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Abstract: The early detection and accurate diagnosis of colorectal polyps play a crucial role in 
preventing colorectal cancer. Traditional computer-aided diagnosis methods faced the problem of 
insufficient accuracy when handling complex backgrounds, irregular shapes, and small polyps. This 
paper proposed an intelligent segmentation method for colorectal polyps based on a dual-channel 
adaptive network. The method designed a dual-channel feature enhancement module. It processed 
spatial and semantic features in parallel and enhanced the model's perception ability of polyp 
morphology. The method also constructed an adaptive feature fusion mechanism. It achieved dynamic 
integration of multi-scale features and improved the recognition accuracy of the polyp boundary. 
Additionally, a multi-level constrained learning strategy was proposed. It introduced boundary 
constraints and reliability assessment and enhanced the accuracy and reliability of the segmentation 
results. Experiments were carried out on a dataset with 612 colorectal endoscopic images. The Dice 
coefficient of the proposed method reached 0.912, which was 4.0 percentage points higher than that of 
existing methods. The detection rate of small polyps (diameter < 5mm) increased by 5.0 percentage 
points. This verifies the effectiveness of the method. This research provides a new technical solution for 
the intelligent diagnosis of colorectal polyps and has important clinical application value. 

Keywords: Colorectal Polyps; Image Segmentation; Deep Learning; Feature Fusion; Uncertainty 
Evaluation 

1. Introduction 

With the widespread adoption of endoscopic examination, the detection rate of colorectal polyps has 
significantly increased. However, manual diagnosis remains inefficient and subjective. Studies have 
shown that an endoscopist’s experience and fatigue directly affect polyp detection rates, and even 
experienced experts can miss lesions. Recently, deep learning has made significant breakthroughs in 
medical image analysis, offering new technical pathways for intelligent polyp diagnosis[1~3]. Current 
methods based on deep convolutional neural networks have shown good performance in polyp detection 
and segmentation. Nevertheless, the unique challenges of colorectal endoscopic images such as uneven 
illumination, complex tissue morphology, and large variation in polyp size mean that existing methods 
still face many difficulties in practice. 

For example, Zhang et al. proposed a multi-scale feature fusion network that integrates features from 
different levels to improve segmentation accuracy, but it tends to over-segment in complex 
backgrounds[4]. Wang et al. introduced an attention mechanism to help the model focus on key regions[5]; 
however, the computation of attention weights adds significant computational overhead. Li et al. adopted 
a Transformer structure to capture global dependencies, achieving good results for large polyps, but this 
greatly increases computational complexity and limits the model’s ability to recognize small polyps[6,7]. 
These methods, while advancing the field, are still insufficient for recognizing small polyps and precisely 
segmenting irregular boundaries. In particular, for the most challenging tiny polyps (diameter<5mm) in 
clinical practice, the performance of existing methods is often unsatisfactory. 

From a clinical standpoint, the size, morphology, and location of a polyp are important for assessing 
its cancer risk. Chen et al. found that traditional CAD systems have large errors when evaluating polyp 
features, especially yielding low accuracy for flat and serrated polyps[8]. Liu et al. used multimodal 
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analysis of morphological and texture features to improve diagnostic performance, but their method 
requires complex feature engineering, which is difficult to adapt to the diverse image qualities and 
acquisition conditions encountered in clinical practice[15]. 

Uncertainty estimation in medical image analysis has also gained attention as a means of improving 
system reliability. Yang et al. proposed an ensemble learning-based uncertainty estimation by training 
multiple models and using prediction variance to measure uncertainty, but this incurs high computational 
cost[10]. Chen et al. used a Bayesian deep learning framework to estimate the reliability of predictions for 
clinical decision support[11,12]; however, their method requires multiple samples during inference, making 
real-time processing difficult. Zhou et al. designed a lightweight uncertainty estimation module that 
improves computational efficiency, but its accuracy still needs improvement[13]. Thus, achieving reliable 
uncertainty estimation without sacrificing efficiency remains a research hotspot. 

In terms of network design, existing deep learning methods usually use a single feature extraction 
path, making it difficult to capture both local details and global semantic information simultaneously. 
Some researchers have attempted multi-branch network structures to enhance feature representation, but 
performance is often limited by insufficient information exchange between branches. Moreover, existing 
methods generally use fixed feature fusion strategies, lacking adaptive handling of polyps with different 
scales and shapes, which significantly affects generalization in clinical practice. 

Based on the above analysis, this paper proposes a novel dual-channel adaptive network architecture 
(DA-Net). Through innovative feature extraction and fusion strategies, and a lightweight uncertainty 
evaluation mechanism, the method effectively improves polyp segmentation accuracy and reliability 
while maintaining low computational complexity. Notably, the proposed adaptive feature fusion 
mechanism can dynamically adjust processing based on the input image’s features, improving the 
model’s adaptability to different polyp types. The introduced lightweight uncertainty estimation provides 
clinicians with reliable auxiliary diagnostic information. The main contributions of this work are: 

 We introduce a dual-channel feature enhancement module that processes spatial details and 
semantic context in parallel, significantly improving the model’s ability to capture complex polyp shapes. 

 We design an adaptive feature fusion mechanism that dynamically integrates multi-scale features 
via gated weighting, effectively improving the accuracy of polyp boundary identification. 

 We propose a multi-level constrained learning strategy that incorporates boundary-aware 
constraints and reliability assessment into the loss function, further enhancing the accuracy and stability 
of the segmentation results. 

2. Related Work 

2.1 Traditional Polyp Segmentation Methods 

Traditional polyp segmentation methods are primarily based on classical image processing 
techniques.Early work often relied on thresholding and edge detection. For instance, Park et al. proposed 
an adaptive region-growing algorithm that dynamically adjusts growth thresholds to improve 
segmentation accuracy, but this method is sensitive to the choice of initial seed points[14]. Wang et al. 
combined morphological and texture features in a multi-feature fusion framework, achieving good results 
for regularly shaped polyps[8]; however, it showed limited ability to recognize irregular and flat polyps. 
Liu et al. applied graph-cut algorithms to optimize boundary localization, but the high computational 
complexity makes real-time processing difficult. Although these traditional methods offer high 
computational efficiency, their performance degrades significantly under complex backgrounds and 
varying illumination conditions. 

2.2 Deep Learning Segmentation Methods 

In recent years, deep learning has achieved significant progress in medical image segmentation. U-
Net and its variants are widely used due to their encoder-decoder structure. Zhang et al. augmented U-
Net with residual connections to improve feature transmission efficiency. Chen et al. proposed the 
DeepLab series, using dilated convolutions to enlarge the receptive field and capture multi-scale 
context[9]. However, these methods still suffer from missed detections of small polyps. 

To improve segmentation precision, researchers have proposed various enhancements. Yang et al. 
designed an attention-enhanced module that learns feature weights to emphasize key regions. Li et al. 
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introduced the Transformer to medical image segmentation, using self-attention to capture global 
dependencies, but this significantly increases model size. Zhou et al. proposed a lightweight attention 
network, which reduces computational complexity while maintaining good segmentation performance, 
offering a new direction for practical applications. 

2.3 Uncertainty Estimation Methods 

Uncertainty estimation in medical image segmentation is important for improving system reliability. 
Current methods fall into two categories: ensemble learning-based and Bayesian inference-based. Wang 
et al. trained multiple models to form an ensemble and used the variance of their predictions to estimate 
uncertainty, but this incurs high computational overhead. Chen et al. used Bayesian neural networks to 
model uncertainty, obtaining a probability distribution via Monte Carlo sampling; however, this greatly 
reduces inference efficiency. 

To balance accuracy and efficiency, researchers have developed improved approaches. Liu et al. 
proposed a single-pass uncertainty estimation method, significantly improving computational efficiency. 
Zhang et al. designed an adaptive sampling strategy that adjusts the number of samples based on image 
complexity, achieving reliable uncertainty estimates with reduced computation. These works provide 
important references for achieving efficient and reliable uncertainty estimation in medical image analysis. 

2.4 Feature Fusion Strategies 

Feature fusion is a key technique for improving segmentation performance. Traditional fusion often 
uses simple addition or concatenation of feature maps, which cannot fully exploit multi-scale 
information.Recently, more sophisticated fusion strategies have been proposed. Yang et al. designed a 
feature recalibration module that learns channel attention weights to optimize feature combinations. Li 
et al. proposed a dynamic feature selection mechanism that adaptively adjusts the fusion strategy based 
on the input image features. While these methods improve feature utilization efficiency, they also 
increase computational complexity. 

Inspired by these studies, we propose new feature extraction and fusion strategies in this work. Our 
method employs dual-channel parallel processing and an adaptive fusion mechanism, which improve 
segmentation accuracy while maintaining low complexity. In particular, our approach shows clear 
advantages in detecting small polyps and in uncertainty evaluation. 

3. Methods 

3.1 Network Architecture 

The proposed Dual-Channel Adaptive Network (DA-Net) uses an encoder-decoder structure. Its core 
innovation is a three-stage optimization paradigm of feature decoupling, dynamic fusion, and uncertainty 
modeling, which addresses spatial-semantic conflicts, scale sensitivity, and insufficient predictive 
reliability in polyp segmentation. 

 
Figure 1: Overall architecture of DA-Net 

Figure 1 illustrates the overall structure. In the encoder stage, the input image is processed by the 
Dual-Channel Feature Enhancement Module (DFEM) to decouple it into high-frequency (edge-related) 
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and low-frequency (morphological and semantic) feature maps. In the fusion stage, the Adaptive Feature 
Fusion Mechanism (AFFM) uses gated weights to dynamically balance the contributions of multi-scale 
features. In the decoder stage, a Multi-Level Constrained Learning Strategy (MCLS) combines the 
features to generate the final segmentation map and an uncertainty map. Inspired by frequency-domain 
analysis, separating high- and low-frequency features helps avoid gradient conflicts during training. The 
entire training process is guided by the MCLS, ensuring model convergence and generalization. 

3.2 Dual-Channel Feature Enhancement Module 

The DFEM contains two parallel branches: a spatial feature branch (SFB) and a semantic feature 
branch (CFB). These branches extract complementary information from the input feature map X. 

3.2.1 Spatial Feature Branch 

This branch uses an improved residual structure with cascaded convolutional layers and a spatial 
attention module, focusing on local details[9]. Compared to a traditional ResNet block, the spatial 
attention mechanism significantly enhances the model’s perception of polyp edge details, improving 
boundary segmentation accuracy. 

  ( ( ))sF SA Conv X X= +         (1) 

Where Conv denotes convolution and SA denotes the spatial attention module. The spatial attention 
module computes attention weights using average-pooling and max-pooling followed by a 1×1 
convolution: 

 ( ([ ( ); ( )]))SA f AvgPool F Maxpool Fσ=     (2) 

Where σ  is the sigmoid activation. This allows the network to emphasize edge features in the 
spatial domain. 

3.2.2 Semantic Feature Branch 

This branch uses a lightweight Transformer-based structure to capture global dependencies in the 
image. Specifically, it applies a multi-head self-attention (MSA) module with layer normalization and a 
residual connection. The semantic output Fc  is given by 

  ( ( ))Fc MSA LN X X= +         (3) 

Where LN is layer normalization. To reduce computational complexity, a local window attention 
mechanism is employed. This branch focuses on extracting higher-level semantic features such as polyp 
shape and texture. 

3.3 Adaptive Feature Fusion Mechanism 

The adaptive feature fusion mechanism dynamically adjusts feature weights through reliability 
evaluation units: 

 ( ( ( , )))R GAP Concat Fs Fcσ=        (4) 

  (1 )F R Fs R Fc= + − 

       (5) 

Between them, F is the fused feature map, GAP is the global average pooling, R is the reliability 
weight matrix, and  is element wise multiplication. This mechanism can adaptively adjust fusion 
weights based on the importance of features[17], improving adaptability to polyps of different scales. 

3.4 Multi-Level Constrained Learning Strategy 

To improve segmentation accuracy and reliability, we design a three-level loss function that combines 
segmentation, boundary, and reliability constraints. 

3.4.1 Segmentation Loss 

We combine Dice loss and cross-entropy loss: 
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 (1 )Lseg Ldice Lceα α= + −       (6) 

α  is a balancing factor (set to 0.5). 

3.4.2 Boundary Loss 

We introduce a boundary-aware term to refine edges: 

 
2

Lboundary Y Y= ∇ −∇


       (7) 

∇  is the gradient operator, andY andY


are the ground-truth and predicted segmentations. This term 
encourages the prediction’s edges to align closely with the true boundaries. 

3.4.3 Reliability Loss 

We constrain the accuracy of the uncertainty estimation: 

  2
Lreliability R M= −        (8) 

M is a confidence map derived from the segmentation result and R is the predicted reliability map. 
Minimizing this loss encourages the uncertainty map to reflect true prediction confidence. 

The total loss is a weighted sum: 

 1 2Ltotal Lseg Lboundary Lreliabilityλ λ= + +               (9) 

λ₁and λ₂are hyperparameters determined via cross-validation. This multi-level strategy ensures that 
the model learns accurate segmentations with meaningful uncertainty estimates. 

3.5 Implementation Details 

The network is trained using the Adam optimizer[20] with an initial learning rate of 0.001 and a cosine 
annealing schedule[21]. The batch size is 8, and we train for 200 epochs. Data augmentation includes 
random flips, rotations, and brightness adjustments to improve generalization[19]. All experiments are 
implemented in PyTorch and trained on an NVIDIA RTX 4090 GPU. 

4. Results 

4.1 Datasets 

We evaluate the proposed method on three public colorectal polyp datasets: ETIS[25], CVC-
ClinicDB[16], and Kvasir[18]. ETIS contains 196 endoscopic images, CVC-ClinicDB contains 612 
standard colonoscopy images, and Kvasir contains 1,000 diverse gastrointestinal images. Each dataset is 
split into training, validation, and test sets in a 7:1:2 ratio. To thoroughly assess performance, the test set 
is further divided by polyp size: small (diameter < 5 mm), medium (5-10 mm), and large (> 10 mm). We 
also categorize polyps by morphology into flat, sessile, and pedunculated types. 

4.2 Evaluation Metrics 

 Dice coefficient(DSC):Measures the overlap between the predicted segmentation and the ground 
truth[22]: 

  
2 X Y

DSC
X Y

=
+


           (10) 

X is the predicted region and Y is the ground truth. DSC ranges from 0 to 1, with higher values 
indicating better overlap. In clinical applications, DSC > 0.85 is usually considered acceptable. DSC is 
particularly sensitive to small targets, which is important for detecting early-stage polyps. 

 Mean Intersection over Union(mIoU):Computes the ratio of the intersection to the union of the 
predicted and true regions[23]: 
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A B

mIoU
A B

=




        (11) 

mIoU is sensitive to both over-segmentation and under-segmentation and provides a comprehensive 
measure of segmentation quality. Higher mIoU values indicate more accurate boundaries, which is 
critical for precise polyp removal. 

 F1 Score:The harmonic mean of precision and recall[24]:  

 
21 Precision RecallF

Precision Recall
× ×

=
+

                (12) 

F1 balances false positives and false negatives, making it suitable for handling class imbalance such 
as detecting small polyps. 

 Precision:The ratio of true positives to all predicted positives: 

  
TPPrecision

TP FP
=

+
           (13) 

TP is true positive count and FP is false positive count. Precision reflects the model’s ability to avoid 
over-segmentation (false positives). In polyp segmentation, high precision means fewer falsely identified 
regions, reducing unnecessary clinical interventions. 

These four metrics collectively form a comprehensive evaluation system, considering overall 
accuracy (DSC, mIoU), balance of errors (F1), and clinical relevance (precision, especially for avoiding 
over-segmentation). 

4.3 Experimental results 

4.3.1 Comparison with Existing Methods 

We compare DA-Net against several state-of-the-art segmentation methods (U-Net, PraNet, 
TransUNet) on the three datasets. Table 1 summarizes the results on the test sets: 

Table 1: Performance comparison of different methods on test set (%). 

Dataset Method DSC Precision F1 mIoU 

ETIS 

U-Net 0.710 0.755 0.719 0.654 
PraNet 0.787 0.815 0.791 0.735 

TransUNet 0.794 0.821 0.798 0.742 
DA-Net(Ours) 0.843 0.865 0.846 0.798 

CVC-ClinicDB 

U-Net 0.823 0.869 0.832 0.785 
PraNet 0.867 0.895 0.871 0.835 

TransUNet 0.872 0.891 0.877 0.842 
DA-Net(Ours) 0.912 0.925 0.914 0.876 

Kvasir 

U-Net 0.818 0.856 0.823 0.776 
PraNet 0.858 0.882 0.862 0.823 

TransUNet 0.867 0.885 0.870 0.835 
DA-Net(Ours) 0.905 0.918 0.906 0.865 

On all three datasets, DA-Net outperforms existing methods across all four metrics. Notably, on ETIS 
our method achieves DSC=0.843 (an improvement of 4.9 points over the best existing method). On CVC-
ClinicDB, DSC reaches 0.912 (+4.0 points), and on Kvasir it reaches 0.905 (+3.8 points). The higher 
mIoU values demonstrate that our method more accurately identifies polyp boundaries, and the increased 
precision indicates fewer false positives. These results show that the dual-channel adaptive network has 
stronger generalization and segmentation accuracy than prior approaches. 

4.3.2 Performance by Polyp Size and Type 

We further analyze the performance on different polyp categories (Table 2). For small polyps 
(diameter < 5 mm), our method improves the F1 score by 5.0 percentage points compared to the best 
existing method, and achieves DSC=0.812 on ETIS, indicating that the dual-channel feature 
enhancement effectively boosts recognition of tiny polyps. In general, segmentation performance 
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improves with polyp size (medium and large polyps have higher DSC). Among morphological types, 
pedunculated polyps yield the best results (average DSC≈0.907), while flat polyps remain the most 
challenging (average DSC≈0.866). Importantly, even for flat polyps our method shows significant 
improvement over existing methods, suggesting that the adaptive fusion mechanism notably enhances 
boundary detection for irregular shapes. These results demonstrate the effectiveness of our approach 
across diverse clinical scenarios. 

Table 2: Segmentation performance for different polyp types (%). 

Polyp Type DSC-ETIS DSC-CVC DSC-Kvasir F1-Average mIoU-Average 
Small(<5mm) 0.812 0.883 0.875 0.856 0.835 

Medium(5-10mm) 0.857 0.925 0.918 0.900 0.886 
Large (>10mm) 0.864 0.937 0.931 0.910 0.895 

Flat 0.824 0.891 0.883 0.865 0.852 
Sessile 0.851 0.923 0.916 0.896 0.885 

Pedunculated 0.863 0.932 0.927 0.907 0.893 

4.3.3 Ablation Study-Model Components 

To validate the contribution of each proposed module, we conduct ablation experiments (Table 3). 
Starting from a baseline model (without DFEM, AFFM, MCLS), we incrementally add components: 

 Baseline: A simple encoder–decoder without the proposed modules. 

 + DFEM: Adding the dual-channel feature enhancement. 

 + DFEM + AFFM: Adding the adaptive feature fusion on top of DFEM. 

 + DFEM + AFFM + MCLS: Adding the multi-level constrained learning strategy. 

Table 3: Ablation study of model components(%). 
Model Variant DSC-ETIS DSC-CVC DSC-Kvasir mIoU-Average Precision-Average 

Baseline 0.756 0.845 0.838 0.809 0.863 
Baseline+DFEM 0.798 0.878 0.872 0.842 0.891 

Baseline+DFEM+AFFM 0.827 0.897 0.890 0.859 0.907 
Baseline+DFEM+AFFM+MCLS 0.843 0.912 0.905 0.876 0.919 
The results show that adding the DFEM provides the largest boost on ETIS (DSC increases by 4.2 

points). Incorporating the adaptive fusion (AFFM) yields stable improvements across data- sets, 
increasing the average mIoU by 1.7 points. Finally, the multi- level constrained learning (MCLS) further 
raises overall accuracy and especially precision (avg. precision +1.2 points). These find- ings indicate 
that each of the proposed components contributes unique advantages, and together they form a highly 
effective seg- mentation framework. 

We also ablate the loss function components (Table 4). We compare using only the segmentation loss 
(L_seg), adding boun- dary loss (L_seg + L_bound), adding reliability loss (L_seg + L_rel), and using 
all three combined (L_seg + L_bound + L_rel). 

Table 4: Ablation study of loss function components (%). 

Loss Combination DSC-ETIS DSC-CVC DSC-Kvasir F1-Average 
Lseg 0.812 0.883 0.876 0.857 

Lseg+Lbound 0.831 0.897 0.890 0.872 
Lseg+Lrel 0.824 0.891 0.884 0.866 

Lseg+Lbound+Lrel 0.843 0.912 0.905 0.887 
The boundary loss (L_bound) provides the most improve- ment on ETIS (DSC +1.9 points), reflecting 

the complex boun- daries in that dataset. The reliability loss (L_rel) improves the F1 score, indicating it 
helps balance precision and recall – the model maintains high precision while not sacrificing detection 
ability. The combination of all losses yields the best results, confirming the value of each component. 

4.3.4 Uncertainty Analysis and Clinical Application 

Figure 2 illustrates typical uncertainty heatmaps produced by our model alongside the original 
images.The uncertainty maps closely correlate with areas of segmentation error. By setting an uncertainty 
threshold to automatically highlight regions requiring clinician attention, we can improve overall 
accuracy. For example, if we retain only the low-uncertainty regions (discarding the top 20% most 
uncertain pixels), the Dice scores on ETIS, CVC-ClinicDB, and Kvasir increase to 0.887, 0.945, and 
0.938, respectively; the corresponding mIoU values increase to 0.843, 0.912, and 0.905. These results 
demonstrate that uncertainty estimation can effectively enhance the reliability of clinical decisions by 
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identifying high-risk regions that merit closer review. 

 
Figure 2: Comparison between uncertainty heatmap and original image 

4.3.5 Cross-Dataset Generalization 

Table 5 reports cross-dataset generalization tests, where the model is trained on combined datasets 
and evaluated on a different test set. DA-Net maintains high performance under these settings, showing 
strong generalization. For instance, when trained on ETIS+Kvasir and tested on CVC, DSC reaches 
0.894;trained on CVC+Kvasir and tested on ETIS yields DSC=0.821; trained on all three datasets and 
tested on all yields DSC=0.905. These results indicate that our model can generalize well across different 
data sources. 

Table 5: Cross-dataset generalization capability test (%). 

Training Set Testing Set DSC Precision F1 mIoU 
CVC+Kvasir  ETIS 0.821 0.846 0.825 0.772 
ETIS+Kvasir CVC 0.894 0.912 0.896 0.853 
ETIS+CVC Kvasir 0.887 0.905 0.891 0.842 

ETIS+CVC+Kvasir All 0.905 0.918 0.909 0.865 

4.4 Computational Efficiency 

We compare computational efficiency of different methods in Table 6. DA-Net achieves high 
accuracy while running at 21.8 FPS on a GPU, meeting real-time requirements. Its parameter count is 
46.8M, slightly higher than U-Net (34.5M) and PraNet (32.5M), but much lower than TransUNet 
(105.3M). The FLOPs are 72.3G, and the inference time is 45.7 ms per image. These metrics show that 
our method achieves a good balance between precision and efficiency. 

Table 6: Computational efficiency comparison of different methods. 

Method Parameters (M) FLOPs (G) Inference Time (ms) FPS 
U-Net 34.5 65.7 42.3 23.6 
PraNet 32.5 59.8 38.5 26.0 

TransUNet 105.3 128.6 65.2 15.3 
DA-Net(Ours) 46.8 72.3 45.7 21.8 

4.5 Visualization Results 

Figure 3 compares segmentation results of different methods on examples from the three datasets. 
Our method performs especially well on difficult ETIS samples (such as flat polyps and very small 
polyps), producing more precise boundaries and fewer false positives. On the CVC-ClinicDB and Kvasir 
datasets, our method also yields cleaner segmentation contours with less noise, consistent with the 
improved quantitative metrics. In particular, the advantages of our approach are apparent in regions with 
complex backgrounds or blurred boundaries, where it more accurately distinguishes polyp regions from 
surrounding tissue. 
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Figure 3: The segmentation results of different methods on three datasets 

5. Discussion 

This paper addresses the challenges of spatial–semantic feature conflict, scale sensitivity, and 
insufficient reliability in colorectal polyp segmentation by proposing a dual-channel adaptive deep 
network (DA-Net) with uncertainty estimation. The method employs dual-channel feature enhancement, 
adaptive feature fusion, and a multi-level constrained learning strategy to effectively improve the 
segmentation of polyps with complex backgrounds, small size, or irregular shapes, while also enabling 
quantification of segmentation uncertainty. Experimental results on the ETIS, CVC-ClinicDB, and 
Kvasir datasets demonstrate that our method outperforms existing mainstream segmentation approaches 
in key metrics (DSC, mIoU, F1, and precision), particularly excelling on small polyps and blurred 
boundaries. Ablation studies verify the contribution of each novel module. The uncertainty estimation 
results show that the model can effectively identify high-risk regions in the segmentation maps, providing 
reliable support for clinical decision-making. 

In summary, the proposed dual-channel adaptive network enhances both the accuracy and robustness 
of colorectal polyp segmentation and offers an innovative solution for intelligent colonoscopy assistance 
with broad clinical application potential. Future work will explore the model’s generalization across 
multi-center and multi-device data and incorporate strategies such as active learning to further improve 
the model’s practicality and intelligence. 
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