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Abstract: This study addresses the prevalent issues of color bias and detail loss in low-light images, 
which significantly affect image quality. A low-light enhancement algorithm based on the combination 
of convolutional neural networks (CNN) and a dual-branch structure is proposed to address the 
problems of detail loss and color shift that existing single-stage CNN models cannot effectively handle. 
This module is trained with a contrastive regularization method on the basis of the dual-branch 
structure to ensure the consistency of detail distribution between the generated images and reference 
images. In terms of the loss function, a color loss function Lcolor is added to balance the low-light 
enhancement and color bias issues. Experimental results show that the pre-trained model achieved a 
peak signal-to-noise ratio (PSNR) of 22.133 dB and a structural similarity (SSIM) of 0.873 on the LOL 
dataset. This indicates that the proposed algorithm significantly improves the balance between image 
brightness and detail retention, and performs well in enhancing the brightness of natural low-light 
scene images. 

Keywords: CNN; Dual-Branch Structure; Contrastive Regularization; Low-Light Enhancement; 
Residual Learning 

1. Introduction 

In recent years, with the rapid development of deep learning technology, convolutional neural 
networks (CNNs) have achieved significant results in the field of image processing. Image 
enhancement is an important subfield of image processing, often serving as a preprocessing step to 
prepare for subsequent image analysis and processing tasks. The aim of image enhancement is to 
improve image brightness, adjust image contrast, recover details hidden in the dark, and increase the 
utility value of images through corresponding technical means. CNNs possess strong feature extraction 
and adaptive learning capabilities, enabling them to automatically learn complex patterns and 
relationships within images, thus providing new solutions for low-light image enhancement. Therefore, 
how to effectively enhance the quality of low-light images using CNNs to make them closer to the 
visual effects under natural lighting has become an important topic in the field of image processing. 

Image de-noising methods based on image filtering are widely used [1] and perform best when 
dealing with all-band noise, adaptive selection dependent on noise level, combined with other 
de-noising techniques, and specific types of noise (such as Gaussian noise) [2]. However, there are 
obvious limitations in dealing with complex noise and maintaining image detail. However, using 
learn-based methods, such as DnCNN, FFDNet, etc., denoising is realized by learning the mapping 
from noisy image to clean image [3-5], but there are also some challenges, especially in terms of data 
requirements, computing resources and model generalization ability. In the actual process of improving 
image quality, the enhancement of light is accompanied by the expansion of noise signal, and the 
removal of noise signal will often blur the features of dark light image. In recent years, with the rapid 
development of deep learning, the method based on convo-lutional neural network (CNN) has been 
widely used in image processing, and has also achieved unprecedented achievements in dark light 
enhancement and image denoising [6-9]. The real-time low-light enhancement algorithm (Zero-DCE) 
proposed by Guo C et al., which does not require reference data, uses neural networks to fit a 
brightness mapping curve, and then generates a brightening image based on the curve and the original 
image [9]. However, Zero-DCE can only achieve brightness enhancement and does not work on image 
deblurring. Lin L et al proposed a deep unfolding network based on Retinex (URetinex-Net), which 
decomposed low-light images into reflection layer and illumination layer, adaptive fitting implicit 
priori in a data-driven way, and realized noise suppression and detail retention of the final 
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decomposition results [10]. However, although this deep learning method can achieve the adjustment of 
the overall brightness, it lacks the suppression of degraded information such as noise. Later, Wriza W et 
al used URetinex-Net and TRBA to enhance low-light image in license plate recognition on this basis, 
and this method had a good effect on improving the environmental accuracy of night license plate 
recognition system [11]. Lin S et al. proposed a synchronous multi-scale dark light enhancement 
network (SMNet) method, which learns feature streams of different scales in a top-down to bottom-up 
manner through multiple L&G modules in series to achieve image denoising. This method has good 
effects on dark light image enhancement and noise suppression in natural scenes [12]. 

In this paper, a dual-branch network is constructed, and contrastive learning regularization is 
introduced on the basis of the dual-branch structure to enhance the model's processing of image details 
and structure. A color preservation function is subsequently added to effectively address the issues of 
color bias and detail loss. Furthermore, due to the diversity of the data space in contrastive learning, the 
process of pulling the restored results closer to normal light images and pushing them away from 
low-light images causes a shift in color. Therefore, a color loss function Lcolor is added on this basis to 
balance the enhancement of low-light images and the issue of color bias. 

2. Design of Low-Light Image Enhancement Model Based on Dual-Branch Structure 

2.1 Model Construction 

Figure 1 shows the overall framework of the Dual-Branch Structure model[13]. 
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Figure 1. Overall framework of Dual-Branch Structure Model 

The upper branch of the dual-branch model first uses downsampling methods to extract deep 
features, processes these deep features through multiple layers of residual blocks RESB(Figure 2), and 
then uses upsampling to reconstruct and restore the low-light image. The lower branch, addressing 
issues such as detail loss and color shift that are prone to occur in low-light enhancement, first uses 
smoothing convolution to smooth the image, reducing noise, blurring edges, or enhancing certain 
characteristics of the image, preparing for subsequent feature extraction. Secondly, it utilizes residual 
dense blocks RDB(Figure 3) with convolutional layers in skip connections, effectively solving the 
problem of gradient vanishing in deep neural networks, achieving the goal of preserving color and 
detail information. 
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Figure 2. RESB Residual Block 

Each RESB consists of two 3×3 convolutional layers, two instance normalization layers, a ReLU 
activation function, and a dynamic convolution layer. Skip connections are introduced to address the 
vanishing gradient problem in the training of deep networks. Dynamic convolution is also incorporated 
to adaptively adjust convolution parameters based on the input image, further enhancing the network's 
performance in low-light enhancement[14]. This new design increases the model's expressive power 
without increasing the network's depth or width. 
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Figure 3. RDB Residual Block 

As shown in Figure 3, the Residual Dense Block (RDB) is composed of three pairs of convolutional 
layers with ReLU activation functions. After dimension reduction by a 1×1 convolution kernel, the 
convolutional layers are connected through a dense structure, and then residually connected with the 
input feature map. The characteristics of the residual dense network allow the multi-scale features 
extracted by the earlier layers to be fully utilized. This design not only enhances the model's ability to 
capture details and color information but also prevents the vanishing gradient problem. Finally, a 
Content-Guided Attention (Figure 4) block is introduced, enabling the model to focus more on the 
important information in each channel of the image and ignore irrelevant information, thereby 
improving the effect of low-light enhancement. 
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Figure 4. CGA Workflow Diagram 
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Figure 4 shows the Content-Guided Attention (CGA)[15]. A coarse-to-fine processing procedure 
aimed at generating an attention map with channel-wise importance. Initially, a coarse spatial attention 
map is produced, which is then refined according to each channel of the input feature map to yield the 
final spatial attention map. By using the content of the input features to guide the generation of the 
attention map, CGA focuses more on the unique feature parts of each channel, which allows for better 
recalibration of features and learning channel-specific attention maps that focus on the differences 
between channels. 

X represents the input features, first calculate cW  and sW  separately.  

1 1 1 1(Re ( ( ))c
c x GAPW Conv LU conv X×=                       (1) 

7 7 ( ( , ))s s
s GAP GMPW Conv contact X X×=                       (2) 

C ( )k k×  represents a convolutional layer with a kernel size of K K× ,contact indicates 

channel-wise concatenation, c
GAPX ,

s
GAPX ,

s
GMPX represent the features obtained from global average 

pooling operations across spatial dimensions, global average pooling operations across channel 
dimensions, and global max pooling operations across channel dimensions, respectively. The two 1x1 
convolutions are used to reduce channel dimensions and restore channel dimensions to limit model 
complexity. 

Then combine cW and sW  to obtain the initial content-guided attention: 

ˆ
s cW W W= +                                    (3) 

Next, Ŵ is concatenated with the input features through channel shuffling, allowing it to adjust the 
channels based on the input features. The specific operation is as follows: 

               7 7
ˆ( ( , )))( (shufW fle contsigmo G ad ct Xc Wi ×=                    (4) 

Among them, 7 7 ( )Gc ×   represents a 7×7 grouped convolution. 

The CGA block assigns a unique Spatial Importance Map (SIM) to each channel, guiding the model 
to focus on more useful information encoded in the features. Generating channel-specific SIMs in a 
content-guided manner enhances the model's ability to extract features. 
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Figure 5. Structure of Contrastive Learning Diagram 



International Journal of Frontiers in Engineering Technology 
ISSN 2706-655X Vol. 7, Issue 2: 46-55, DOI: 10.25236/IJFET.2025.070207 

Published by Francis Academic Press, UK 
-50- 

Figure 5 illustrates the flowchart of the contrastive regularization technique based on the idea of 
contrastive learning[16]. As can be seen from the figure, contrastive regularization optimizes the 
model's feature representation by bringing similar samples closer and pushing dissimilar samples 
further apart.  

Furthermore, due to the diversity of the data space in contrastive learning, the process of pulling the 
restoration results closer to normal light images and pushing them away from low-light images causes a 
shift in color. Therefore, a color loss function Lcolor is added on this basis. 

2.2 Parameter Setting 

The environment and configuration parameters used for the training and testing of the experimental 
network model are shown in Table 1. 

Table 1 Experimental Environment Configuration 

Experiment Platform Windows 10 Operating System 

Processor Intel(R)Core(TM)i9-10900X 

GPU NVIDIA GeForce RTX 3090 

Memory 64GB 

Programming Language Python 3.9 

Programming Framework PyTorch 
In the experiment, the learning rate is 0.0001, and the decay rate is 0.1. The Adam optimizer is used 

for optimization, with a batch size of 4. 

3. Model Training 

3.1 Data Set Preparation 

Considering that low-light image enhancement requires a large number of paired low-light and clear 
images as training data, but it is difficult to obtain real reference images to form a training set, the 
training dataset used in this experiment includes the LOL dataset, which is a mainstream real-world 
low-light image dataset, the GladNet dataset from the GladNet method, and the LSRW dataset. 

The LOL dataset consists of 500 pairs of low-light and normal-light images, including 485 training 
pairs and 15 testing pairs. As shown in Figure 6, the LOL dataset includes images under various 
lighting conditions in different scenes. 

    
(a)                                         (b) 

Figure 6. LoL dataset examples (a) Low-light image (b) Normal-light image 

3.2 Loss Function 

In order to better restore the original colors of low-light images, this paper uses the LC color loss 
function as the loss function for this experiment. 

min ( , ) ( ( ), ( ), ( ( , )))L J I G I G J G Iφ ω β ρ φ ω= − + ⋅                  (5) 

Derivation: 



International Journal of Frontiers in Engineering Technology 
ISSN 2706-655X Vol. 7, Issue 2: 46-55, DOI: 10.25236/IJFET.2025.070207 

Published by Francis Academic Press, UK 
-51- 

11
1

( ( ), ( ( , )))min ( , )
( ( ), ( ( , )))

n
i i

i i i

D G J G IL J I
D G I G I

φ ωφ ω β ω
φ ω=

= − + ⋅∑                (6) 

In which, Gi, i=1,2...nrepresents the i-th hidden feature extracted from a fixed pre-trained model. 
D(x,y) is the L1 distance between x and y. ω1 is a weighting coefficient. Due to the nature of 
contrastive learning, it tends to cause color shifts when pulling the restored results closer to 
normal-light images and pushing them away from low-light images, as a result of the diversity in the 
data space. Therefore, a color preservation function is added on this basis, as shown in Equation (7): 

2

( , )
( ) , {( , ), ( , ), ( , )}P q

color
p q

L J J R G R B G B
ε

ε
∀ ∈

= − =∑                (7) 

Finally, the total color loss function, as shown in Equation (8): 

C colorL L L= +
                 

               (8) 

4. Experimental Results and Analysis 

The proposed algorithm was tested in three datasets respectively, and the test results were compared 
with other algorithms. The comparison algorithms include: ZERO (Z-Score Normalization)[9], 
URetinex(a deep expansion network based on Retinex theory), ILL (Illumination-Adaptive 
Transformer network), SMNet (Synchronous Multi-Scale Dark Light Enhancement Network)[12]. 

Figure 7 shows the recovery results of different algorithms on the LOL dataset. 

       

       

       

       

       
(a)Low (b)ZERO (c)URetinex (d)ILL (e)SMNet (f)Ours (g)High 

Figure 7. Restoration results of the same algorithm on the LOL dataset 

Through comparison, it was found that the ZERO algorithm does not significantly enhance the 
brightness of the restored images, has an overall cool color tone, and loses some image details, as seen 
in the cabinet contents of Figure (b)(1). This may be due to the curves in the ZERO method not being 
monotonically increasing, leading to areas that were originally brighter becoming darker. From Figure 
(c), it can be observed that the URetinex method improves image brightness and contrast, but it also 
introduces some artifacts or unnatural visual effects. Figures (c)(2) and (c)(3) show color distortion due 
to over-enhancement, and the handling of details appears unnatural. It can be seen from the figures that 
the ILL method fails to adequately enhance image contrast, and the processed images have a generally 
low color temperature and contain artifacts, such as the ground area in Figure (d)(5), with overall low 
saturation. The SMNet method can effectively increase image brightness, but the color contrast of the 
processed images is generally low, which can easily lead to color distortion. Figure (e)(1) has a 
yellowish tone, further illustrating the color distortion issue caused by SMNet. Upon observation and 
comparison, the proposed algorithm demonstrates better image enhancement effects in the figures, 
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effectively increasing image brightness and contrast while maintaining clarity and naturalness of image 
details. Compared to the performance of other methods on the LOL dataset, the proposed algorithm 
may be more effective in processing low-light images and more in line with human visual perception. 

Figure 8 shows the restoration results of different algorithms on the GladNet-Dataset . 

       

       

       

       

       

       
(a)Low (b)ZERO (c)URetinex (d)ILL (e)SMNet (f)Ours (g)High 

Figure 8. Restoration results of different algorithms on the GladNet-Dataset 

The test set selects images under outdoor natural lighting conditions to verify the model's 
generalization ability. The analysis found that the ZERO method results in an overall cool color tone 
and unclear shadows, with issues of color bias and contrast degradation, as shown in the mountain area 
of Figure (b)(2), where the color bias is evident. The URetinex algorithm enhances brightness but does 
not fully recover image details and depth, leading to inadequate detail restoration in the image, as seen 
in the mountains and forests in Figures (c)(2) and (c)(3), which appear relatively flat and lack a sense 
of three-dimensionality. The ILL algorithm performs poorly with extremely low-light images, with 
uneven lighting and some areas underexposed. From the mountains in Figure (d)(2), it can be seen that 
the brightness recovery of the backlit mountain is insufficient, and the low-light enhancement effect is 
not ideal. The SMNet algorithm struggles to balance the brightness and contrast of different areas in 
complex scenes, leading to overexposure or underexposure in certain areas, as shown in Figure (e)(2), 
where the sky area is overexposed, and Figures (e)(4) and (e)(5) also have overexposure issues. Upon 
observation and comparison, the images processed by the proposed algorithm have even brightness 
distribution, reasonable image colors, and well-preserved image details, being closest to the target 
images overall. This also indicates that the proposed algorithm performs well on images under outdoor 
natural lighting conditions, further demonstrating the algorithm's generalization ability. 

Figure 9 shows the restoration results of different algorithms on the LSRW dataset. 

By comparing the images, it was found that the ZERO-DCE algorithm improved over the original 
low-light images by retaining some details, but the overall brightness enhancement was insufficient, 
and the details and colors were not rich enough, as seen in the photo wall section of Figure (b)(1). The 
URetinex algorithm performed well in detail preservation and noise suppression, but the results often 
had low saturation, as shown by the pink keyboard in Figure (c)(4), with an overall cool color tone and 
unclear shadow distinction. The ILL algorithm did not perform well with extremely low-light images, 
and the overall low-light enhancement effect was not significant, as evidenced by the keyboard in 
Figure (d)(4), which had lost details. The SMNet algorithm, through spatial and multi-scale processing, 
showed better performance in detail and texture, but introduced some noise and artifacts during image 
processing, such as the artifacts near the bottle in Figure (e)(6), and the overall image tone was dark. 
Upon observation and comparison, the images processed by the proposed algorithm demonstrated 
better results in terms of brightness enhancement, contrast improvement, and detail preservation, being 
closest to the target images overall, further proving the model's generalization capability. 



International Journal of Frontiers in Engineering Technology 
ISSN 2706-655X Vol. 7, Issue 2: 46-55, DOI: 10.25236/IJFET.2025.070207 

Published by Francis Academic Press, UK 
-53- 

       

       

       

       

       

       
(a)Low (b)ZERO (c)URetinex (d)ILL (e)SMNet (f)Ours (g)High 

Figure 9. Comparison of restoration results of 5 different algorithms on LSRWhuawei dataset 

In addition, peak signal-to-noise ratio (PSNR) and structural similarity index (SSIM) were used to 
quantify the accuracy of each type for image quality assessment. The higher the PSNR, the better the 
image quality and the less distortion. The closer the SSIM value is to 1, the better the image quality is 
and the closer it is to the original image. Universal Image Quality Index (UQI) is an image quality 
assessment method based on information theory, which takes into account the local mean, variance and 
correlation of images. The closer the UQI value is to 1, the better the image quality. Learning 
Perceptual Image Block Similarity (LPIPS) is an image quality evaluation index based on deep learning. 
The lower the value, the better the image quality and the closer to the original image. Among them, 
UQI and LPIPS are more focused on the overall quality of the image and human visual perception. 
Specific results are shown in Table 2, Table 3 and Table 4. 

Table 2. Comparison of objective indicators of different algorithms on the LOL dataset 

Model PSNR SSIM UQI LPIPS 

Guo-ZERO 14.327 0.736 0.694 0.244 

Wu- URetinex 18.423 0.794 0.856 0.301 

Cui-ILL 21.382 0.808 0.827 0.180 

Lin-SMNet 20.510 0.834 0.876 0.149 

Ours 22.133 0.873 0.907 0.133 
 

Table 3. Comparison of objective indicators of different algorithms on the GladNet-Dataset  

Model PSNR SSIM UQI LPIPS 

Guo-ZERO 18.398 0.746 0.736 0.136 

Wu- URetinex 19.136 0.755 0.802 0.143 

Cui-ILL 18.143 0.784 0.829 0.153 

Lin-SMNet 17.138 0.722 0.817 0.141 

Ours 20.427 0.807 0.846 0.124 
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Table 4. Comparison of objective indicators of different algorithms on the LSRW dataset 

Model PSNR SSIM UQI LPIPS 

Guo-ZERO 16.404 0.776 0.718 0.257 

Wu- URetinex 20.144 0.805 0.804 0.255 

Cui-ILL 19.192 0.822 0.836 0.228 

Lin-SMNet 18.242 0.752 0.794 0.231 

Ours 21.242 0.826 0.868 0.225 
As shown in Table 2, the PSNR value of the LOL test set processed by the proposed algorithm in 

this paper is slightly lower than the ILL algorithm proposed by Cui et al., and is superior to other 
mainstream comparison algorithms in the table. This may be due to the extremely low lighting in the 
low-light images of the LOL dataset, where the performance of the proposed algorithm is not as good 
as the ILL algorithm. UQI and LPIPS focus more on the overall image quality and human visual 
perception. The proposed algorithm achieves an SSIM value and UQI value close to 1, while the LPIPS 
value is also relatively low. This indicates that compared to the other four algorithms, the images 
processed by the proposed algorithm are more natural and in line with human visual characteristics. 

5. Conclusions 

Compared with the other four methods, the model proposed in this paper achieves excellent results 
with PSNR and SSIM values reaching 22.133dB and 0.873 on the LOL dataset simultaneously. 
Additionally, the PSNR on the LSWR low-light image restoration reached 21.242dB. The results 
demonstrate that the model proposed in this paper not only enhances the brightness and contrast of 
images but also preserves their natural colors and details, thus achieving better performance in 
low-light image enhancement tasks. However, the performance of the proposed algorithm on extremely 
low-light datasets still needs improvement. To address this issue, I will continuously adjust and 
optimize to achieve the best results. 
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