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Abstract: To address the challenges of data scarcity and inadequate lesion representation in medical 

image classification, this paper proposes a novel few-shot learning approach integrating spatial and 

frequency domains, termed Multi-Resolution Wavelet Enhanced Vision Transformer (MRW-ViT). The 

method utilizes two-dimensional discrete wavelet transform (2D-DWT) to decompose medical images, 

extracting high-frequency features to enhance lesion detail capture. A self-attention mechanism is 

employed to dynamically integrate global context with local pathological information, improving 

feature representation completeness. A cross-domain feature fusion module is designed to combine 

multi-scale features from both spatial and frequency domains, strengthening pathological 

representation. Furthermore, Earth Mover’s Distance (EMD) is introduced to measure subtle inter-

class differences, optimizing classification decisions. Experiments were conducted on the MedMNIST 

dataset, encompassing six classification tasks including PathMNIST, DermaMNIST, and OCTMNIST. 

Results demonstrate that MRW-ViT achieves an area under the curve (AUC) of 0.990 in colon 

pathology classification and an AUC of 0.995 in pneumonia detection, outperforming state-of-the-art 

methods. In breast ultrasound diagnosis with a limited sample size of 780 images, the AUC reaches 

0.948. Ablation studies confirm the effectiveness of each module. 
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1. Introduction 

Intelligent analysis of medical imaging is a core technology in advancing precision medicine[1], 

holding significant value in early disease screening and clinical staging diagnosis. However, existing 

deep learning-based diagnostic systems face two primary challenges: First, the heterogeneity and scarcity 

of medical data present a prominent contradiction, with annotation costs varying significantly across 

imaging modalities (e.g. X-ray, ultrasound, pathology slides). For instance, in the MedMNIST dataset[2], 

the breast ultrasound dataset (BreastMNIST) contains only 780 samples, while the kidney pathology 

dataset (TissueMNIST) comprises 236,000 samples. This imbalanced data distribution leads to a sharp 

decline in the generalization ability of conventional models for rare disease diagnosis. Few-shot learning, 

by constructing transferable feature spaces through meta-learning frameworks, demonstrates significant 

advantages in scenarios with scarce annotated data[3][4]. Second, lesion characterization exhibits cross-

modal and multi-scale complexity. For example, colon pathology images (PathMNIST) require 

identification of glandular structure distortions, while chest CT scans (NoduleMNIST3D) demand 

detection of spatial morphological features of lung nodules. Single feature extraction strategies struggle 

to balance global anatomical information with local detail differences, whereas attention-based few-shot 

learning methods enable precise localization of cross-scale pathological markers through dynamic feature 

calibration[5][6]. Therefore, developing efficient and robust medical image classification techniques is not 

only a critical pathway to addressing data heterogeneity and pathological complexity but also a 

cornerstone for achieving early precise intervention and optimizing clinical decision-making processes, 

with irreplaceable strategic value for improving patient quality of life and healthcare resource allocation 

efficiency. 

In recent years, numerous innovative deep learning-based methods have emerged in the field of 

medical image classification, yet existing studies exhibit notable limitations. Many algorithms focus on 

specific classification tasks for single diseases. For example, Pan et al.[7] developed a three-class model 

for predicting lung adenocarcinoma invasiveness, achieving outstanding performance in classifying pure 
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ground-glass nodules. The lightweight CSDNet proposed by Lahari’s team[8] achieved high accuracy in 

cataract detection, while CNN architectures proposed by Rasheed[9] and Rafiq[10] attained accuracies 

exceeding 98% and 90% in brain tumor and breast cancer classification, respectively. Although these 

studies achieved breakthroughs in specific disease classification tasks, their model architectures are often 

optimized for the morphological features of target lesions, lacking cross-disease generalization and 

struggling to address the ubiquitous challenges of lesion heterogeneity and multi-scale features in 

medical imaging data. 

With the advancement of deep learning, researchers have begun exploring broadly adaptable medical 

image classification frameworks. An et al.[11] proposed MCNN, which dynamically captures lesion 

boundary features through a visual attention mechanism and integrates multi-scale feature fusion 

strategies, achieving over 99% accuracy in classifying lung nodules, breast masses, and other diseases, 

validating the effectiveness of attention mechanisms in cross-disease applications. Yang et al.[12] 

introduced DiffMIC, the first model to incorporate diffusion models into medical classification. By 

employing a dual-granularity conditional guidance strategy that integrates global anatomical structures 

with local pathological features and introducing maximum mean discrepancy regularization to enhance 

cross-modal robustness, DiffMIC achieved significant performance improvements in diverse tasks such 

as placental maturity grading and skin lesion classification. Manzari et al.[13] developed MedViT, which 

enhances the capture of subtle pathological features through a channel-spatial dual attention module and 

leverages contrastive pre-training to improve generalization in few-shot scenarios, achieving strong 

classification accuracy across cross-modal datasets, including thyroid nodule classification and 

histopathological analysis. 

However, existing general frameworks still suffer from three common deficiencies: First, reliance on 

simplistic concatenation or stacking of global and local features leads to misalignment between 

anatomical structural priors and lesion-specific abnormal features. In cross-modal data, such as X-rays 

and pathology slides, this approach often introduces feature redundancy, weakening the model’s ability 

to discern subtle pathological patterns. Traditional feature fusion strategies lack dynamic calibration 

mechanisms for spatial semantic correlations, making it difficult to precisely localize local abnormal 

regions while preserving global anatomical constraints. Second, conventional feature extraction 

frameworks overly focus on spatial domain information, failing to effectively integrate frequency domain 

features, which limits their ability to resolve edge ambiguity and micro-texture heterogeneity. Existing 

methods often employ single-scale convolutional kernels or fixed receptive field designs, unable to 

adaptively capture multi-scale frequency domain responses of lesions across modalities. Third, the use 

of fixed distance metrics, such as cosine similarity[14][15], is highly susceptible to data perturbations when 

data distributions are heavily skewed, leading to blurred decision boundaries and significantly reducing 

model robustness in rare disease diagnosis. Particularly in few-shot scenarios, traditional metric learning 

struggles to balance intra-class compactness and inter-class separability, exacerbating the risk of 

overfitting to noisy features. 

To address these challenges, this paper proposes a novel network named Multi-Resolution Wavelet 

Enhanced Vision Transformer (MRW-ViT), achieving cross-disease generalization through a spatial-

frequency domain decoupling architecture. The core innovations include:  

(1) A frequency domain feature fusion method based on two-dimensional discrete wavelet transform 

(2D-DWT), utilizing Haar wavelet multi-directional high-frequency decomposition to enhance cross-

disease micro-texture and edge feature resolution, addressing the issue of insufficient frequency domain 

utilization in traditional models; 

(2) A global-local differential fusion strategy based on self-attention dynamic calibration, achieving 

efficient collaborative modeling of anatomical structures and lesion abnormalities through spatial 

alignment and redundancy elimination; 

(3) The introduction of Earth Mover’s Distance (EMD) metric learning, establishing a fine-grained 

classification space based on optimal transport theory, enhancing classification robustness in few-shot 

and class-imbalanced scenarios. 

2. The proposed method 

The proposed MRW-ViT algorithm is built upon the Vision Transformer (ViT) as the backbone 

network, leveraging wavelet transform to decompose the frequency domain features of medical images, 

utilizing a spatial-frequency fusion module to enhance lesion representation, designing a global-local 
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feature interaction mechanism, and incorporating EMD to construct an optimal transport metric, thereby 

improving the robustness of cross-disease few-shot classification. The network architecture of MRW-

ViT is illustrated in Figure 1. Initially, two-dimensional discrete wavelet transform is applied to 

decompose the input support set and query set images into multiple frequency bands, extracting high-

frequency edge and micro-texture features. The original images and the frequency domain images 

obtained from wavelet transform are concatenated at the channel level to form a spatial-frequency joint 

embedding, which is then fed into the ViT for feature extraction, as shown in the wavelet frequency 

feature extraction module in Figure 1. Within the ViT, features extracted by the first 11 layers of the 

Transformer encoder are input into a cross-domain dynamic weighted fusion module to achieve adaptive 

integration of spatial and frequency features, as depicted in the multi-scale feature interaction and cross-

domain fusion section of Figure 1. The final layer of the ViT outputs the global semantic feature [CLS] 

token (Global features) and local detail features from image patches (Local features). Key local features 

are dynamically selected using self-attention weights, and differential computation is employed to 

enhance the discriminability of pathological features. Finally, EMD is introduced to replace the 

traditional Softmax classification layer, transforming the classification task into a feature distribution 

matching problem by minimizing the transport cost between the feature distributions of the support set 

and query samples to achieve class prediction. 

Compared to existing medical image classification models such as MCNN and DiffMIC, MRW-ViT 

enhances sensitivity to edge-blurred lesions and micro-texture heterogeneity through wavelet-based 

multi-resolution frequency domain analysis, suppresses cross-modal data redundancy via a differential 

correction mechanism constrained by anatomical priors, and optimizes few-shot classification robustness 

using the EMD metric. Experimental results demonstrate that this method significantly improves 

accuracy and generalization performance across multi-disease classification tasks in the MedMNIST 

dataset, while supporting end-to-end training and being extensible to multi-modal medical image analysis. 
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Figure 1: Proposed MRW-ViT Algorithm Overview. 

2.1 Few-Shot Learning for Medical Image Classification 

In the classification tasks based on the MedMNIST multi-disease image dataset, this paper proposes 

a few-shot learning method that integrates spatial-frequency domain features to achieve efficient 

classification of diverse medical images through a meta-learning framework. The core of this method 

lies in deeply integrating the few-shot learning paradigm with algorithm design to address the challenge 

of extremely scarce data in real clinical scenarios, constructing a classification model capable of rapid 

generalization from limited samples. In the specific workflow, the training set is defined as 

  ,base i i i baseD x y y C ∣ , where ix represents the input image (a multi-band fused image 

processed by 2D-DWT), iy is its corresponding disease category, and novelC  is the set of base class 

labels, encompassing all disease categories visible during the training phase. The model is first trained 

on the base class dataset, dynamically integrating spatial texture and frequency-domain microstructural 
features through the proposed cross-domain feature fusion module to enhance the representation of lesion 

heterogeneity. During the testing phase, a new class set novelC  is introduced (satisfying 

novel baseC C  ), and the model predicts the query set novelQ  based on the support set 

  novel novel,i i iS x y y C ∣ , where the support set contains N unseen categories, each providing K 

samples. The model classifies the query set by computing the similarity between its features and those 
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of the support set for each category, assigning the query set to the nearest category. 

To enhance the adaptability of the classification model in cross-category scenarios, this paper 

introduces an episodic training mechanism. In each training cycle, several different disease categories 

are dynamically sampled from baseC  to construct simulated support set and query set pairs. Through 

iterative training, the model learns to capture critical discriminative features from limited samples, such 

as textural differences in ground-glass opacities in lung CT or pigment network distribution patterns in 

dermoscopic images. This training paradigm effectively mitigates the overfitting issues of traditional 

deep learning methods in the classification of rare diseases or novel lesions.
 

2.2 Wavelet Frequency Domain Feature Extraction Module 

This study employs the Haar wavelet basis function[16] to implement two-dimensional discrete 

wavelet transform. Due to its orthogonal compact support and computational efficiency, the Haar wavelet 

can accurately capture edge discontinuities and micro-texture distortion features through horizontal, 

vertical, and diagonal high-frequency sub-bands while preserving anatomical structures. Compared to 

other wavelets such as Daubechies[17], the Haar wavelet significantly reduces memory usage, and its 

binary nature avoids overfitting to specific modalities. Through low-pass filtering( low ) and high-pass 

filtering( high ) operations along row and column directions followed by downsampling, the original 

image is decomposed into four quarter-scale sub-bands. Taking one of the input images as an example, 

the wavelet transform process is illustrated in Figure 2. 
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Figure 2: Wavelet-frequency domain feature module. 

The LL sub-band (low-frequency information) captures the overall contour and structure of the image. 

The computational formula is as follows: 

       

,

low low

, 1

( ) ( ), ( ), ) (

M N

m n

LL i j f m n i m j n 


             (1) 

Where M and N represent the row and column dimensions of the input image, respectively, and 

( , )f m n denotes the original image. The indices i and j represent the spatial coordinates of the sub-band 

images after wavelet decomposition, with their ranges determined by the input image dimensions and a 

downsampling factor. ),(LL i j representing the smoothed low-frequency component, low  is 

obtained using a low-pass filter. This sub-band applies low-pass filtering and downsampling to both the 

rows and columns of the image, filtering out high-frequency noise and details while preserving the global 

structural information. It effectively highlights the overall contours of different diseases in medical 

images, facilitating the identification of large-scale features, such as lung contours in chest CT or tissue 

distribution in pathology slides. 

The HL sub-band (horizontal high-frequency information) is obtained through a combination of low-
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pass filtering in the row direction and high-pass filtering in the column direction, emphasizing edges and 

details in the horizontal direction. This sub-band is suitable for detecting horizontal boundaries of lesions 

or horizontal layering of tissues. The computational formula is as follows: 

       

,

low high

, 1

( ) ( ), ( , ) ) (

M N

m n

HL i j f m n i m j n 


           (2) 

Where high  denotes the high-pass filter, extracting high-frequency changes in the horizontal 

direction. The HL sub-band focuses on capturing edges and texture details in the horizontal direction, 

enhancing the representation of subtle features in this orientation. For example, in breast ultrasound 

images, the HL sub-band aids in detecting the horizontal boundaries of tumors; in colon pathology 

images,it highlights the horizontal layering features of glandular structures. 

The LH sub-band (vertical high-frequency information) is obtained through high-pass filtering in the 

row direction and low-pass filtering in the column direction, capturing edges and morphological contours 

in the vertical direction. This sub-band is suitable for analyzing vascular orientations or vertical tissue 

hierarchies. The computational formula is as follows: 

     

,

high low

, 1

( ) ( ) ( ), ( , )

M N

m n

LH i j f m n i m j n 


           (3) 

This sub-band focuses on morphological changes in the vertical direction, enhancing the 

discriminability of vertical projections of lung nodules in chest CT and selectively amplifying topological 

features of longitudinal vascular distributions. 

The HH sub-band (diagonal high-frequency information) is obtained by applying high-pass filters to 

both rows and columns, extracting texture and details in the diagonal direction. It is capable of identifying 

complex edge changes or cross-texture features of lesions. The computational formula is as follows: 

         

,

high high

, 1

, ( , )( ) ( ) ( )

M N

m n

HH i j f m n i m j n 


              (4) 

By emphasizing details in the diagonal direction, this sub-band provides a unique perspective, 

enhancing the model’s perception of complex local features and offering specific detection capabilities 

for cross-texture patterns of microcalcifications. 

To evaluate the contribution of each sub-band to classification performance, ablation studies in this 

research reveal that retaining only the high-frequency components (HL, LH, and HH) while excluding 

the low-frequency sub-band results in a greater improvement in average classification accuracy on the 

MedMNIST dataset. This phenomenon is attributed to the fact that low-frequency information primarily 

encodes the overall contour of the image, whereas high-frequency sub-bands effectively supplement the 

edge sharpness and texture details absent in the original image. MedMNIST classification tasks rely more 

heavily on the discrimination of local pathological markers. Consequently, MRW-ViT adopts a high-

frequency feature synthesis strategy, spatially stacking the horizontal, vertical, and diagonal high-

frequency sub-bands to construct a composite high-frequency feature map, as shown in Figure 2. The 

process is as follows: 

     
     

 

high-frequency horizontal vertical

diagonal

, , ,

,

H i j H i j H i j

H i j

 


       (5) 

Where horizontalH , verticalH  and diagonalH  correspond to the HL, LH, and HH sub-bands, 

respectively. To meet the input requirements of the ViT, the high-frequency feature map is resized to 

224×224 pixels via interpolation and concatenated with the original image 1X  along the channel 

dimension to form the final input: 

        
224 224 2

inputX           (6) 

This input combines the global structural information of the original image with the local details of 
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the high-frequency features, providing a rich feature representation for multi-disease classification. 

2.3 ModuleMulti-Scale Feature Interaction and Cross-Domain Fusion 

During the feature extraction phase, MRW-ViT employs dynamic weighted fusion of the frequency 

domain features extracted in Section 2.2 with the spatial domain features of the original image. Through 

self-attention and cross-domain fusion, it achieves dynamic calibration of global and local features, as 

illustrated in the multi-scale feature interaction and cross-domain fusion section of Figure 1. The specific 

workflow is shown in Figure 3. 

2.3.1 Dynamic Weighted Spatial-Frequency Feature Fusion 

To further enhance the feature representation capability, MRW-ViT introduces a cross-domain feature 

fusion module into the ViT architecture. In the feature extraction stage, the input dual-channel images 

from the spatial and frequency domains are divided into patches and linearly projected, then passed 

through the first 11 layers of the Transformer encoder to extract feature information. Before passing to 

the 12th layer encoder, the spatial features( sdf ) and frequency features( fdf ) are fused through a 

weighted sum using learnable weights, dynamically balancing the contributions of both types of features 

to obtain the fused features, which are then passed to the final encoder layer for processing. The formula 

for the weighted fusion using learnable weights is as follows: 

        fused 1 sd 2 fdw w   f f f          (7) 

Where the weights 1 2, [0,1]w w   are processed by an activation function and adaptively 

optimized via the backpropagation algorithm, with the numerical constraint that their sum is 1. The fused 

features achieve collaborative modeling of multi-resolution pathological features through cross-domain 

fusion, effectively capturing the shape, size, and boundary details of diseases in the image. The fused 

features from the spatial and frequency domains are deeply integrated into the final global and local 

features through the 12th encoder layer, achieving dynamic association and calibration of semantics 

across domains via the self-attention mechanism. 

2.3.2 Global-Local Feature Generation and Interaction Mechanism 

This section introduces the process by which the ViT generates global and local features through 

hierarchical encoding and their interaction, as illustrated in the global-local feature interaction part of 

Figure 1. The input image inputX  is divided into non-overlapping patches of P P , each of which is 

mapped to a d-dimensional feature space through linear embedding and augmented with position 

encoding to generate the initial sequence: 

       0 1 2 posCLS
, , ,[ ( ,) ( ) ( )]  NZ z E x E x E x E        (8) 

Where 0
Z  is the initial input sequence,  CLS

z  is the classification token, ( )iE x  is the patch 

embedding representation of the i-th image patch, and posE  is the position encoding. The input 

sequence 0
Z  is processed through multiple layers of the ViT encoder, each consisting of layer 

normalization (LN), multi-head attention (MHA), and a multilayer perceptron (MLP). The [CLS] token 

is then used to output the global feature, while the image patch-level outputs serve as local features: 

           
(L

global

)

CLS
f z         (9) 

         
( ) ( ) (L L L

local 1 2

),[ ], , N f E E E                     (10) 

Where L denotes the number of encoder layers, and 
)L(

iE  is the embedding representation of the i-

th image patch output from the L-th (final) layer of the ViT encoder. Through the self-attention 

mechanism, the [CLS] token interacts with all image patches to aggregate global context, obtaining the 

global feature globalf , which represents the semantics of the entire image. The local features localf  

consist of the final embeddings of all image patches 
)L(

iE , preserving the local details and spatial 

information of the image. 
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In medical image analysis, there is semantic coupling between global features, such as the overall 

shape of an organ, and local features, such as the microstructure of lesions. Directly concatenating global 

and local features may lead to feature redundancy, reducing the model's sensitivity to subtle pathological 

changes. This paper proposes an attention-guided redundancy suppression strategy. By obtaining the self-

attention matrix A from the last encoder layer, the attention weights of the [CLS] token on each image 

patch are extracted. These weights are then used to generate interactive local features that focus on 

discriminative regions strongly related to pathology, as follows: 

       int local globalSoftmax( )  f f A f       (11) 

This mechanism uses the attention weights )Softm x(a A  obtained from the encoder's multi-head 

attention to quantify the redundant influence of global features on local features. By employing 

directional subtraction, it suppresses anatomical commonalities such as organ textures, thereby 

enhancing pathological markers like lesion edges and calcifications. 
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Figure 3: Multi Scale Feature Interaction and Cross Domain Fusion Module. 

2.4 Fine-Grained Classification Module Based on EMD 

Due to the significant intra-class variations and high inter-class similarities in medical image 

classification, coupled with the typically limited availability of labeled data, this paper proposes a fine-

grained classification framework based on EMD. This framework leverages optimal transport theory to 

match the feature distributions of the support set and query set, focusing on class-relevant feature 

information. By comparing the regional features of images in the support set and query set, the most 

relevant parts are automatically matched and weighted to compute the final similarity score 

simi( , )s qx x . 

Specifically, the EMD computation involves two key inputs: the cost matrix and weights. During the 

classification prediction phase, the network performs classification based on the similarity between the 

features of the support set and query set, using the EMD metric to calculate the distance between feature 

distributions[18][19], as illustrated in Figure 4. Given the feature set 
1{ }M

k kP p  of the support set 

image sx  and the feature set 
1{ }M

l lQ q  of the query set image qx , where M is the number of local 

features per image, kp  denotes the k-th local feature vector of the support set, and lq  denotes the l-

th local feature vector of the query set. The EMD computation is simplified as: 

             
1 1

)EM ,(D min

M M

kl kl

k l

c f

 

 QP                      (12) 

           1k l k lc S           (13) 

Where the cost matrix [ ]klcC =  represents the dissimilarity between features kp  and lq ; klf  

is the matching flow from kp  to lq ; and klS  is the cosine similarity between kp  and lq . The 
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cost matrix with dimensions M M , is generated through pairwise comparisons, providing the basis 

for the transport cost in EMD. 
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Figure 4: EMD Metric Module. 

In this method, weights { }s skw  and { }q qlw  are introduced to represent the importance 

of local features in the support set and query set, respectively, generated by an attention mechanism, 

where each element corresponds to the weight of features kp  and lq . The weights undergo nonlinear 

transformation and normalization. Based on the cost matrix C , weights sw  and qw , EMD solves for 

the flow matrix [ ]klfF  using an optimal transport algorithm. This matrix reflects the optimal 

matching relationship between the features of the support set and query set. The local similarity score is 

computed as: 

       

1

a

1

l o c ls i m i (, )

M M

kl kl

k l

S f

 

 qs xx        (14) 

localsimi  quantifies the semantic consistency of local feature distributions through weighted 

summation, leveraging optimal transport to focus on key pathological regions. 

The proposed method combines the local similarity from EMD with global feature similarity for 

classification prediction. The global feature similarity score is calculated as: 

             
global global

global s qsimi cos （ ， ）f f                         (15) 

Where 
global

sf  is the global feature of the support set image, 
global

qf  is the global feature of the 

query set image, with their cosine similarity computed. The final similarity score, integrating local and 

global information, is computed for each support set sample 
i

sx  and query set sample 
j

qx : 

             

1

j

q

1

si ( ),mi

M M

kl kl

k l

i

s S f

 

 x x                          (16) 

Subsequently, the differences across all support set samples for each class are normalized using the 

softmax function to obtain the probability that the query image belongs to each class: 
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                 (17) 

Where ( | )i qP y c x  denotes the probability that the query image belongs to class ic ; K is the 

number of support set samples per class, and N is the total number of classes; , ,s i jx  represents the j-th 

support set sample of class ic . The predicted class is determined by maximizing the probability: 

        ˆ a r g m a x ( | )
i

i
c

qy P y c x          (18) 

Where arg max
ic

 represents the category index with the highest probability, and ŷ  is the final 

predicted category. 

The network is optimized by minimizing the negative log-likelihood loss function: 
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loss ( ) log( ( ) )

N N

q i q i

q i
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Where ( )q iI y c  is an indicator function that equals 1 if the true label of the query image qy  

is class ic , and 0 otherwise. This loss function drives the model to enhance the semantic alignment of 

pathological features within the same class while suppressing cross-class interference. By combining 

EMD-based local structure matching with global feature fusion, this method improves classification 

accuracy in few-shot fine-grained classification while preserving multi-scale pathological information. 

3. Experimental results and analysis 

3.1 Dataset and experimental setup 

This study utilizes the publicly available MedMNIST dataset, which comprises 12 two-dimensional 

subsets encompassing various imaging modalities, including X-ray, optical coherence tomography 

(OCT), ultrasound, CT scans, and electron microscopy. Systematic experiments were conducted on six 

subsets of MedMNIST-2D, as shown in Figure 5, covering diverse medical imaging modalities such as 

pathological slides (PathMNIST), dermoscopic images (DermaMNIST), optical coherence tomography 

(OCTMNIST), pneumonia X-ray (PneumoniamnIST), breast ultrasound (BreastMNIST), and blood cell 

microscopy (BloodMNIST). This dataset supports various classification tasks, including binary and 

multi-class classification, with sample sizes spanning multiple orders of magnitude, ranging from 102 to 

105. The heterogeneous characteristics of the dataset establish a multidimensional benchmark for the 

systematic validation of classification models. Detailed data are presented in Table 1. 

PathMNIST is derived from colorectal cancer histopathological slides, comprising 107,180 image 

patches of 224×224 pixels, with a non-overlapping sampling strategy to ensure histological independence. 

DermaMNIST contains 10,015 RGB images of 450×600 pixels, used for the differential diagnosis of 

seven types of skin lesions. OCTMNIST integrates 109,309 retinal OCT images with an original 

resolution of 384×512 pixels, centrally cropped to preserve the macular region structure, with four 

pathological labels corresponding to the diabetic macular edema grading system. PneumoniaMNIST 

includes 5,856 pediatric chest X-rays for a binary classification task to distinguish pneumonia from 

normal cases. BreastMNIST comprises 780 breast ultrasound images for a binary classification task, 

distinguishing between benign and malignant cases. BloodMNIST is a dataset for peripheral blood cell 

classification, encompassing eight blood cell types. 
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Figure 5: Experimental dataset thumbnail images. 

Table 1: MedMNIST dataset. 

Name Data Modality Task Type Sample Size Train/Validation/Test 

PathMNIST 
Pathological 

images of colon 

Multi classification 

(9 categories) 
107,180 89996 / 10004 / 7180 

DermaMNIST Dermatoscope 
Multi classification 

(7 categories) 
10,015 7007 / 1003 / 2005 

OCTMNIST Retinal OCT 
Multi classification 

(4 categories) 
109,309 97477 / 10832 / 1000 

PneumoniaMNIST Chest X-ray Binary classification 5,856 4708 / 524 / 624 

BreastMNIST Breast ultrasound Binary classification 780 546 / 78 / 156 

BloodMNIST 
Microscopic image 

of blood cells 

Multi classification 

(8 categories) 
17,092 11959 / 1712 / 3421 

The model employs ViT as the backbone network for classification tasks. To leverage the advantages 

of transfer learning, the model is initialized with ViT weights pretrained on the ImageNet dataset [20], as 

officially released. Experiments were implemented using the PyTorch framework and trained on an 

NVIDIA 3090 Ti GPU. In terms of network architecture, ViT divides input images into fixed-size 16×16 

pixel patches and learns feature representations through a self-attention mechanism. During training, the 

Adam optimizer is used with a learning rate set to 1e-5. All models are trained for 1000 epochs, with 

validation performed every 20 epochs to save the best weights. For multi-class tasks, a 5-way 10-shot 

paradigm is adopted, where each training task randomly selects five classes from the base class set, with 

ten support samples per class for learning. The testing phase follows the same 5-way 10-shot 

configuration. For binary classification tasks, a 2-way 10-shot paradigm is used to evaluate model 

performance in few-shot learning scenarios. 

Evaluation metrics include Accuracy and Area Under the ROC Curve (AUC), assessing model 

performance from the perspectives of overall classification accuracy and threshold robustness, 

respectively. Accuracy measures the overall correct prediction rate, while AUC integrates true positive 

and false positive rates across different classification thresholds, reflecting the model’s stable 

discriminative ability. To ensure the reliability and statistical significance of the results, all test tasks are 

evaluated using 10,000 randomly generated tasks, with corresponding 95% confidence intervals 

calculated. 

3.2 Analysis of experimental results 

3.2.1 Comparison of experimental results 

To validate the effectiveness of the proposed method, experiments were conducted on six 

MedMNIST-2D subsets, systematically comparing it against 11 models, including ResNet-18[22], 

ResNet-50[21], Auto-sklearn[23], AutoKeras[24], Google AutoML[25], DARTS[26], SNAS[27], HOPNAS[28], 

MedVIT-S[13], NSGA-Net[29], and MSTF-NAS[30] (table 2). The results demonstrate that MRW-ViT 

exhibits superior performance in most tasks. Figure 6 visualizes the differences in feature attention 

regions between ResNet-50 and the proposed MRW-ViT using heatmaps. ResNet-50’s feature responses 

show a diffuse distribution, whereas MRW-ViT, through spatial-frequency domain fusion and attention 

calibration mechanisms, significantly enhances focus on diagnostically critical regions across modalities. 
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Figure 6: Comparison of ResNet-50 and MRW-ViT Heatmaps. 

MRW-ViT achieves superior average AUC and ACC across the six subsets, outperforming other 

algorithms, as shown in Table 3. In the colon pathology classification task (PathMNIST), MRW-ViT 

achieves an AUC of 0.990 but an ACC of 0.927, lower than MedViT-S. In the dermoscopic image 

classification task (DermaMNIST), MRW-ViT’s AUC and ACC significantly surpass other algorithms. 

In the retinal classification task (OCTMNIST), its ACC outperforms ResNet-50, MedViT-S, and MSTF-

NAS, highlighting its ability to capture complex pathological features. In binary classification tasks, the 

proposed method demonstrates stronger adaptability. For the pneumonia X-ray classification task 

(PneumoniaMNIST), MRW-ViT achieves an AUC of 0.995 and an ACC of 0.948, surpassing all 

baselines and achieving state-of-the-art performance. For the breast ultrasound image classification task 

(BreastMNIST), AUC and ACC reach 0.948 and 0.891, respectively, improving by 3.6% and 1.5% over 

ResNet-18 and significantly outperforming AutoKeras, underscoring its discriminative capability in low-

resolution ultrasound images. 

Table 2: Comparative Classification Performance. 

Network 
PathMNIST DermaMNIST OCTMNIST 

AUC ACC AUC ACC AUC ACC 

ResNet-18(224) 0.978 0.860 0.896 0.727 0.960 0.752 

ResNet-50(224) 0.976 0.848 0.895 0.719 0.951 0.750 

Auto-sklearn 0.500 0.186 0.906 0.734 0.883 0.595 

AutoKeras 0.979 0.864 0.921 0.756 0.956 0.736 

Google AutoML 0.982 0.811 0.925 0.766 0.965 0.732 

DARTS 0.975 0.872 0.913 0.749 0.953 0.712 

SNAS 0.969 0.850 0.906 0.737 0.949 0.708 

HOPNAS 0.987 0.912 0.899 0.759 0.948 0.761 

MedVIT-S 0.984 0.942 0.914 0.773 0.945 0.782 

NSGA-NET 0.979 0.866 0.915 0.744 0.954 0.765 

MSTF-NAS 0.990 0.910 0.923 0.773 0.952 0.780 

Ours(MRW-ViT) 0.990 0.927 0.941 0.797 0.958 0.804 

Network 
PneumoniaMNIST BreastMNIST BloodMNIST 

AUC ACC AUC ACC AUC ACC 

ResNet-18(224) 0.970 0.861 0.915 0.878 0.991 0.958 

ResNet-50(224) 0.968 0.896 0.863 0.833 0.997 0.956 

Auto-sklearn 0.947 0.865 0.848 0.808 0.984 0.878 

AutoKeras 0.970 0.918 0.833 0.801 0.996 0.961 

Google AutoML 0.993 0.941 0.932 0.865 0.996 0.966 

DARTS 0.965 0.874 0.912 0.832 0.994 0.953 

SNAS 0.974 0.871 0.894 0.811 0.996 0.946 

HOPNAS 0.971 0.852 0.907 0.853 0.996 0.958 

MedVIT-S 0.991 0.921 0.938 0.883 0.997 0.950 

NSGA-NET 0.965 0.907 0.857 0.846 0.997 0.970 

MSTF-NAS 0.963 0.912 0.930 0.872 0.998 0.976 

Ours(MRW-ViT) 0.995 0.948 0.948 0.891 0.998 0.980 
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Table 3: Average Performance Comparison. 

Network Average AUC Average ACC 

ResNet-18(224) 0.952 0.839 

ResNet-50(224) 0.942 0.834 

Auto-sklearn 0.845 0.678 

AutoKeras 0.943 0.839 

Google AutoML 0.966 0.847 

DARTS 0.952 0.833 

SNAS 0.948 0.821 

HOPNAS 0.951 0.849 

MedVIT-S 0.962 0.875 

NSGA-NET 0.945 0.850 

MSTF-NAS 0.959 0.871 

Ours(MRW-ViT) 0.972 0.891 

Note: Numbers in parentheses indicate the input image spatial resolution (pixels), e.g. ResNet-18(224) 

denotes an input size of 224×224 pixels. Boldface indicates the best performance for each task. 

MRW-ViT demonstrates overall superiority across the six medical imaging tasks, but its accuracy in 

PathMNIST is slightly lower than MedViT-S. Its spatial-frequency domain decoupling architecture, 

leveraging Haar wavelet high-frequency enhancement, improves sensitivity to early cancerous markers, 

with AUC surpassing MedViT-S, aligning with the “sensitivity-first” principle in the NCCN Colorectal 

Cancer Screening Guidelines[31]. However, low-frequency suppression weakens global feature modeling, 

limiting precision in highly differentiated lesions. MedViT-S’s dual-attention mechanism is better suited 

for pathological slide modeling. In PneumoniaMNIST and BreastMNIST tasks, MRW-ViT exhibits 

cross-modal advantages, outperforming baselines. In DermaMNIST and OCTMNIST tasks, MRW-ViT’s 

accuracy surpasses Google AutoML, though its AUC is slightly lower. Its high-frequency enhancement 

strategy effectively captures local features but is less effective in modeling low-frequency morphological 

features, whereas Google AutoML more evenly captures low-frequency features. MRW-ViT’s decision 

boundaries align well with clinical standards in class-imbalanced scenarios, achieving an excellent 

balance between sensitivity and specificity, with comprehensive performance validating its cross-modal 

advantages. 

3.2.2 Ablation experiment 

To validate the contribution of the core modules in the proposed method, systematic ablation 

experiments were conducted on the BreastMNISt dataset. As shown in Table 4, the impact of each 

component on classification performance was quantitatively analyzed by incrementally introducing the 

wavelet frequency domain features, spatial-frequency domain fusion, global-local feature interaction, 

and EMD metric modules.  

Wavelet frequency domain feature extraction and spatial-frequency domain fusion establish a 

foundation for cross-modal feature representation, enhancing discriminative power by resolving high-

frequency features. The EMD metric optimizes feature distribution alignment (improving AUC by 0.6%), 

suppressing modal noise in high-frequency subbands and forming a “representation-metric collaborative 

optimization” paradigm. The global-local interaction module guides high-frequency feature focus on 

critical regions (e.g., tumor edges in breast ultrasound) through global attention, while local 

differentiation enhances lesion specificity, significantly improving AUC by 1.7%. The staged 

optimization strategy—wavelet transform for multi-scale feature extraction, global-local interaction for 

anatomical key region selection, and EMD for inter-class difference enhancement—forms a “feature 

extraction-semantic selection-metric enhancement” pipeline. The effectiveness of multi-dimensional 

joint modeling was validated on MedMNIST. 

Table 4: Ablation results. 

Wavelet Frequency Domain 

Feature Extraction 

Global-Local 

Interaction 

Spatial-Frequency 

Domain Fusion 

EMD 

Metric 
AUC ACC 

× × × × 0.899 0.761 

√ × √ × 0.925 0.823 

× √ × × 0.908 0.789 

× × × √ 0.916 0.805 

√ × √ √ 0.931 0.844 

√ √ √ √ 0.948 0.891 
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4. Conclusions 

To address the challenges of data heterogeneity and cross-modal generalization in medical image 

classification, this study proposes a novel Multi-Resolution Wavelet-Enhanced Vision Transformer 

(MRW-ViT) framework. By leveraging two-dimensional discrete wavelet transform to extract multi-band 

high-frequency features, combined with a self-attention dynamic calibration mechanism, MRW-vit 

achieves collaborative modeling of global anatomical constraints and local lesion features. Additionally, 

an EMD metric is employed to optimize decision boundaries for few-shot classification. Experimental 

validation on the MedMNIST multi-modal dataset demonstrates that MRW-ViT significantly 

outperforms mainstream models in tasks such as pathology classification and pneumonia detection, with 

an average classification accuracy improvement of 6.13%, confirming the effectiveness of the spatial-

frequency domain decoupling architecture. 

Despite its advantages in cross-modal medical image classification, MRW-ViT has certain 

limitations:the selection of wavelet basis functions relies on prior knowledge, and the suppression of 

low-frequency information by Haar wavelets may impact performance in specific modalities, such as 

MRI soft tissue imaging; the computational complexity of the EMD metric increases significantly with 

the number of classes, limiting its real-time applicability in large-scale classification scenarios; and the 

model’s ability to model spatiotemporal features in three-dimensional medical imaging remains 

unverified. Future work will explore adaptive wavelet basis optimization strategies, integrate knowledge 

distillation to reduce EMD computational complexity, and extend the framework to multi-modal image 

joint analysis to enhance clinical deployment versatility. 
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