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Abstract: Protein structure prediction represents a fundamental challenge in biochemistry. Conventional 
experimental approaches remain constrained by complex sample preparation requirements, substantial 
costs, and limited capacity for capturing dynamic structural information. These methodological 
limitations in experimental techniques have motivated the advancement of AI-assisted computational 
approaches. This review systematically examines the technological evolution of the AlphaFold system 
across three successive generations, from AlphaFold1's integration of deep learning with evolutionary 
covariance analysis, to AlphaFold2's revolutionary attention-based Evoformer architecture, culminating 
in AlphaFold3's diffusion model for multi-molecular complex prediction. Key advancements encompass 
the diversification of input modalities, expansion of predictive scope, and optimization of computational 
efficiency. Furthermore, we critically evaluate core application domains spanning fundamental 
biological research, pharmaceutical discovery and design, biotechnology and synthetic biology 
applications, and the structural bioinformatics tool ecosystem. Finally, we delineate persistent technical 
challenges within the field. 
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1. Introduction 

Protein structure prediction remains one of the most significant challenges in biochemistry. 
Established experimental techniques for structure determination—namely X-ray crystallography, cryo-
electron microscopy (cryo-EM), and nuclear magnetic resonance (NMR) spectroscopy—are persistently 
confronted by a triad of limitations: demanding sample preparation requirements, restricted access to 
dynamic structural information, and high costs coupled with low throughput. These constraints have 
driven the advancement of integrated methodological approaches and artificial intelligence (AI)-assisted 
methodologies. Recent breakthrough advances in AI have profoundly transformed this field, enabling 
high-accuracy prediction of protein structures directly from amino acid sequences. This review 
comprehensively examines the technological evolution of the AlphaFold system from its initial iteration 
to the third generation. Furthermore, it explores the system's extensive applications across diverse 
domains, including fundamental biological research, drug discovery and design, biotechnology and 
synthetic biology, and the structural bioinformatics tool ecosystem. The review demonstrates how AI is 
fostering a new paradigm of "predictive and experimental synergy" within structural biology. Current 
limitations and potential future research directions are also discussed.   

2. AlphaFold1 

AlphaFold1 [1], introduced by DeepMind in 2018, represents the inaugural deep learning-based model 
for protein structure prediction. Its core innovation lies in the integration of deep learning with 
evolutionary covariance information. The model initially employs deep residual networks (ResNets) to 
analyze multiple sequence alignment (MSA) data, effectively extracting co-evolutionary signals between 
residues. Subsequently, distance geometry methods are applied to convert the predicted distributions of 
inter-residue distances and dihedral angle probabilities into three-dimensional spatial constraints. Finally, 
a loss function incorporating physicochemical constraints (e.g., bond lengths, bond angles, van der Waals 
forces) is optimized to ensure the biological plausibility of the predicted structure. Compared to 
traditional computational approaches, such as fragment assembly or homology modeling, AlphaFold1's 
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innovations are manifested in three key aspects: (1) It demonstrated for the first time that deep learning 
can substantially enhance the accuracy of co-evolutionary analysis; (2) It achieved robust transformation 
from discrete constraints to continuous structures through distance geometry; (3) It explicitly 
incorporated physical rules within the machine learning framework. The following section provides a 
detailed analysis of its technical architecture, with Figure 1 offering a visual overview of its core 
components. 

 
Figure 1 Simplified Architecture Diagram of the AlphaFold1 Algorithm. 

2.1 Deep integration of evolutionary information 

AlphaFold1 innovatively leveraged co-evolutionary information embedded within protein sequences. 
For MSA enhancement, the HHblits tool was employed to search the Uniclust30 database for 
homologous sequences. Utilizing a stringent E-value threshold of <0.001 and three iterative search 
cycles,an MSA matrix comprising over 10,000 homologous sequences was generated, thereby providing 
a rich dataset for subsequent co-evolutionary signal extraction. Subsequently, the GREMLIN algorithm 
was applied to compute residue-pair coupling scores. Pseudo-likelihood maximization optimization was 
also integrated, effectively mitigating overfitting issues associated with limited datasets and enhancing 
the accuracy of signal extraction. Regarding feature engineering, a 44-channel feature matrix was 
constructed, incorporating 20 channels for amino acid types, 22 channels for co-
evolutionary/conservation features, and 2 channels for positional encodings. Auxiliary features, 
including sequence entropy and solvent accessibility, were incorporated to enrich the dimensionality of 
the input features, thereby providing comprehensive information for model learning. 

2.2 Geometry-constrained deep learning 

AlphaFold1 modified the conventional residual network (ResNet) architecture, implementing a 64-
layer residual block design. Each block incorporated 3×3 convolutions, Batch Normalization 
(BatchNorm), and Rectified Linear Unit (ReLU) activation functions. Skip connections were utilized to 
mitigate the vanishing gradient problem, enabling deeper network learning. The output layer predicted 
64-bin distance distributions (spanning 0–20 Å) and φ/ψ dihedral angles, providing essential geometric 
information for protein structure construction. A multi-task learning strategy was additionally 
implemented, designating distance distribution classification as the primary task and dihedral angle 
regression as the auxiliary task. This strategy facilitated the simultaneous optimization of predictions 
across different aspects, thereby enhancing overall performance. To ensure biophysical plausibility, the 
model integrated physicochemical constraints into the training process. High-confidence distance 
predictions were selected to construct the loss function, which incorporated additional terms derived from 
the Rosetta force field, including bond length and bond angle constraints. This systematic integration of 
physical principles guaranteed that predicted structures adhered to fundamental biomolecular rules. 

2.3 Structural Optimization Algorithm 

AlphaFold1 implemented a sophisticated structure optimization framework comprising two principal 
components: an advanced gradient descent strategy and a robust structure reliability assessment protocol. 
The optimization procedure initiated with conformation generation through sampling from a Gaussian 
random distribution, followed by refinement utilizing the Limited-memory Broyden-Fletcher-Goldfarb-
Shanno (L-BFGS) algorithm, which exhibits significantly enhanced convergence characteristics 
compared to conventional gradient descent approaches. The optimization process incorporated a 
progressive constraint weighting scheme, with weights systematically increased from 0.1 to 0.5 during 
the refinement process to gradually enforce physical constraints, while van der Waals repulsion terms 
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were explicitly included to prevent atomic steric clashes. 

For quantitative evaluation of structural accuracy, the local Distance Difference Test (lDDT) metric 
was employed, which assesses the agreement between predicted and reference structures through 
comprehensive comparison of interatomic distances. Specifically, the metric calculates distance 
deviations for all Cα atom pairs within a 15Å threshold, with higher computed scores indicating superior 
structural accuracy. 

2.4 The CASP13 Achievements and Limitations of AlphaFold1 

Building upon these innovations, AlphaFold1 achieved groundbreaking success in the 13th Critical 
Assessment of Structure Prediction (CASP) competition. Its successful integration of deep learning with 
co-evolutionary analysis demonstrated, for the first time, that neural networks could surpass traditional 
statistical methods (such as GREMLIN). Furthermore, the use of probabilistic distance distributions 
mitigated discretization errors, while the integration of physicochemical constraints ensured the 
plausibility of predicted structures. In the CASP13 Free Modeling category, AlphaFold1 demonstrated a 
substantial advantage, with key metrics outperforming traditional methods, as detailed in Table 1.  

Table 1: AlphaFold1 vs Traditional Methods (CASP13). 
Metric AlphaFold1 Traditional Methods (Best in CASP13) 

GDT_TS 68.5 42.9 
Long-Range Contact Accuracy (β-sheet) 72% 41% 

RMSD (Moderate-Difficulty Targets) 2.8 Å 5.6 Å 
Despite its groundbreaking advancements in protein structure prediction, AlphaFold1 exhibits several 

critical limitations. The model's performance exhibits a strong dependence on high-quality multiple 
sequence alignments (MSAs), being significantly constrained by the quantity and quality of available 
homologous sequences. Consequently, prediction accuracy diminishes for proteins with low sequence 
homology—such as orphan proteins or those with unique evolutionary histories—due to insufficient co-
evolutionary signals. Furthermore, AlphaFold1 is restricted to predicting static structures; it cannot 
simulate conformational dynamics under physiological conditions (e.g., allosteric effects, folding 
intermediates) or model interactions with ligands. The approach also incurs high computational costs, 
requiring initial prediction of a distance matrix followed by iterative optimization to generate the 3D 
structure, resulting in a complex and time-consuming process that becomes particularly pronounced for 
longer proteins. Additionally, predicting multi-chain complexes presents a challenge, as the model was 
designed specifically for single-chain proteins and cannot readily predict protein-protein complexes or 
multimeric structures. Finally, limitations exist in modeling long-range interactions, leading to increased 
prediction errors for distant residue pairs (>20 Å), which can propagate to cause global topological 
inaccuracies. 

3. Alphafold2 

AlphaFold2 [2] achieved a revolutionary breakthrough in protein structure prediction. Its principal 
innovation resides in the development of the Evoformer module, an architecture based on attention 
mechanisms. This module dynamically integrates information from MSAs with three-dimensional 
structural features through an SE(3)-equivariant Transformer framework. Employing an end-to-end 
training paradigm, AlphaFold2 directly predicts atomic coordinates. A dedicated Structure Module 
facilitates iterative refinement of the predicted structure, incorporating template information through 
specialized processing channels to enhance predictive accuracy. The core architecture comprises two 
essential components: the Evoformer module and the Structure Module. Their collaborative interplay—
including the integration of MSA, template information, and iterative refinement — is visually 
summarized in Figure 2, enabling high-accuracy prediction of protein tertiary structures. 
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Figure 2: Schematic of AlphaFold2's model architecture [2]. 

3.1 Evoformer 

Serving as the encoder module within AlphaFold2, Evoformer extracts high-order relational features 
from protein sequences. It processes two primary inputs: the MSA of the target protein and its 
homologous sequences, and the pairwise representation characterizing amino acid interactions. 
Evoformer utilizes a deep network consisting of 48 repetitive blocks, incorporating three key 
computational components: axial attention, outer product mean, and triangular attention. Their functional 
interplay is illustrated in Figure 3. 

(1) An axial attention mechanism that sequentially updates MSA and pairwise representations to 
reduce computational complexity; 

(2) An outer product mean block that extracts pairwise information from MSA to reciprocally update 
pairwise representations; 

(3) A triangular attention operator that incorporates geometric constraints from third-party residues 
when updating inter-residue distances. 

This architecture captures long-range interactions, co-evolutionary relationships, and implicit 
geometric constraints between residues. The module outputs refined MSA features and enhanced 
pairwise representations containing high-precision distance distributions and dihedral angles, thereby 
providing contextual information for the Structure Module. 

 
Figure 3: Schematic diagram of the Evoformer module [2]. 

3.2 Structure Module 

Functioning as the decoder module within AlphaFold2, the Structure Module transforms the abstract 
features output by the Evoformer into precise three-dimensional atomic coordinates. This transformation 
is achieved via a network comprising eight repetitive blocks based on invariant point attention (IPA). IPA 
ensures translational and rotational invariance by representing amino acid coordinates as centroid-
relative vectors and computing attention using relative positional vectors, enabling the model to focus on 
local geometric features. During training, a "recycling" mechanism feeds intermediate coordinate 
predictions from the module's output back into the Evoformer, establishing a recurrent cycle. This cycle 
approximates the dynamic process of protein folding and facilitates error correction. Concurrently, the 
Frame-Aligned Point Error (FAPE) loss function emphasizes local structural accuracy. Geometric 
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constraints, including bond lengths and bond angles, are incorporated to enforce structural and chemical 
plausibility. The module ultimately outputs a reliable structure containing the 3D coordinates of all atoms 
and per-residue confidence estimates (pLDDT values), with its internal mechanism (including IPA and 
recycling) detailed in Figure 4 . 

 
Figure 4: Schematic diagram of the Structure module [2]. 

3.3 AlphaFold2's Synergistic Architecture and CASP14 Breakthrough 

The synergistic logic between AlphaFold2's two principal modules is realized through an iterative 
refinement mechanism and biologically inspired design. The Evoformer and Structure modules engage 
in multiple cycles of interaction—progressing from capturing global evolutionary signals to generate 
coarse backbone scaffolds in early stages, to cooperatively optimizing local structural details such as 
side-chain conformations and hydrogen-bond networks in later stages. This process accomplishes a 
structural refinement trajectory from coarse-grained to fine-grained representations. Within this 
framework, Evoformer's axial and triangular attention mechanisms simulate patterns of amino acid co-
evolution, while the Structure module's IPA and recycling mechanism incorporate principles analogous 
to energy minimization in molecular dynamics, thereby integrating evolutionary patterns with 
physicochemical constraints. 

The architectural innovation is further demonstrated by its fully differentiable, end-to-end learning 
process, overcoming the pipeline limitations inherent in AlphaFold1. Notably, Evoformer extends the 
Transformer self-attention mechanism from one-dimensional sequences to two-dimensional matrices to 
capture higher-order interdependencies. Concurrently, the integration of a "noisy student" self-distillation 
strategy achieves synergistic advancement through algorithmic innovation and data augmentation, 
establishing a benchmark for subsequent biological sequence modeling. 

These collective technological innovations underpin AlphaFold2's exceptional performance. 
AlphaFold2 demonstrated a revolutionary breakthrough in CASP14, achieving atomic-level prediction 
accuracy. Of the 53 targets evaluated, over 90% of its predictions exhibited close proximity to 
experimentally determined structures, with an overall median  GDT_TS of 92.4. For 14 challenging 
free-modeling (FM) targets, the median GDT_TS reached 88.5, particularly showcasing high congruence 
with experimental results in predicting complex loop regions. The model outperformed all other 
competing methods by a substantial margin, with its prediction accuracy even surpassing that of certain 
experimental techniques. Nature has recognized this achievement as "one of the most significant 
breakthroughs in 21st-century biology," fundamentally transforming the landscape of protein structure 
research. 

4. AlphaFold3 

AlphaFold3[3] represents the most recent iteration of the protein structure prediction artificial 
intelligence model developed by DeepMind. This system extends beyond the high-accuracy prediction 
capabilities characteristic of the AlphaFold series to encompass interactions between proteins and other 
biomolecules. Consequently, it serves as a robust tool for fields including drug discovery, gene therapy, 
and synthetic biology. The advent of AlphaFold3 signifies substantial progress toward the fundamental 
objective of predicting biological processes directly from sequence data. Building upon the AlphaFold2 
framework, AlphaFold3 achieves multidimensional technological advancements. Its expanded network 
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architecture—including modules for multi-molecular complex prediction—is visualized in Figure 5. 

 
Figure 5: Schematic diagram of AlphaFold 3's network architecture [3]. 

4.1 Pairformer 

AlphaFold3 replaces AlphaFold2's Evoformer module with the Pairformer module, fundamentally 
transforming the processing of MSAs. This module eliminates explicit maintenance of MSA 
representations, retaining only pairwise representations. Through architectural streamlining, 
computational complexity is substantially reduced—manifested by decreasing the number of MSA 
blocks from 48 to 4. Evolutionary features are extracted via weighted averaging, thereby circumventing 
the high dependency on homologous sequence count inherent in the conventional Evoformer. 

Concurrently, Pairformer directly focuses on modeling spatial relationships between residues, 
eliminating complex operations such as the outer product mean. It enhances learning of interaction 
patterns involving non-protein molecules (e.g., nucleic acids, ligands) through refined attention 
mechanisms. Furthermore, unaligned MSA sequences employ a more compact representation, increasing 
the number of processable homologous sequences per chain by approximately threefold. This 
significantly broadens the scope of captured evolutionary information, particularly enhancing predictive 
capabilities for complex systems such as protein complexes. 

These modifications—including streamlined MSA processing and enhanced attention mechanisms—
simultaneously simplify the model architecture and improve its adaptability to sparse evolutionary data 
(Figure 6), establishing a foundation for multimodal molecular modeling. 

 
Figure 6: Schematic diagram of the Pairformer module [3]. 

4.2 Diffusion Model 

Tables must appear inside the designated margins.AlphaFold3 departs from AlphaFold2's iterative 
refinement paradigm based on invariant point attention and physical constraints, introducing instead an 
all-atom diffusion generative model. This innovation constitutes a fundamental paradigm shift in 
structure prediction. The model operates through a forward diffusion process that incrementally perturbs 
ground-truth atomic coordinates with Gaussian noise, progressively degrading the molecular structure. 
Subsequently, a reverse denoising process trains the model to recover atomic coordinates from noise. 
Critically, minimizing the mean squared error (MSE) alone suffices for the model to learn inherent 
geometric constraints, eliminating the need for predefined explicit physical rules governing bond lengths, 
bond angles, or similar parameters. 

This architecture inherently captures physicochemical principles, such as chemical bonding and van 
der Waals forces, while enabling flexible handling of non-standard chemical components, including 
metal ions and modified residues. By dynamically modulating noise intensity, the model progressively 
refines structures across multiple scales: early iterations prioritize coarse-grained construction of global 
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topology (e.g., protein folding scaffolds), while later stages optimize local details such as side-chain 
conformations and hydrogen-bond networks. This approach eliminates reliance on post-processing steps. 
The diffusion model's structure—incorporating noise modulation and multi-scale refinement (Figure 
7)—enables genuine end-to-end generation of full atomic coordinates directly from sequence data, 
significantly enhancing predictive accuracy for complex conformations and dynamic regions. 

 
Figure 7: Schematic diagram of the diffusion module [3]. 

4.3 Atomic-Level Unified Representation Framework 

AlphaFold3 represents a significant departure from AlphaFold2's rigid, amino acid-centric structural 
representation framework. Instead, it adopts an atom-centered modeling paradigm where each atom is 
treated as a discrete entity. This model directly predicts the three-dimensional coordinates of individual 
atoms, thereby eliminating the constraints imposed by rigid backbone assumptions and side-chain 
parameterization. Consequently, it naturally captures the relative positions and dynamic interactions 
between atoms (such as hydrogen bonding and hydrophobic effects) through attention mechanisms, 
enabling the precise characterization of molecular chemical structure details. 

Furthermore, AlphaFold3 extends the token type system. Beyond the 20 standard amino acids, it 
incorporates eight distinct nucleic acid tokens, ligand atom tokens, and modified residue tokens. Each 
token type encodes specific chemical properties, including charge and hydrophobicity. This enhanced 
representation enables the model to differentiate between diverse molecular types—such as proteins, 
DNA, RNA, and ligands—and facilitates the unified modeling of various interaction modes (protein-
protein, protein-nucleic acid, protein-ligand) via an improved geometry-informed attention mechanism. 

This novel framework overcomes the limitations inherent in traditional methods for modeling non-
protein molecules. It achieves generalized predictive capabilities for complex biomolecular complexes 
within a single network architecture, thereby establishing itself as a powerful framework for investigating 
fundamental biological processes such as post-translational modifications and molecular binding 
mechanisms. 

5. AlphaFold's Evolution 

Examining the technological evolution of AlphaFold reveals three defining characteristics: 
diversification of input information, expansion of predictive scope, and enhanced biophysical plausibility 
within the algorithmic architecture. The progression from an initial version reliant solely on single protein 
sequences, to a breakthrough iteration incorporating evolutionary biology information, and subsequently 
to the current third-generation model capable of handling multi-component biomolecular systems, 
corresponds directly to the expansion of structural biology's research scope. As illustrated in Table 2, 
which systematically compares key parameters across the three generations, these advancements 
manifest not only as incremental improvements in prediction accuracy but also as a qualitative shift in 
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predictive capability—from isolated proteins to the molecular interaction networks fundamental to 
biological processes. It is noteworthy that this transformative progress has been consistently 
accompanied by innovations in algorithmic paradigms: from residual networks incorporating geometric 
constraints, to the Evoformer integrating attention mechanisms, and most recently to the introduction of 
diffusion models. Breakthroughs in computational methodology have continuously advanced the 
boundaries of predictive capacity. 

Table 2: Evolution of AlphaFold Models. 
Parameter AlphaFold1 AlphaFold2 AlphaFold3 

Input  Protein sequence + MSA Protein sequence + MSA Protein sequence + MSA + 
other biomolecules 

Output  Single-chain tertiary structure Single-chain/homomeric structures Multi-molecular complexes 
Computational 

Efficiency Medium High Optimized 

Core Algorithm ResNet + Geometric 
constraints Evoformer + Structure module Diffusion model + joint 

embedding representation 
Confidence Metrics IDDT pLDDT + PAE pLDDT + PAE + IPC 

Limitations No complexes Ineffective for non-protein 
components 

Still imperfect for modified 
residues 

References [1] [2] [3] 

6. Core Applications of AlphaFold 

6.1 Basic Biological Research 

In the context of human proteome characterization, Tunyasuvunakool et al. [4] employed AlphaFold 
to predict the human proteome, thereby addressing significant knowledge gaps in experimental data, 
particularly for targets such as orphan proteins that lack established characterization methods. Sommer 
et al. [5] conducted structure-guided transcriptomic analysis to investigate functional differences among 
isoforms, offering novel structural insights into biological functional diversity. Regarding evolutionary 
and conservation studies, Bordin et al. [6] performed comparative analyses across 21 model organisms 
using AlphaFold, elucidating evolutionary patterns in protein structures and enhancing our understanding 
of biological evolution.Within virology research, Hu et al. [7] integrated AlphaFold2 predictions with 
crystallographic experiments, leading to the identification of a novel fold in rotavirus spike protein. 
Nomburg et al. [8] leveraged these advancements to discover ancient immune evasion mechanisms in 
viruses and phages, providing novel conceptual frameworks for virology and immunology. In the field 
of membrane protein research, Xiao et al. [9] utilized AlphaFold2 to predict the conformational states of 
69 mutants of E. coli MFS transporters, elucidating the structural basis of their transport mechanisms. 
For the study of protein dynamics, Wayment-Steele et al. [10] developed AF-Cluster, which successfully 
predicted the multiple conformational states of the denatured protein KaiB. Collectively, these studies 
address critical gaps in structural biology data while providing novel perspectives for understanding the 
functional diversity of proteins. 

6.2 Drug Discovery and Design 

In the field of target identification, the AlphaFold Database (AFDB) [11] provides millions of protein 
structures through AlphaFold, significantly accelerating virtual screening workflows and enabling 
efficient prioritization of potential drug targets. The HProteome-BSite tool [12] facilitates precise drug 
targeting by predicting protein binding sites, thereby supporting the development of highly selective 
therapeutics. Regarding molecular docking optimization, Wong et al. [13] demonstrated accelerated 
antibiotic discovery through AlphaFold-predicted target structures, substantially reducing development 
timelines.Within antiviral drug development, Yang et al. [14] provided structural insights into SARS-CoV-
2 variant proteins, delivering mechanistic evidence for mutational effects. Notably, Zeng et al. [15] 
designed a hemagglutinin stem vaccine (B60-Stem-8070) using AlphaFold2, which demonstrated 
superior immunogenicity compared to conventional antigens. Concurrently, Ibrahim et al. [16] elucidated 
structural features of the ATG8/LC3 family, informing rational design strategies for proteolysis-targeting 
chimeras (PROTACs). Collectively, these applications streamline drug development pipelines, enhance 
design precision, and advance personalized medicine approaches. 
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6.3 Biotechnology and Synthetic Biology 

In enzyme engineering, AlphaFold-predicted protein structures enable targeted modifications of 
enzymatic active sites, thereby facilitating optimization of industrially relevant properties such as 
thermostability. This enhancement improves functional utility and operational efficiency in industrial 
biocatalytic processes. For instance, Wayment-Steele et al. [17] identified novel conformational states in 
the Mycobacterium tuberculosis oxidoreductase Mpt53, providing structural foundations for enzymatic 
enhancement.Within de novo protein design, integrating AlphaFold with computational tools (e.g., 
Rosetta) supports the engineering of proteins with novel functional capabilities, expanding their 
biomedical and biocatalytic applications. Jendrusch et al. [18] developed the AlphaDesign framework, 
which leverages AlphaFold's predictive capacity to design proteins with predetermined structures and 
functions. Complementarily, Goverde et al. [19] implemented neural network inversion of AlphaFold, 
establishing a methodology for direct amino acid sequence generation from target structures, 
circumventing iterative sequence optimization. 

6.4 Structural Bioinformatics Tool Ecosystem 

Regarding databases and resources, the AFDB employs an open-access model, providing 
comprehensive protein structural data to the global research community. This initiative significantly 
facilitates academic collaboration and accelerates scientific progress. Viral protein structural libraries 
continuously expand with AlphaFold integration, extending their applicability and establishing critical 
infrastructure for virology research.Among auxiliary tools, Foldseek [20] serves as a rapid structural 
search tool that outperforms conventional methods (e.g., DALI) in computational efficiency for protein 
structural alignment and retrieval. Furthermore, Foldseek cluster [21] enables identification of 
uncharacterized structural families by analyzing unannotated clusters within its 2.3 million groupings, 
thereby advancing discovery in structural bioinformatics.Additionally, Ma et al. [22] demonstrated 
enhanced functional annotation accuracy using AlphaFold-predicted structures, while Hu et al. [23] 
optimized the Evoformer module for functional prediction applications. The integration of these 
resources not only expedites global research collaboration but also provides foundational support for 
standardized and automated methodologies in structural biology. 

7. Challenges and Future Directions 

While the AlphaFold series has achieved remarkable success in protein structure prediction, its 
development encounters persistent challenges. These include significant difficulties in predicting 
complex protein-protein interactions, limited capability for modeling dynamic processes such as 
conformational changes and folding pathways, substantial computational resource requirements with 
associated time inefficiencies, and the necessity for experimental validation coupled with 
interdisciplinary interpretation of predictions. Furthermore, acquisition and annotation of high-quality 
structural data—particularly for specialized protein classes—presents ongoing obstacles.Future 
development will prioritize: (i) enhancing prediction accuracy for protein interactions with diverse 
molecular partners; (ii) advancing protein dynamics simulations through hybrid deep learning/physical 
modeling approaches; (iii) facilitating deeper integration with experimental methods (e.g., X-ray 
crystallography) to establish a computational-experimental synergy; (iv) expanding applications across 
drug discovery, agricultural science, and materials research; and (v) improving computational efficiency 
and technical accessibility via architectural optimization and user-friendly tool development. 
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