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ABSTRACT. Fraud detection is a specifically important issue to protect cardholders’ information from being 
stolen by fraudsters. By choosing proper algorithms and analyzing behavioural information of cardholders and 
banks, we can significantly reduce the probability of transactions being illegally manipulated. In response to 
possible problems in fraud analysis, this article will focus especially on tackling class imbalance problems and 
finding attribute correlations. Two FraudDetection datasets on Kaggle will be used to build classifiers and 
ananlyze the impact of different data processing techniques. Through this process, we realized recent findings of 
fraud detection, we got to know more about different data processing methods, and we implemented distinct 
types of classifiers. We confirmed the significance of class imbalance tackling and attribute correlations 
analyzing. 
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1. Introduction 

In modern society, machine learning has penetrated into every aspect of people's lives. Anti-credit card fraud 
is one area where it is widely used. Fraud detection refers to a series of techniques implemented to protect 
money or property from being stolen through pretense. Nowadays, as fraud methods of crimers is continuously 
updating, the requirements for the performance of anti-fraud systems are increasing. Recent fraud detection 
systems employ distinct kinds of algorithms to represent the performance of fraudulent data to the maximum 
extent, while also analyse behaviours of each customer and account. However, due to the fact that fraud 
detection datasets usually have few fraudulent instances and many normal samples, dealing with unbalanced 
dataset would be a significant issue for fraud detection problems. 

In this project, we executed some data analysis work on a competition dataset on Kaggle. We made an 
experiment on different methods of tackling class imbalance and found the best one to process data, meanwhile 
we implemented behavioral analysis by studying attributes and trained classifiers with outstanding performance. 
We referred to two kernels on Kaggle, Credit Fraud Detector [1] and Anomaly Detection[2], which gave us some 
vivid thinking. 

Here we will describe each part of this essay: First, we will introduce the background of fraud detection 
based on essays and websites published in these two years; then, we will explore into data and clean data; we 
will provide approaches used focusing especially on class imbalance problem; we will analyze the performance 
of these distinct methods and work out experimental results on the entire dataset; finally, we will calculate 
correlations between attributes and label and try to improve our model. 

2. Background and Related Works 

Fraud detection is a type of desired application of machine learning and artificial intelligence (AI). When 
customers receive an identification call or text, this may be associated with a series of algorithms. These security 
measures will maximize the protection of the user's property ownership from fraud and theft. 

However, these years the fineness and complexity of fraud have been growing rapidly, urging anti-fraud 
techniques to update rapidly. In this section, we will discuss several related works in the recent two years 
detailedly. 
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2.1 Fraud Detection: Adaptive Analysis and Self-Learning Ai 

These websites originated from FICO [3] talked about several key factors for fraud detection systems, which 
can be summarized as: 

To deal with flexible and well-organized crime schemes, both supervised and unsupervised models are 
needed to achieve better performance. For supervised learning model, all transactions are tagged properly, the 
amount of clean and relevant training data is closely related to model accuracy, which may have a greater impact 
than the algorithm itself. Therefore, expanding the dataset would be an efficient solution for improving the 
model. 

However, for the unsupervised learning model, few instances are labeled, so we need to implement adaptive 
analysis and self-learning AI to automatically enable our model to be sensitive to recently discovered fraud cases. 
Fig. 1 illustrates the process of implementing a hyper-focused feedback loop. When one transaction is being 
investigated, whether the transaction is legitimate or fraudulent is input into the adaptive model, and one 
adaptive score is worked out to influence the score of this event. Then, we evaluate this blended score and 
produce our final outcomes. 

 

Fig.1 Working Process of Hyper-Focused Feedback Loop [3] 

Another important factor of fraud detection lies in behavioral analytics. Behavioral analytics involves 
tracking profiles about behavioral information of each individual, account and device. Considering the fact that 
fraud cases may vary significantly depending on distinct people, places or card types, it would also be important 
to count domain knowledge during this analyzing process. 

2.2 Calibrating Probability with Undersampling for Unbalanced Classification 

One important issue in the fraud detection problem is that there is a large gap between the number of samples 
of normal and fraud transactions. A common strategy for tackling this problem is to undersample the majority 
class so that it can have the same size as the minority class. However, by doing this we assume that the 
undersampling process does not change the within-class distribution. 

This essay implements Bayes Minimum Risk theory to identify the proper classification threshold and the 
method to readjust it after undersampling. Sample distribution bias after resampling were analyzed, and methods 
to minimize the risk were developed through Bayes’s decision rule. By correcting the posterior probability and 
adjusting the threshold, calibration can be improved without losing predictive accuracy. [4] 

2.3 Using Generative Adversarial Networks for Improving Classification Effectiveness in Credit Card Fraud 
Detection 

This essay is also focused on imbalanced dataset problems. To address the imbalanced dataset issue, an 
augmented training set that uses GANs (Generative Adversarial Networks) to mimic the minority class was 
generated. A GAN consists of two feed-forward neural networks, a Generator G and a Discriminator D. In this 
case, G is used to produce similar data as a minority class based on machine learning models, while D is to 
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distinguish generated samples from real original samples. A dynamic game process is formed between the two 
networks, and in the end we can get very realistic imitation data to fill minority class. The research shows that 
ensemble methods perform best on the problem, which works by training several different classifiers and 
combining the output to produce a single decision. [5] 

3. The Data 

This data is the competition data of Kaggle. Vesta, a company dedicated to securing e-commerce payments, 
provided the raw data for this data set. This data consists of two parts (identity and transaction), both parts have 
the same primary key, TranscationID. 

Train transaction dataset consists of a collection of information about each transaction, including transaction 
time, payment amount, card information, purchaser and recipient email domain as basic information of a deal. 
Furthermore, the information covers some other important data about safety, such as how many addresses are 
correlated with the payment card days since the previous transactions, whether transaction matches card details. 
These contents may be significant for us to perform behavioral analysis. 

Identity dataset includes identity information, which is network connection information and digital signature 
about transactions. consists of several numerical and categorical attributes. Due to personal privacy, some 
features are invisible. Among this dataset, only “DeviceType”, “DeviceInfo” and “id_12”-”id_38” are 
categorical values, while the rest are numerical features. [6] 

4. Data Cleansing 

The following chapters will briefly give methods for cleaning the dataset. 

4.1 Identity Dataset 

The attributes in this data set are irregularly distributed, which are all multimodal properties. Many of these 
attributes have a large amount of NaN values, with the highest ratio of about 96% among all samples. Therefore, 
we used the most frequently occurring data in the dataset to supplement the null values. This will guarantee that 
the distribution of the data is not broken to the utmost extent. 

4.2 Transaction Dataset 

For the transaction dataset, the missing values in card2-card4 were deleted because the missing data in these 
attributes accounted for only about 1% of the total. Again, most frequently occurring number methods were 
implemented on most columns, while “card4” and “ProductCD” were converted from strings to numbers to 
enable algorithms to run in Jupyter notebook. 

“Addr1” and “addr2” are both addresses. Although they always appear together in the dataset, considering 
that they are all expressed in numbers, separate representations will be more accurate. 

“M1” - “M9” is boolean data whether the entity attribute matches the card information (i.e. names on card or 
address etc.). The missing values in these columns are filled with mode to ensure the distribution of these 
attributes is not changed. 

5. Methodology 

In this chapter, we will provide methodologies used in this experiment. 

5.1 Encoding Attributes 

Dataframes used in this project contain categorical values and cannot be used for reducing dimensionality 
and building classifiers. Therefore, it would be significant to encode attributes so that all of them are numerical 
values. Since different columns have different data distributions, a for loop was written so that each attribute 
should be encoded separately. 
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5.2 Dimensionality Reduction: 

Here, we implemented the Principle Component Analysis (PCA) to deal with the dimensionality reduction 
problem. The main idea of PCA is to find a set of mutually orthogonal coordinate axes in the original space by 
the order of variances. For example, the selection of the first axes would be the direction with the largest 
variance, and the second axes with a slightly smaller variance and so on. 

To find a proper dimension to maximize reducing efficiency, we selected to get PCA dimensions which have 
the majority of explained variance ratio (0.95 of the total), picking the first several largest orthogonal directions. 
We used 5 as the proper dimensionality number. 

5.3 Classification 

Classifiers used in this experiment are: KNearestNeighbor, LogisticRegression, GaussianNaiveBayes, 
SupportVectorMachine, XGBClassifier, LinearSVC. 

Two functions were written in this part. The first method, Algorithm, calls indicator, training data, validation 
data and training labels as input and produces predicted labels as output. Based on distinct input indicators, this 
function will implement different kinds of algorithms. Parameters of all classifiers were adjusted to improve 
model performance. 

The other method is about the evaluation of models by implementing performance metrics function. This 
function can calculate mean values of accuracy, AUC_ROC and AUC_PR to evaluate models. 

5.4 Tackling Class Imbalance 

As was discussed above, the most common type of approaches to tackle class imbalance problem are 
sampling methods. The undersampling method has a low data efficiency, and the discarded part may have 
important information for negative examples. However, for oversampling, since the same examples are 
duplicated several times, the biggest shortcoming is that our model will overfit on minority data. 

Other approaches to addressing unbalanced problems include adjusting weights, changing kernel function or 
choosing proper models. Nevertheless, these kinds of models may be time-consuming or difficult to implement. 

There are some special algorithms specifically designed for the imbalance dataset problem. EasyEnsemble 
and BalanceRandomForest algorithms as undersampling techniques, SMOTE (Synthetic Minority Over-
sampling Technique) and ADASYN (Adaptive Synthetic) method for the use of oversampling. 

EasyEnsemble: Sampling the majority class several times, and each time select the number of samples close 
to the number of minority classes. Then, combine this selected set with minority set and train models. Finally 
ensemble all models. 

BalanceRandomForest: Random forest generates each tree from a bootstrap sample of the training data. 
However, for imbalanced data it is largely likely that a bootstrap sample contains few or even no minority class, 
so in each iteration, we select several samples from the minority class and the same amount from the majority 
class. We use these balanced samples to generate a decision tree for the CART algorithm, and ensemble them 
together to form a forest. [7] 

SMOTE: For this algorithm, firstly we select one minority sample in our cluster, and find several nearest 
neighbors of it. Then, we extend our selected point in one of these nearest directions and work out a new sample. 
Using this method for upsampling will finally enable a balanced dataset. The following fig.2 illustrates the 
process of this technique. [8] 
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Fig.2 Process of Smote Method [8] 

ADASYN: Adaptive Synthetic is an algorithm that generates synthetic data, generating more data for “harder 
to learn” examples. 

In the first step, we calculate the ratio of minority to majority examples and calculate the number of synthetic 
minority data to generate. We then measure the dominance of the majority class in each specific neighborhood of 
minority samples. Finally, we generate data using the same technique as SMOTE (Find a point on the line 
segment). [9] 

In this chapter, we will assess the performance of different techniques in terms of dealing with class 
imbalance issues. As the original dataset is too large to enable the implementation of upsampling methods, we 
randomly selected 1000 samples from the original dataset and implemented a series of resampling methods. The 
following tables tab.1 to tab.6 illustrates performance metrics of different resampling methods and different 
algorithms: 

Table 1 Performance of Classifiers Trained on the Original Dataset 

 KNN NaiveBayes Logreg LSVM KSVM XGB 
AUC ROC 0.5167 0.5125 0.4949 0.5837 0.5 0.5294 
AUC PR 0.5322 0.4433 0.4189 0.3297 0.516 0.4293 

(Data length: 1000 = 968 not fraud + 32 fraud) 

Table 2 Performance of Classifiers Trained on the Upsampled Dataset 

 KNN NaiveBayes Logreg LSVM KSVM XGB 
AUC ROC 0.9231 0.8055 0.8500 0.7226 0.9319 0.8963 
AUC PR 0.9517 0.8842 0.9091 0.8167 0.9543 0.9318 

(Data length: 1936 = 968 not fraud + 968 fraud) 

Table 3 Performance of Classifiers Trained on the Downsampled Dataset 

 KNN NaiveBayes Logreg LSVM KSVM XGB 
AUC ROC 0.7000 0.7071 0.6405 0.6762 0.6976 0.7643 
AUC PR 0.7685 0.7587 0.7073 0.7424 0.7453 0.8253 

(Data length: 64 = 32 not fraud + 32 fraud) 

Table 4 Performance of Classifiers Trained on the Smote Dataset 

 KNN NaiveBayes Logreg LSVM KSVM XGB 
AUC ROC 0.7258 0.6348 0.6946 0.4577 0.7026 0.8570 
AUC PR 0.8197 0.7674 0.7813 0.6115 0.7989 0.8538 

(Data length: 1936 = 968 not fraud + 968 fraud) 

Table 5 Performance of Classifiers Trained on the Adasyn Dataset 

 KNN NaiveBayes Logreg LSVM KSVM XGB 
AUC ROC 0.7479 0.7000 0.7084 0.5130 0.7418 0.8625 
AUC PR 0.8287 0.7819 0.7891 0.5788 0.8183 0.8988 
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(Data length: 1932 = 968 not fraud + 964 fraud) 

Table 6 Performance of Easyensembleclassifier and Balancedrandomforestclassifier 

 EasyEnsembleClassifier BalancedRandomForestClassifier 
AUC ROC 0.7975 0.8302 
AUC PR 0.4639 0.4822 

 

By comparison of these different methods, it could be observed that all resampling methods have better 
performance comparing with the original dataset, among which upsampled dataset using the sklearn resample 
method has the best performance, other upsampled approaches SMOTE and ADASYN has similar performance 
and not bad. Generally, the performance of downsampling methods is not as good as upsampling ones. Between 
two kinds of special downsampling methods, BalancedRandomForest has better metrics. 

6. Experiments and Results 

We got a more complete dataset through the data cleaning step. Then, we will further process the data, deal 
with imbalance problems and train classifiers. 

6.1 Class Resampling 

The original dataset has an amount of 569877 not fraud data and 20663 number of fraud data, indicates a 
ratio of 96.5% versus 3.5%. As data length of not fraud data is too big, it would extremely computationally 
complex and time-consuming to implement upsampling approaches. Consequently, we used the most efficient 
downsampling (resampling) method. 

6.2 Data Processing for Classification Methods: 

In each iteration, we need to separate attributes with the label, (fraud or not fraud) and use PCA to reduce 
dimension. For the classification process, we used the StratifiedKfold method to split the original input dataset 
into five parts, and implement two pre-defined methods depending on different splits. Finally, average 
performance metrics of different approaches were calculated out, tab.7 illustrates the performance of all 
classifiers. 

Table 7 Performance of Different Classifiers on the Balanced Dataset 

 KNN NaiveBayes Logreg LSVM KSVM XGB 
Model accuracy mean 0.9149 0.8373 0.8785 0.6175 0.9124 0.8632 
Model AUC ROC mean 0.9149 0.8373 0.8785 0.6175 0.9124 0.8632 
Model AUC PR mean 0.9440 0.8732 0.9081 0.6957 0.9410 0.9165 

 

All models have relatively good performance, and among them, kernelized SVM classifier with 'RBF' kernel 
has the highest performance metrics values. The following table, tab.8 illustrates the confusion matrix of this 
classifier based on distinct kinds of splits. 

Table 8 Confusion Matrix of the Best Performed Ksvm Classifier 

 Split 1 Split 2 Split 3 Split 4 Split 5 
True positive 3741 3932 4005 4025 3785 
False positive 307 116 43 23 263 
False negative 2131 0 378 282 2 
True negative 1917 4048 3670 3766 4046 

6.3 Digging into Attribute Correlations 
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Fig.3 Histogram of Correlation Coefficients 

To optimize the attribute correlations, we further dig into the correlations between different classifiers. We 
calculate correlation coefficients between each attribute and the label and then plot a histogram of these 
coefficients. The following figure fig.3 illustrates this histogram: 

It could be observed that attributes who have the highest correlation with labels lie in the range of -0.8 to -0.4. 
We found all the attributes in this range and formed a high correlation attribute dataset with the dimension of 
40480 * 167. Then the same process (encoding, reducing dimension and classification) was executed. Tab. 9 
shows the result of this process: 

Table 9 Performance of Different Classifiers on the Highly-Correlated Dataset 

 KNN NaiveBayes Logreg LSVM KSVM XGB 
Model accuracy mean 0.8781 0.8269 0.8296 0.6388 0.9156 0.9573 
Model AUC ROC mean 0.8781 0.8269 0.8296 0.6388 0.9156 0.9573 
Model AUC PR mean 0.9268 0.8666 0.8774 0.7664 0.9459 0.9761 

 

By comparison, generally highly-correlated classifiers can improve classifier performance, especially for 
XGB classifiers. 

7. Conclusion 

Fraud detection is an important issue to enable credit card payments to execute properly. In this essay, we 
firstly gave a background introduction about factors affecting fraud detection and some recent research on class 
imbalance; then we described data condition and cleaning process; in the following part we gave a detailed 
analysis of the methodology used, encoding, dimensionality reduction, and classification methods; we 
particularly focus on upsampling and downsampling techniques to deal with class imbalance issue, and tested on 
our dataset to find the performance of each technique; we then work out classification results on the entire 
dataset; finally, we explored into correlations between each attribute and improved performance a little. The 
experimental results well proved that tackling the class imbalance approach has a positive effect on imbalanced 
data sets, and digging into the relationship among attributes would also be useful. 
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