID-19-related genes are formed. 

 
(A) T-SNE of normal lungs and COVID-19 lungs; (B) t-SNE classifying normal and COVID-19 lungs 
into nine-cell types. Normal lungs and COVID-19 lungs contain normal fibroblasts and epithelial cell 
subpopulations. (C) The expression of the top 10 shared genes between fibroblasts and epithelial cells, 

fibroblast subpopulation, epithelial cell subpopulation and myeloid cell marker genes. (D) Gene 
overlaps correlation matrix of COVID-19 and normal lungs across all cell subpopulations in snRNA-
seq clusters. (E) Stacked bar charts depicting the proportions of different cell subpopulations in lung 

tissues (Epithelial cells, Fibroblasts). (F) Violin plots of the normal lungs and COVID-19 lungs 
subpopulations with characteristic marker gene signature scores. (G) Gene ontology (GO) keywords 
for the top 50 genes that are up-and down-regulated in the subpopulation with differential expression 

between normal and COVID-19 lungs are shown as a dot plot. The tissues from COVID-19 and normal 
lungs were contrasted with a subset of differentiated cells. (H, I) Heatmap of the expression of different 
cell subpopulation-related transcription factors in normal and COVID-19 lungs. (J, K) Violin plots of 

single-cell regulon scores deduced by SCENIC (g, genes). 

Figure 2: Differential expression between normal lungs and COVID-19 lungs. 
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3.3. The co-expression patterns of COVID-19 and control modules  

It is well-established that transcription factors interact to regulate gene expression levels. To 
comprehensively define the unique combinatorial patterns, we assessed the atlas-wide similarity of RAS 
scores for each pair of regulons using the Connection Specificity Index. Transcription factors frequently 
work together to control gene expression levels. The Connection Specificity Index (CSI) was used to 
analyze the atlas-wide similarity of RAS scores for each pair of regulons to identify the combinatorial 
patterns fully. Under normal conditions, 202 regulatory factors were identified in the lung, divided into 
seven main components. (Figure 3A). About 243 regulons of COVID-19 lungs were arranged into seven 
primary modules (Figure 3B). 

We picked several representative regulators and cell types for each module based on their average 
activity ratings (Figure 1A). When we projected each module's average activity score onto the tSNE map, 
we noticed that each module was in its zone, and all highlighted parts had complementary patterns, as 
shown in Supplementary Figure 1A. 

We then concentrated on the normal status modules M1 and M2, which comprised 43 and 22 regulons, 
respectively (Figure 3A). The M1 module was significantly associated with epithelial cell types, and the 
epithelial cell co-expressed transcription factors were mainly enriched in RNA polymerase II 
transcription factor activity and sequence-specific DNA binding (Figure 3C). The M2 module was 
significantly associated with fibroblasts (Figure 3D). Given that transcription factors achieve their 
corresponding biochemical functions through target genes, we further analyzed the top 5 TFs of epithelial 
cells targeting the regulatory network in the normal lungs (Figure 3E). 

Next, we focused on modules M3 and M4 in COVID-19 patients, which contained 21 and 48 regulons 
(Figure 3B). The M3 module was significantly associated with epithelial cells (Figure 3F), while the M4 
module was significantly associated with fibroblasts. The epithelial cell co-expressed transcription 
factors were mainly enriched in RNA polymerase II transcription factor activity and sequence-specific 
DNA binding (Figure 3G). Given that transcription factors achieve relevant biochemical functions 
through target genes, we further analyzed the top 5 TFs of fibroblasts targeting the regulatory network in 
COVID-19 (Figure 3H). In conclusion, key transcription factors in fibroblasts and epithelial cells have 
important roles in regulating the microenvironment of healthy humans and COVID-19-infected lungs. 

 
(A, B) Regulon modules were identified using the regulon connection specificity index (CSI) matrix and 
sample transcription factors, their associated binding motifs, and cell types. (C, D) A zoomed image of 
modules M1 and M2 reveals the structure of their sub-modules. (E, F) A zoomed image of modules M3 

and M4 reveals the structure of their sub-modules. (G) Top 5 Transcription factor-target gene 
regulatory network in fibroblasts from COVID-19 tissues. (H) Top 5 Transcription factor-target gene 

regulatory network in epithelial cells from control tissues. 

Figure 3: Identification of combinatorial regulon modules. 
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3.4. Atlas of lung spatial transcriptomic cells 

To evaluate the spatial position of epithelial cell and fibroblast populations, we conducted ST on 
selected distal lung sections (Figure 4A). After data quality filter processing, the transcriptome of 1,045 
spots was collected (Figure 4B). Seven clusters were obtained by clustering the ST data, and each cluster's 
marker top 3 genes were obtained for annotation (Figure 4C and 4D). The location of each region was 
scored using snRNA-seq signature genes for epithelial cells and fibroblasts. These high clusters of 
epithelial cells and fibroblasts were comparable in different individuals (Figure 4E and 4F). 

 
(A) Hematoxylin and eosin staining of tissue sections (H&E). (B) Violin plots of genes per point across 
duplicate tissue segment replicate. (C, D) Clusters of adnexal spots projected independently with the 

top differentially expressed genes found. Clusters of lesions connected with the lungs (clusters covering 
annotated areas in sections). (E) and (F) Matrix of overlapping genes that are differentially expressed 

top maker gene in ST clusters across the lung (E). ST Cluster Signature (n = 10 genes) was constructed 
using highlighted equivalent spatial clusters and violin plots of the ST cluster top marker gene score by 

cell type in snRNA-seq data (F). 

Figure 4: Spatial transcriptomics atlas of lung distal lung sections. 

3.5. Spatial transcriptomics reveals significant heterogeneity 

snRNA-seq demonstrated a clear cluster of epithelial cells (Figure 5A, 5B and 5D) and fibroblasts 
(Figure 5A,5C and 5E), including the Fibroblast_2 cell and Epithelial_2 cells marker COL3A1 and 
LRRK2, in each patient (Figure 5F and 5G). In clearly separated lung clusters, the surrounding stroma 
was enriched in COVID-19-associated fibroblasts and endothelial transcripts, indicating the presence of 
a fibrovascular niche (Figure 5H). 

More than 70% of fibroblast high cluster spots were found at cluster 3 (Figure 5J, 5K), despite the 
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cluster points being few at the compartment; the remaining neighborhood points were enriched in 
Fibroblast_2 top marker genes (Figure 5I). At the staining for the spatial expression of the COL17A1 
gene revealed the presence of both lung fibroblast and fibroblast 2. Furthermore, signaling genes for 
focal adhesion function were expressed along the neighborhood of fibroblasts, indicating that focal 
adhesion function was present in the snRNA-seq fibroblast 2 cell population. (Figure 5F). We further 
found that fibroblasts 2 cells were significantly enriched in focal adhesion, ECM-receptor interactions, 
and vascular smooth muscle contraction. Fibroblast 2 cell edge genes were enriched in fatty acid 
metabolism, aldosterone-regulated sodium reabsorption and PPAR signaling pathway (Figure 5L and 
5M). 

 
(A) Staining of tissue slices with hematoxylin and eosin (H&E). (B, C) Violin plots of the Fibroblasts 
and Epithelial cells subpopulation scores for individual places produced by snRNA-seq data for each 
group cluster. Clusters with the highest average score are shown by dotted boxes. (D, E, F, G) Spatial 

marker plots of fibroblasts subpopulation and epithelial subpopulation-high cluster, fibroblasts 
subpopulation, marker COL3A1 and LRRK2 expression in tissue sections. (I) Cluster spot annotated 

with the lung's neighborhood and isolated neighborhood spots indicated by the cluster. (J)Spot spatial 
edge ratio about the cluster. (K) Spot Spatial edge count about the cluster. (L) Heat map of the top 500 
differentially expressed genes between cluster3 and no_cluster3. (M) A dot plot of selected GO terms 
linked to differentially expressed genes in each cluster, as well as projections of non-fibroblast and 

epithelial subpopulation leading edge-related clusters. The total amount and proportions of spots at the 
group cluster leading edge are shown in bar graphs. 

Figure 5: Spatial transcriptomics reveals significant heterogeneity. 

3.6. Spatial cell communication of ACE2 in the lung 

Subsequently, we conducted snRNA-seq and ST data integration annotations to describe the spatial 
location of cell types (Figure 6A). We expanded our study of human lung ST-seq data using a stLearn to 
investigate spatial cell communication between lung cells [15]. The lung comprises immune cells, 
alveolar epithelial type I and II cells (AT1 and AT2), airway epithelium, and fibroblasts, surrounded by 
an endothelial capsule bordered by macrophages (Figure 6A). The stLearn tool was used to examine 
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contact between podocytes and mesangial cells as ligand-receptor (L-R) gene co-expression inside ST-
spots (Fig. 6B-D). First, we analyzed L-R pairings selected in the CellphoneDB database [16, 18]. Using 
stLearn [15], we mapped L-R gene spatial co-expression inside and between ST-spots of lung regions, 
discovering hundreds of possible connections (Figure 6B-D).  

Next, we tested ACE2 gene published L-R pairings, including the ACE2_DPP4, ACE2_TMPRSS2, 
ACE2_MME, and ACE2_PRCP, which govern Fibroblast and Epithelial cell behavior (Figure 6E-H). 
The genes encoding these two proteins were co-expressed in several ST spots that covered a bigger area 
than COVID-19 clusters had previously revealed. In addition, B2M_HLA-B had the greatest number of 
spots involved in overall distal lung slice space cell communication. Finally, we found that key gene 
locations for ACE2 interaction were associated with annotated fibroblasts.  

 
(A) Spatial spots were assigned to different cell types via label transfer18 from a published human lung 

dataset [13], which identified immune cells, endothelial cells, smooth muscle, macrophage, AT2 and 
airway epithelium within the tissue area; Spatial spots annotate each cluster used in the published 

articles. (B)Ligand-receptor co-expression in the neighboring spots. (C) Count cell type diversity for 
between-spot mode. (D) Calculation of the merged (B) and (C) spatial cell communication scores 

(between-spots). (E, F, G, H) COVID-19-specific receptor ligand spatial cell communication score and 
-log(p_adjs). (I) Lung receptor ligand spatial cell communication score and -log(p_adjs). 

Figure 6: Lung L-R interactions are used to infer space cell communication relationships. 

4. Discussion 

In this study, we used snRNA-seq to create a single-cell transcriptome atlas of cell subpopulations in 
healthy and COVID-19 lung states and integrated spatial profiling with ST and snRNA-seq to 
characterize the cell living environment. Our integrated approach to spatial profiling overcame the 
limitations of each method alone. Future efforts may reach the size of ST with the resolution of a single 
cell, enabling a comprehensive examination of structures. Our additional inference of the interaction 
between spatial cell communication and spatial neighborhood analysis provided a granular view of the 
deleterious effects of SARS-CoV-2 infection on the lung. 

Toni et al. uncovered substantial remodeling in the lung epithelial, immune and stromal compartments, 
with evidence of multiple paths of failed tissue regeneration, including defective alveolar type 2 
differentiation and expansion of fibroblasts and putative TP63+ intrapulmonary basal-like progenitor 
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cells [19]. Our findings are consistent with these findings to a certain extent. We expanded on this idea 
by analyzing a distinct cell subset in the lungs of three COVID-19 and three non-COVID infected cases, 
with one subpopulation causing extensive lung-specific gene expression. The finding of Fibroblast1-
enriched genes involved in the lung microenvironment and intercellular communication with epithelial 
and myeloid cells suggests that fibroblasts generate the fibroblast and endothelial states. 

Our work provides novel insight into the host's responses to deadly SARS-CoV-2 infection, although 
the sample size was limited. In addition, we studied only part of the possible disease phenotype since our 
study was limited to lung tissue associated with COVID-19 death. Nonetheless, certain breakthroughs, 
such as the fast development of and differentiation of pulmonary fibroblasts and epithelial cells [20], may 
be important for patients who have survived severe COVID-19 and may help us understand the long-
term problems observed in these patients.  

Finally, we integrated a single-cell transcriptome and spatial transcriptome lung atlas from lung tissue 
samples and revealed COVID-19 receptor and ligand spatial interaction. However, some SARS-CoV-2 
variants resulted in higher resistance to available vaccines or treatments [21-23]. We believe this cell 
communication approach is critical for studying the spatial location of disease-related receptor and ligand 
interactions and distribution on a physiological and vaccine molecular basis. This atlas is a valuable 
resource for studying host responses to SARS-CoV-2 and understanding possible long-term pulmonary 
sequelae from COVID-19, as well as laying the groundwork for developing future therapies.  
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