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Abstract: In this paper, a novel image matching method is proposed in order to improve the 

performance of image registration, especially for blur images. Firstly, A set of Scale Invariant Feature 

Transform (SIFT) points are extracted. Secondly, in order to further improve the distinctiveness of the 

SIFT descriptors, three scale invariant concentric circular regions are applied to produce descriptors. 

Thirdly, for the purpose of decreasing the high dimensional and complexity of SIFT descriptors, The 

Local Preserving Projection (LPP) technic is applied to reduce the dimensions of the descriptors. 

Lastly, the Euclidean distance similarity measurements are used to obtain the results of matching 

feature points. The experimental results show that the novel image matching method can not only 

reduce the data amounts, but also improve the matching speed and the matching precision. 
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1. Introduction 

Image registration is an extremely important and fundamental step in the computer vision field, 

such as panoramic stitching Szeliski [1]; Brown and Lowe [2], object recognition Ferrari et al.[3]; 

Lowe [4], wide baseline matching Schaffalitzky and Zisserman [5]; Tuytelaars and Van Gool[6], 3D 

recognition Kratochvil et al. [7], recognition of object categories Dorko and Schmid[8]; Fergus et al.[9]; 

Leibe and Schiele[10]; Opelt et al.[11], and so on. One of the most popular methods to solve the image 

registration problem is the local correspondence approaches, which includes two essential steps: local 

feature detection Lowe[12]; Morel and Yu[13]; Mikolajczyk et al.[14] and local feature description 

Mikolajczyk and Schmid[15]. In an comparative study on local feature descriptors Mikolajczyk and 

Schmid[15] including SIFT Lowe[4], steerable filters Freeman and Adelson (1991)[16], differential 

invariants Koenderink and van Doorn[17], moment invariants Van Gool et al.[18], complex filters 

Schaffalitzky and Zisserman[5], and cross-correlation of different types of interest points Harris and 

Stephens[19]; Mikolajczyk and Schmid[20], the authors found that the SIFT descriptors performs best. 

Although their best matching results were obtained using SIFT descriptor, the high dimensionality 

of this descriptor (128 dimensions) causes computational inefficiency when there are a large number of 

points to be processed. Then dimensionality reduction techniques can find a place here, and can also be 

applied to design features as well. As the first attempt, PCA-SIFT Ke and Sukthankar[21], which used 

the principal components of gradient patches to form local descriptors, was proposed. Despite the 

widespread use in various fields, the validity of PCA is limited by its priori assumption that the 

relationship among data is linear. However, in real-world applications, it is common where the relation 

among variables is nonlinear. In this case, nonlinear techniques, such as Isomap Tenenbaum et al.[22], 

Locally Linear Embedding (LLE) Roweis and Saul[23]; Saul and Roweis[24], and Laplacian Eigenmap 

(LE) Belkin and Niyogi[25] might be more appropriate, which are proposed to discover the 

submainfold structure hidden in high dimensional ambient space. Though these methods have been 

successfully applied to some benchmark artificial datasets, the yielded mappings are only defined on 

the training data points and it is unclear how to extend the mapping for new test data points. Therefore, 

the nonlinear mainfold learning techniques Tenenbaum et al.[22]; Roweis and Saul[23]; Saul and 

Roweis (2003)[24]; Belkin and Niyogi[25]; Brand[26]; Zha and Zhang[27] are limited in applicability 

for information comparison tasks. In contrast, the Locality Preserving Projections(LPPs) Niyogi[28] 

which definitely considers the structure of the manifold may be expediently and reliably applied to any 

new data point to locate it in the intrinsic low dimensional submanifold. LPP Niyogi [28] is a local 

structure preserving method, which can preserve the intrinsic geometric relationships of the data and 

share many important properties with nonlinear techniques such as LLE Roweis and Saul[23] or LE 

Belkin and Niyogi[25]. LPP builds a graph maintaining neighborhood relationship of the given data set, 

and then uses the notion of the Laplacian of the graph to compute a projection matrix. This projection 

matrix can map the high dimensional data points to a subspace, and has the property that local 
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neighborhood information is well preserved. This property makes the algorithm insensitive to outliers 

and noises to some extent. Since it is likely that a nearest neighbor seek in the locality preserving low 

dimensional submanifold will yield corresponding results to that in the high dimensional ambient space, 

the locality preserving quality of LPP is to be of effective and credible use in the information 

comparison applications. On the other hand, though the SIFT descriptors can accurately describe 

invariant image characteristic around a keypoint, the description region need be improved to generate 

more accurate description, so it can avoid mismatches between two keypoints, which are geometrically 

far away but with similar local image information. Thus we consider three scale invariant concentric 

circular regions, which are applied to produce more discriminative descriptors. 

This paper attempt at developing more compact descriptors, which are suitable for faster matching 

while still retaining their outstanding performance. To do this, we propose a novel matching method 

based on SIFT and LPP. The experiment results indicate that the proposed method is robust against all 

image transformation, especially for the image blur.  

2. A novel matching method based on SIFT and LPP 

2.1 Scale invariant feature points detection and localizations 

As noted, the first step in point correspondence is feature point detection. the scale invariant feature 

points are detected and localized as introduced in Lowe[4].  

As noted, the first step in point correspondence is feature point detection. In this paper, the scale 

invariant feature points are detected and localized as the way introduced in Lowe[4]. To obtain true 

scale invariance Lindeberg (1998), the normalized Laplacian is approximated by the Differenceof‐
Gaussian (DOG) scale space. The DoG scale space is sampled by blurring an image with successively 

larger Gaussian filters and subtracting each blurred image from the adjacent (more blurred) image. 

Three levels of scale are created for each octave by blurring the image with incrementally larger 

Gaussian filters with scale steps of σ =2^(1/3). After completing one octave, the image with twice the 

initial scale is resampled by taking every other row and column and the process is repeated for the next 

octave, and thus reducing computation. That is, stable keypoint locations in scale space are detected by 

using scale‐space extrema in the DOG function convolved with the image, D(x,y,σ) , which can be 

computed from the difference of two nearby scales separated by a constant multiplicative factor k: 

D(x,y,σ)=(G(x,y,kσ)-G(x,y,σ))⊗I(x,y)=L(x,y,kσ)-L(x,y,σ)               (1) 

where G(x,y,σ) denotes a two-dimensional Gaussian kernel with standard deviation. L(x,y,σ) 

denotes the scale-space representation, and is produced from the convolution of G(x,y,σ) with an input 

image I(x,y) . Interest points are characterized as the extrema (maxima or minima) in the 3 D(x,y,σ) 

space. As such, each pixel is compared with its 26 neighbors in scale space and a pixel is selected as a 

feature point if its value is larger or smaller than all of its neighbors. Subsample accurate position and 

scale is computed for each extrema point by fitting a quadratic polynomial to the scale space function 

D(x,y,σ) and finding the extremum, which is given by 
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                                                           (2) 

The feature point candidates obtained above need to be refined by eliminating some unstable ones, 

which are low in contrast and sensitive to changes in illumination. In addition, some features points that 

have a strong response along edges are also eliminated for higher stability. The accurate point 

localization can be obtained by a quadratic interpolation. After the above operations, the 3D coordinate 

of a feature point can be obtained, i.e., (x,y,σ) , where (x,y) is the spatial coordinate, and denotes the 

scale. 
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2.2 Triple regions based SIFT description 

In this stage, three scale invariant concentric circular regions is adopted to assign orientations as 

well as produce descriptors (see Fig. 2). Orientation is determined by building a histogram of gradient 

orientations from the key points neighborhood, weighed by a Gaussian and the gradient magnitude. 

Every peak in the histogram with a height of 80the maximum produces a key point with the 

corresponding orientation. For each pixel positioned in (x,y) , the gradient magnitude m(x,y) and 

gradient orientation (x,y) are pre‐computed using pixel differences. Note that the assigned orientation, 

together with the scale above, provides a scale and rotation invariant coordinate system for the 

descriptor. The SIFT descriptor computes the gradient vector for each pixel in the feature points 

neighborhood and builds a normalized histogram of gradient directions. The SIFT descriptor creates a 

1616 neighborhood that is partitioned into 16 subregions of 44 pixels each. For each pixel within a 

subregion, SIFT adds the pixels gradient vector to a histogram of gradient directions by quantizing each 

orientation to one of 8 directions and weighting the contribution of each vector by its magnitude. Each 

gradient direction is further weighted by a Gaussian of scale σ=n/2 where n is the neighborhood size 

and the values are distributed to neighboring bins using trilinear interpolation to reduce boundary 

effects as samples move between positions and orientations. That is, the proposed triple regions based 

SIFT descriptor can be given by 

1 1 2 2 3 3PD L L L                                               (3) 

where Li (i=1,2 and 3) is the 128‐dimensional local SIFT descriptor, and thus PD is also 128 

dimensions. α1, α2 and α3 are three weight coefficients, and satisfy 0≤α1≤1,0≤α2≤1,0≤α3≤1, and 

α1+α2+α3=1. 

2.3 LPP‐based dimensionality reduction 

Suppose the data set of SIFT descriptions is (x1,x2,⋯,xm) and let N(xi ) (N(xj )) denote the k nearest 

neighbors of xi (xj), N(xj ) denote the k nearest neighbors of xi. Then use yi=w^T xi to denote the one

‐dimensional representation of xi with the transformation vector w, and define the similarity matrix 

S(sij=sji) as follows: 
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The criterion for choosing a reasonable projection is to minimize the objective function as follows: 
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This objective function undergoes a severe penalty if the neighboring points xi and xj are mapped 

far apart(i.e.,(yi-yj )^2 is large).Therefore,minimizing f can ensure that if xi and xj are adjacent then yi 

and yj are closeaswell.Exercising some simple algebraic deduction, f can be rewritten to 
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where D is a diagonal matrix Dii=∑Sij  and L=D-S is the Laplacian matrix As the bigger value of 

the dii corresponds to the more important yii, there is a natural constraint: 

1T T TY DY w XLX w                                               (7) 

This minimization problem can be predigested to finding: 

arg min

1

T T

T T

w XLX w

w XLX w 
                                                (8) 

which can be translated as the generalized eigenvalue problem: 

T TXLX w XDX w                                                  (9) 

It is easy to show that the matrices XLX^T and XDX^T are symmetric and positive semidefinite. 

Let the column vectors w_i (i=0,1,⋯l-1) be the solution of the above generalized eigenvalue problem, 

ordered according to their eigenvalues, λ_0<⋯<λ_(l-1). The final n×l projection matrix W_LPP, which 

projects the n‐ dimensional descriptive vector to the lower 1‐ dimensional representation, is 

constructed as W_LPP=(w0,w_1,⋯,w_(l-1)).. Therefore the 128 dimensional local descriptor is 

transformed into 

LPPTPD PD W                                                      (10) 

where TPD is a 1 dimensional local descriptor. In this paper, we simply set l=60. 

2.4 Matching strategy for feature points 

Given two or more images, a set of feature points that can be reliably detected in each image, and 

robust descriptors for those features, we next match feature points between images. Given the 

definition of our feature descriptor in Eq. (10), and two descriptors, TPDi and TPDj, the distance metric 

is a simple Euclidean distance metric 

 
2

, ,i j i l j l

l

D TPD TPD TPD TPD                  (11) 

Consequently, we compare the ratio of the nearest neighbor distance Dnn to the second nearest 

neighbor distance Dnn with a threshold T on the match, and discard matches with a ratio above the 

threshold. We simply set T= 0.8 in this paper. 

3. Experimental results and analysis 

In this section, several sets of experiments are presented to demonstrate the validity of the proposed 

method. Figure 1 shows six sets of test images with five geometric and photometric transformations for 

different scene types, i.e., viewpoint changes [(a) and (b) ], image blur [(c) and (d) ], lighting change 

(e), zoom‐rotation (f). Each set of test images contains six images, in which the first image, i.e., the 

correspondingly leftmost one in Fig.1, is the reference image and the others are the training ones with 

various degrees of geometric or photometric transformations. Besides, 100 additional real‐world 

images, which are randomly sampled from a public data set  is used to train the projection matrix using 

LPP. In this process, keypoints in different images are first extracted and described with the obtained 

projection matrix. Then their matches are identified to see whether the descriptor is robust enough to 

find correspondences in various conditions. Besides the proposed method, another matching algorithms, 
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including the SIFT, are performed for comparisons. In addition, two metrics, i.e., the number of correct 

matches and correct matching rate, are employed to evaluate different matching algorithms. A match is 

deemed as the correct one if the distance between the predicted location is less than 4 pixels by the 

provided homography for each pair of relative images. The correct matching rate is defined as the ratio 

between the number of correct matches and the overall number of matches between the pair of images. 

The performance is measured for images with a significant amount of blur by using bikes and trees 

datasets. The bikes dataset comes from structured scenes, and the trees one textured ones. Blur was 

introduced by changing the camera focus. Fig. 2 shows the results for the structured scene and Fig. 3 

for the textured scene. The images are displayed in Figs. 1(c) and 1(d), respectively. The results show 

that the proposed method gains much higher scores than SIFT for most of parameter combinations of 1, 

2 and 3 (except 1 = 1, 2 = 0 and 3 = 0) 

The performance is measured for the remaining five sets of images, the results show that the 

proposed method gains  higher scores than SIFT for most of parameter combinations of 1, 2 and 3 

(except 1=1,2=0 and 3=0) for both types of images. 

4. Conclusion 

This paper proposes a blur image processing method combining SIFT and LPP, which makes full 

use of the advantages of SIFT and LPP. It improve the differentiability of SIFT descriptor with the aid 

of three scale invariant concentric circular regions, but also improves the matching efficiency with the 

help of LPP. Experimental results show that this method can not only get higher matching point pairs, 

but also has higher correct matching rate for images with blur changes. 

 

Fig. 1 Data set. 
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Fig. 2 (bike sequence). (a) number of correct matches. (b) correct matching rate. 

 

Fig.3(tree sequence). (a) number of correct matches. (b) correct matching rate. 
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