
Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 11: 9-16, DOI: 10.25236/AJCIS.2023.061102

Published by Francis Academic Press, UK
-9-

Short-term Power Load Forecasting Based on a New
Efficient Deep Learning Framework

Liguang Wang1,a,*

1State Grid Zhenjiang Power Supply Comphany, Jiangsu, China
aliguang.wang@foxmail.com
*Corresponding author

Abstract: This research implemented a short-term power load forecasting model using a new deep
learning framework called MindSpore. The new framework this research uses is more efficient than
traditional deep learning frameworks such as TensorFlow. Firstly, the data is processed to meet the
specific requirements of MindSpore. Subsequently, this research constructs the network architecture,
comprising the LSTM layer, dropout layer, and fully connected layer. The effects of different parameters
on the performance of the model are discussed in detail. The experiments unequivocally demonstrate the
efficacy of the model in short-term power load forecasting.

Keywords: Power Load Forecasting, LSTM, Deep Learning Framework

1. Introduction

Short-term power load forecasting involves the prediction of electricity consumption demand within
a power system over a short period, usually ranging from a few hours to a few days [1]. This prediction is
based on historical load data, weather forecasts, holiday schedules, and other relevant factors. The
significance of short-term power load forecasting becomes apparent in its capacity to aid power
companies in strategically allocating generation capacity, optimizing transmission lines, and managing
energy storage resources to effectively meet user demand while reducing operational expenses. Moreover,
accurate short-term power load forecasting provides power market participants with the necessary
information to make well-informed trading decisions, thereby increasing profitability.

With the development of economy and society, the power generation sector has experienced
substantial transformations. Historically, the dominant method of power generation was thermal power
generation, which primarily involved the combustion of coal to produce steam for driving generators.
Anticipating power demand in advance proves invaluable for these facilities to strategically plan their
generation plans, conserve labor resources, and preserve precious coal reserves, ultimately contributing
to reduced production costs. Considering the increasing concerns surrounding global warming [2], the
generation of new energy has emerged as a pivotal player in electricity production. However, new energy
power generation, such as solar power generation and wind power generation, is susceptible to variations
caused by weather conditions and other factors, which can have an impact on the stability of the power
system. Consequently, to ensure the stability of power supply, it becomes essential to engage in short-
term power load forecasting, pre-determine user power demands, and harmonize thermal and renewable
energy generation.

In terms of temporal granularity, power load forecasting can be classified into three main categories:
short-term power load forecasting, medium-term power load forecasting, and long-term power load
forecasting [1]. Short-term power load forecasting typically operates at a daily level, considering various
factors such as temperature, weather conditions, holidays, and other relevant variables to predict power
load in the immediate future. Medium-term power load forecasting expands its scope to encompass a
more extended time horizon, typically ranging from one to several months. The primary objective is to
ascertain the power generation strategy for the forthcoming period. In contrast, long-term load
forecasting deals with a much greater time horizon, often encompassing power load projections several
years into the future. For the purposes of this paper, primary research focus is on short-term power load
forecasting.

Common methods for short-term power load forecasting primarily consist of traditional forecasting
techniques and deep learning-based approaches. Power load forecasting employing regression analysis

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 11: 9-16, DOI: 10.25236/AJCIS.2023.061102

Published by Francis Academic Press, UK
-10-

stands as a prevalent method in this domain [3]. It relies on a statistical analysis of historical load data to
construct a regression model that correlates load with various influencing factors, facilitating the
prediction of future power load patterns. The regression-based power load forecasting approach is lauded
for its simplicity, comprehensibility, computational efficiency, and ease of implementation. However, it's
imperative to acknowledge that regression-based forecasting methods come with high data prerequisites,
susceptibility to outliers, and vulnerability to external influences.

With the advancement of artificial intelligence technology, power load forecasting based on deep
learning has become a focal point of research. Deep learning methodologies, including convolutional
neural networks, recurrent neural networks, and self-attention mechanisms, have demonstrated
remarkable capabilities in various domains such as image recognition [4], object detection [5], and natural
language processing [6]. As the domain of new energy power generation undergoes vigorous development,
power companies are placing increasingly stringent demands on the accuracy of load forecasting. In
contrast to traditional methods, deep learning boasts enhanced capabilities for modeling complex
nonlinear relationships, making it a prominent option for achieving precise load predictions. At present,
power load data is becoming more and more abundant, which provides sufficient data support for the
training of deep learning models.

The implementation of a deep learning model relies on the robust support of a deep learning
framework. A deep learning framework is a specialized software, which can expedite the development
process for engineers by facilitating swift model creation and training. Deep learning frameworks
typically encompass essential functionalities, including such as the design of model architecture,
processing of data, training of models, and evaluation of models. Due to the limitation of computing
power, deep learning framework is not widely used in the beginning. At, present, with the advancement
of technology, deep learning frameworks have garnered significant attention and experienced rapid
development.

Presently, the mainstream deep learning frameworks include TensorFlow[7], PyTorch[8]. TensorFlow,
an open-source deep learning framework developed by Google, offers extensive platform support, and
enables distributed computing. In contrast, PyTorch, an open-source deep learning framework developed
by Facebook, also provides compatibility with multiple platforms and is renowned for its dynamic graph
capabilities. In the field of short-term power load forecasting, most existing models primarily rely on
these two leading deep learning frameworks.

In recent years, as research in deep learning has deepened, some novel and advanced deep learning
frameworks have been developed. One notable framework is MindSpore, developed by Huawei [9], with
a primary mission to achieve three crucial goals of easy development, efficient execution, and full
scenario coverage. MindSpore offers distinct advantages that differentiate it from traditional frameworks.
For instance, automatic differentiation plays a crucial role in deep learning frameworks. Currently,
mainstream deep learning frameworks adopt automatic differentiation technology based on either static
graphs or dynamic graphs. Static graphs leverage static compilation techniques to enhance network
performance, yet they can be intricate to construct and debug. Dynamic graphs are more convenient but
can be challenging to maximize performance. MindSpore introduces a new approach of automatic
differentiation based on source code transformations, which has the advantages of both traditional
methods.

Nevertheless, short-term power load forecasting models based on deep learning mainly rely on the
development of traditional deep learning frameworks such as TensorFlow. Very few power load
forecasting models have been developed using the emerging deep learning frameworks, which prevents
the model from taking advantage of the new deep learning framework and fails to gain performance
advantages from the underlying layer. Hence, this research is dedicated to crafting a short-term power
load forecasting model utilizing the MindSpore framework. By fully capitalizing on the strengths of
MindSpore, this research aims to realize the task of short-term power load forecasting.

2. Data Processing and Model Architecture

This research will construct a neural network dedicated to short-term power load forecasting. Initial
step of this research involves the acquisition of historical power load data over a defined period, followed
by data processing to align with the requirements of the MindSpore deep learning framework.
Additionally, the selection of an appropriate neural network architecture is crucial. This choice allows
the model to effectively distill the intricate patterns within the extensive dataset, enhancing the capacity
to make highly accurate load predictions. The comprehensive model structure is depicted in Figure 1.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 11: 9-16, DOI: 10.25236/AJCIS.2023.061102

Published by Francis Academic Press, UK
-11-

Subsequently, this section will delve into various aspects, including data processing and network
architecture construction.

Figure 1: Model architecture

2.1. Data Processing

The deep learning model MindSpore needs to load data using a specified data structure for training
and prediction. This research defines a class that encapsulates data using the __𝑖𝑖𝑖𝑖𝑖𝑖𝑖𝑖__ function, reads data
by index using the __𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔𝑔__ function, and returns sample totals using the __𝑙𝑙𝑙𝑙𝑙𝑙__ function. Then
this research uses the 𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺𝐺 provided by the MindSpore framework to load the data.
Through the above processing, Mindspore can use the data that researchers provide. The whole data
processing procedure is shown in the Figure 2.

Once the initial data processing is accomplished, there remains another crucial step: sample definition.
In the original power load dataset, each data entry includes timestamp, temperature, power load, and
other environmental factors. In this study, it is assumed that at the current moment denoted as 𝑖𝑖, this
research utilizes the power load data from the preceding 𝑥𝑥 moments as the input to predict the power
load at time 𝑖𝑖. Consequently, for the training set, the input of each sample is defined as the power load
data from time 𝑖𝑖 − 𝑥𝑥 to time 𝑖𝑖 − 1, while the label corresponds to the power load at the current time 𝑖𝑖.
Adhering to these defined rules, the data processing is finished.

Figure 2: Data processing

2.2. LSTM Layer

In the process of power load forecasting, it is necessary to consider not only the current state, but also
the impact of some previous moments. Simultaneously, the power load data at the current moment will
also impact the subsequent moments. Therefore, when building neural networks, these factors must be
considered. Long Short-Term Memory Network (LSTM) stands out as a type of recurrent neural network

[10] that can handle long sequence data and solve the problem of gradient disappearance and gradient
explosion. LSTM is well-suited for processing time series data, enabling the capture of long-term
dependencies within the sequence, and can be used to predict future values. In this study, the LSTM layer
is employed to extract the distinctive features from the power load data.

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 11: 9-16, DOI: 10.25236/AJCIS.2023.061102

Published by Francis Academic Press, UK
-12-

The Cell state of the LSTM layer at time 𝑡𝑡 is calculated using the gating mechanism. The formula
is shown in formula (1), where ⊗ symbol represents the unit multiplication operation, 𝒇𝒇𝒕𝒕 is called the
forgetting gate, 𝒊𝒊𝒕𝒕 is called the input gate, 𝒄𝒄(𝒕𝒕−𝟏𝟏) indicates the cell state at time 𝒕𝒕 − 𝟏𝟏, 𝒄𝒄𝒕𝒕� indicates the
cell state update value. The calculation process of 𝒇𝒇𝒕𝒕 is shown in formula (2), where 𝒙𝒙𝒕𝒕 specifies the
input at time 𝑡𝑡, 𝒉𝒉(𝒕𝒕−𝟏𝟏) represents the hidden state at time 𝑡𝑡 − 1, 𝒃𝒃𝒇𝒇 represents the bias, and 𝑤𝑤𝑓𝑓ℎ𝑥𝑥
represents the weight of the neural network. The calculation process of the input gate 𝒊𝒊𝒕𝒕 is shown in
formula (3), where 𝒙𝒙𝒕𝒕 specifies the input at time 𝑡𝑡, 𝒉𝒉(𝒕𝒕−𝟏𝟏) represents the hidden state at time 𝑡𝑡 − 1,
𝒃𝒃𝒊𝒊 represents the bias, and 𝑤𝑤𝑖𝑖ℎ𝑥𝑥 represents the weight of the neural network. The cell state update value
𝒄𝒄𝒕𝒕� is calculated by the formula (4), where 𝒙𝒙𝒕𝒕 specifies the input at time 𝑡𝑡, 𝒉𝒉(𝒕𝒕−𝟏𝟏) represents the hidden
state at time 𝑡𝑡 − 1, 𝒃𝒃𝒄𝒄 represents the bias, and 𝑤𝑤𝑐𝑐ℎ𝑥𝑥 represents the weight of the neural network. The
hidden state 𝒉𝒉𝒕𝒕 is calculated by the formula (5), where 𝒐𝒐𝒕𝒕 is the output gate and 𝒄𝒄𝒕𝒕 is the cell state at
time 𝑡𝑡. The output gate 𝒐𝒐𝒕𝒕 is calculated by the formula (6), where 𝒙𝒙𝒕𝒕 specifies the input at time 𝑡𝑡,
𝒉𝒉(𝒕𝒕−𝟏𝟏) represents the hidden state at time 𝑡𝑡 − 1, 𝒃𝒃𝒐𝒐 represents the bias, and 𝑤𝑤𝑜𝑜ℎ𝑥𝑥 represents the
weight of the neural network.

In general, the LSTM layer uses the forgetting gate 𝒇𝒇𝒕𝒕 to determine whether to retain or partially
discard the information learned by 𝒉𝒉(𝒕𝒕−𝟏𝟏) . Output gate 𝒐𝒐𝒕𝒕 determines which information is output.
Finally, the current Cell status 𝒄𝒄𝒕𝒕 and hidden status 𝒉𝒉𝒕𝒕 are calculated using the forgetting gate, input
gate and output gate.

 (1)

 (2)

 (3)

 (4)

 (5)

 (6)

By using MindSpore, this research defines an LSTM layer directly using the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.𝑛𝑛𝑛𝑛. 𝐿𝐿𝐿𝐿𝐿𝐿𝐿𝐿
interface, and then set the number of hidden layer nodes to achieve the effect of LSTM.

2.3. Dropout Layer

Dropout serves as a valuable technique for combating overfitting. It effectively reduces overfitting
by preventing correlations among neural nodes. More precisely, dropout combats overfitting by randomly
setting a fixed percentage of hidden layer nodes to zero during each training batch. Within the MindSpore
framework, this research directly establishes a dropout layer using the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.𝑛𝑛𝑛𝑛.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑
interface and specifies the drop rate to achieve the effect of dropout.

2.4. Fully Connected Layer

After the LSTM layer finishes extracting features from the power load data, the next step is to
generate power load predictions using the defined model. To achieve this, this research introduces a fully
connected layer responsible for performing power load predictions. By using MindSpore, this research
utilizes the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑟𝑟𝑟𝑟.𝑛𝑛𝑛𝑛.𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑𝑑 interface to directly define the fully connected layer, where the
number of nodes in the hidden layer is set to the same as that in the LSTM layer, and the number of nodes
in the output layer is set to 1, indicating that there is only one output, which is the power load prediction
result.

2.5. Loss Function

To quantify the disparity between the model-predicted power load data and the actual power load data

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 11: 9-16, DOI: 10.25236/AJCIS.2023.061102

Published by Francis Academic Press, UK
-13-

at a specific moment, it is imperative to establish a loss function. In this study, the mean square error
(MSE) is employed as the measure of loss, computed using the formula (7). Here, 𝑁𝑁 represents the total
number of samples, 𝑦𝑦𝑡𝑡� signifies the predicted value at time 𝑡𝑡, 𝑦𝑦𝑡𝑡 denotes the label value at time 𝑡𝑡, and
𝑡𝑡 corresponds to the time for the current sample. In essence, the mean square error quantifies loss by
squaring the differences between predicted and actual values, summing these squared values across all
samples, and subsequently computing the average. Utilizing squares ensures that the mean square error
calculation remains insensitive to sign variations. By using MindSpore, this research directly defines the
mean square error loss function using the 𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚𝑚.𝑛𝑛𝑛𝑛.𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀𝑀 interface.

 (7)

3. Experiments

3.1. Dataset

Since real power load data is considered proprietary information for power companies and difficult
to obtain, this study utilizes simulated power load data instead. This research has chosen a subset of data
for illustration purposes, as depicted in the Table 1. Within this dataset, each row corresponds to power
load data at a specific moment, accompanied by various environmental factors. These factors encompass
temperature, humidity, wind speed, general diffusion flow, and diffusion flow. In this dataset, for every
data row, the first column denotes the timestamp, the subsequent five columns represent environmental
factors, and the seventh column signifies the electrical load.

Table 1: Example of power load data

Date and Time Temperature Humidity Wind Speed General Diffuse
Flow

Diffuse
Flow

Total
Electricity

1/1/2017 0:00 6.559 73.8 0.083 0.051 0.119 70425.54
1/1/2017 0:10 6.414 74.5 0.083 0.07 0.085 69320.84
1/1/2017 0:20 6.313 74.5 0.08 0.062 0.1 67803.22
1/1/2017 0:30 6.121 75 0.083 0.091 0.096 65489.23
1/1/2017 0:40 5.921 75.7 0.081 0.048 0.085 63650.45
1/1/2017 0:50 5.853 76.9 0.081 0.059 0.108 62171.34
1/1/2017 1:00 5.641 77.7 0.08 0.048 0.096 60937.36
1/1/2017 1:10 5.496 78.2 0.085 0.055 0.093 59566.75

3.2. Design of Experiments

In line with the methodology outlined in the second section of this paper, the MindSpore deep learning
framework is employed to construct a short-term power load forecasting model. This model encompasses
an LSTM layer, a dropout layer, and a fully connected layer. To optimize the performance of the model,
a series of experiments were conducted to determine the optimal model parameters and evaluate the
model's ability to predict power load.

This research centers on configuring the parameters for the LSTM layer firstly. The number of hidden
layer nodes significantly impacts the feature extraction performance of LSTM. Thus, this research
conducts a grid search in {32, 64, 128, 256, 512}. For the dropout layer, the drop rate affects the
intervention degree of the model against overfitting. To this end, this research performs a grid search
across the values {0.1, 0.2, 0.4, 0.6, 0.8}. Concurrently, other model parameters remain fixed throughout
the grid search process. The batch size is set to 16, the learning rate is set to 0.001, and the number of
training rounds is set to 30.

Upon determining the optimal model parameters, this research proceed to evaluate the performance
of the model on the test dataset. Visual representations are created to illustrate the discrepancies between
predicted results and actual values.

3.3. Evaluation Metric

To measure the prediction performance of the model, this research employs the Root Mean Square

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 11: 9-16, DOI: 10.25236/AJCIS.2023.061102

Published by Francis Academic Press, UK
-14-

Error (RMSE) as evaluation metric. RMSE, widely acknowledged as a robust evaluation criterion [11] and
referred to as the standard error, quantifies the disparity between predicted values and actual values. It is
very sensitive to large or small errors in a set of measured values, so it can well reflect the precision of
the measurement. RMSE is defined by the Formula (8), where 𝑁𝑁 signifies the total number of samples,
𝑝𝑝𝑡𝑡 represents the predicted value for sample 𝑡𝑡, and 𝑙𝑙𝑡𝑡 denotes the label value for sample 𝑡𝑡.

 (8)

3.4. Results

In Table 2, the first column represents the drop rate of dropout layer, the second column represents
the number of hidden nodes in the LSTM layer, the third column represents the RMSE on the test set,
the fourth column represents the time to complete training, and the fifth column represents the average
of RMSE on the test set with the same drop rate but different hidden nodes in LSTM layers. It can be
seen from the results that with the increase of drop rate, the average of RMSE also increases. When the
drop rate is 0.1, the RMSE of the model is the smallest, indicating that the deviation between the predicted
value and the actual value is the smallest. Therefore, this research chooses the drop rate of 0.1 as the
optimal parameter for the model.

Table 2: Experimental results of same drop rate but different hidden nodes

drop rate hidden nodes RMSE Time RMSE-AVG

0.1

32 1872.84 32.86

1738.06
64 1749.40 34.27
128 1681.99 40.09
256 1722.12 67.94
512 1663.95 144.69

0.2

32 2037.83 31.37

1787.48
64 1771.09 35.36
128 1788.92 41.43
256 1681.01 63.81
512 1658.55 150.91

0.4

32 2148.17 33.69

1843.00
64 1967.15 33.61
128 1791.75 41.32
256 1666.39 64.45
512 1641.55 146.95

0.6

32 2440.62 31.04

1983.67
64 2107.61 35.51
128 1904.27 41.04
256 1720.01 64.81
512 1745.83 152.71

0.8

32 2996.75 31.75

2284.02
64 2595.42 35.15
128 2102.23 41.47
256 1874.07 64.20
512 1851.61 155.56

In Table 3, the first column indicates the count of hidden nodes in the LSTM layer, the second column
signifies the drop rate, the third column represents the RMSE observed on the test dataset, the fourth
column denotes the training completion time, the fifth column represents the average of training
completion time, and the sixth column indicates the average of RMSE on the test set with the same hidden
nodes but different drop rates in LSTM layers.

The results indicate that an increase in the number of hidden nodes leads to a corresponding decrease
in the average of RMSE. Notably, when there are 512 hidden nodes, the model attains the lowest RMSE,
signifying minimal deviation between predicted values and actual values. Nevertheless, as demonstrated
in Table 3, when the number of hidden nodes is fixed at 256, the average of the RMSE does not exhibit

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 11: 9-16, DOI: 10.25236/AJCIS.2023.061102

Published by Francis Academic Press, UK
-15-

a significant deviation from the value obtained with 512 hidden nodes. Additionally, the average time of
training is decreased by over 50%. Consequently, this research has chosen 256 hidden nodes in LSTM
layer as the optimal parameter for the model.

Table 3: Experimental results of same hidden nodes but different drop rate

hidden nodes drop rate RMSE Time Time-AVG RMSE-AVG

32

0.1 1872.84 32.86

32.15 2299.24
0.2 2037.83 31.37
0.4 2148.17 33.69
0.6 2440.62 31.04
0.8 2996.75 31.75

64

0.1 1749.40 34.27

34.78 2038.13
0.2 1771.09 35.36
0.4 1967.15 33.61
0.6 2107.61 35.51
0.8 2595.42 35.15

128

0.1 1681.99 40.09

41.07 1853.83
0.2 1788.92 41.43
0.4 1791.75 41.32
0.6 1904.27 41.04
0.8 2102.23 41.47

256

0.1 1722.12 67.94

65.04 1732.72
0.2 1681.01 63.81
0.4 1666.39 64.45
0.6 1720.01 64.81
0.8 1874.07 64.20

512

0.1 1663.95 144.69

150.16 1712.30
0.2 1658.55 150.91
0.4 1641.55 146.95
0.6 1745.83 152.71
0.8 1851.61 155.56

According to the parameters determined by the above two experiments, this research conducted tests
on a dataset consisting of 600 samples, and the results are shown in Figure 3. The red curve represents
the label values of the test set, while the blue curve signifies the predictions generated by the model. In
the left panel of Figure 3, the visual representation indicates that the model's predictions closely align
with actual values, and the trend is also close to the actual value. To further underscore the model's
predictive capabilities, the right panel of Figure 3 is presented. In this figure, the first 2500 data points
correspond to label values from the training set, while data points 2500 to 3000 represent model-
generated predictions. It is evident that the model's forecast aligns with the overall power load trend.

Figure 3: Comparison of predicted results with actual values

4. Conclusions

This research has employed the new deep learning framework, MindSpore, to implement a short-term

Academic Journal of Computing & Information Science
ISSN 2616-5775 Vol. 6, Issue 11: 9-16, DOI: 10.25236/AJCIS.2023.061102

Published by Francis Academic Press, UK
-16-

power load forecasting model. The model consists of an LSTM layer, a dropout layer, and a fully
connected layer. The experiments demonstrate that when the drop rate is set at 0.1 and the number of
hidden nodes in the LSTM layer is set at 256, the model exhibits an appropriate balance between training
time and performance. Furthermore, the prediction of model closely aligns with the actual power load
variation trend. However, it's important to note that since only LSTM is employed for feature extraction,
the prediction effect of the model is also insufficient. In the future, this research intends to use CNN and
other technologies to extract power load data characteristics, thereby enhancing prediction accuracy.

References

[1] Din G M U, Marnerides A K. Short term power load forecasting using deep neural networks[C].
2017 International conference on computing, networking and communications (ICNC). IEEE, 2017:
594–598.
[2] Al-Ghussain L. Global warming: review on driving forces and mitigation[J]. Environmental
Progress & Sustainable Energy, 2019, 38(1): 13–21.
[3] Zheng J, Xu C, Zhang Z, et al. Electric load forecasting in smart grids using long-short-term-memory
based recurrent neural network [C]. 2017 51st Annual conference on information sciences and systems
(CISS). IEEE, 2017: 1–6.
[4] Chauhan R, Ghanshala K K, Joshi R C. Convolutional neural network (CNN) for image detection
and recognition[C]. 2018 first international conference on secure cyber computing and communication
(ICSCCC). IEEE, 2018: 278–282.
[5] Zou Z, Chen K, Shi Z, et al. Object detection in 20 years: A survey[J]. Proceedings of the IEEE,
IEEE, 2023.
[6] Khurana D, Koli A, Khatter K, et al. Natural language processing: state of the art, current trends
and challenges [J]. Multimedia Tools and Applications, 2023, 82(3): 3713–3744.
[7] Pang B, Nijkamp E, Wu Y N. Deep Learning With TensorFlow: A Review[J]. Journal of Educational
and Behavioral Statistics, 2020, 45(2): 227–248.
[8] Paszke A, Gross S, Massa F, et al. Pytorch: An imperative style, high-performance deep learning
library [J]. Advances in neural information processing systems, 2019, 32.
[9] Huawei Technologies Co., Ltd. Huawei MindSpore AI Development Framework[A]. In: Artificial
Intelligence Technology[M]. Singapore: Springer Nature Singapore, 2023: 137–162.
[10] Hochreiter S, Schmidhuber J. Long short-term memory[J]. Neural computation, MIT press, 1997,
9(8): 1735–1780.
[11] Hodson T O. Root-mean-square error (RMSE) or mean absolute error (MAE): When to use them
or not [J]. Geoscientific Model Development, Copernicus GmbH, 2022, 15(14): 5481–5487.

	2.1. Data Processing
	2.2. LSTM Layer
	2.3. Dropout Layer
	2.4. Fully Connected Layer
	2.5. Loss Function
	3.1. Dataset
	3.2. Design of Experiments
	3.3. Evaluation Metric
	3.4. Results

