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Abstract: The rapid mutation and spread of viral diseases have intensified the challenge of drug 

resistance to traditional antivirals, making the development of new antiviral agents crucial. Antiviral 

peptides (AVPs) have emerged as promising candidates due to their unique membrane penetration 

mechanisms and low resistance risk. However, conventional experimental screening methods are time-

consuming and costly, while existing machine learning approaches suffer from limitations in feature 

representation and generalization capabilities. This study proposes an ensemble machine learning model, 

AVP, designed to identify antiviral peptides efficiently and accurately. The model integrates Random 

Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT) classifiers using a soft-voting 

architecture with probability-based weighting. Regularization strategies, including L2 regularization for 

SVM and depth constraints for DT, are applied to enhance model stability. The model's performance is 

evaluated using five-fold cross-validation and ROC analysis. The AVP model achieves a training set 

AUC of 0.9980 and a test set AUC of 0.9784, demonstrating superior classification capability and 

generalization performance compared to traditional machine learning models. This study highlights the 

effectiveness of ensemble learning in fusing diverse feature-response patterns and provides a robust tool 

for antiviral peptide identification, accelerating the development of next-generation antiviral agents. 
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1. Introduction 

The rapid spread and mutation of viral diseases intensify the challenge of drug resistance to traditional 

antivirals. Antiviral peptides (AVPs), with their unique membrane penetration mechanisms and low 

resistance risk, have become promising candidates for next-generation antiviral agents. However, 

conventional experimental screening is time-consuming and costly, while existing machine learning 

methods suffer from limited feature representation and generalization capabilities. Current research 

primarily focuses on optimizing single models. For instance, Chowdhury et al. achieved an AUC of 0.82 

using SVM with amino acid composition features, but this approach failed to capture local features in 

short peptide sequences. Wang Meng et al. utilized deep learning for end-to-end prediction, yet 

encountered overfitting in small-sample scenarios. Although ensemble methods show potential in 

antimicrobial peptide prediction, their application to AVPs is limited by two key issues: insufficient 

integration of heterogeneous features in traditional Bagging strategies and the lack of dynamic weight 

adjustment in multi-model voting mechanisms. 

This study proposes AVP, an ensemble model featuring three innovations: 1) a soft-voting architecture 

integrating RF (amino acid composition), SVM, and DT classifiers with probability-based weighting; 2) 

regularization strategies including L2 regularization for SVM (C=0.1), depth constraints for DT 

(max_depth=5), and feature sampling for RF (max_depth=7); and 3) five-fold cross-validation and ROC 

analysis for stability assessment. The model achieves a test set AUC of 97.73%, validating the 

effectiveness of ensemble learning in fusing diverse feature-response patterns. 

2. Literature Review 

Chowdhury et al. [1] and Hossein Khabbaz et al. [2] both employed traditional machine learning 
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models, such as SVM, to predict peptide properties using global features like amino acid composition, 

physicochemical properties, and secondary structure. While these methods achieved notable performance, 

their reliance on global features limited their ability to capture local features in short peptide sequences, 

potentially reducing prediction accuracy. This highlights the need for more sophisticated feature 

extraction techniques that can better handle the complexity of peptide sequences. 

Shahid Akbar et al. [3] and Balachandran Manavalan et al. [4] explored ensemble learning approaches, 

combining multiple models and feature sets to improve prediction performance. Akbar et al. used a 

genetic algorithm-based ensemble method to handle heterogeneous features, while Manavalan et al. 

achieved high accuracy with a random forest-based approach. However, these methods faced challenges 

with imbalanced datasets and high computational complexity, suggesting that more efficient feature 

integration and dynamic weight adjustment mechanisms are needed to enhance generalization and 

interpretability. 

Wang Meng et al. [5] and Xue Feng et al. [6] utilized deep learning techniques, such as CNN and 

RNN, to automatically extract features from peptide sequences. These models demonstrated powerful 

feature extraction capabilities and improved performance in predicting peptide properties. However, their 

effectiveness was highly dependent on the quality and quantity of training data, with limited datasets 

leading to potential overfitting. This indicates that future research should focus on data augmentation and 

transfer learning to enhance model robustness and generalization. What’s more, In the article of Xue, in 

antimicrobial peptide screening, traditional machine learning is suitable for feature analysis and 

classification of small-to-medium-sized datasets based on explicit physicochemical parameters such as 

net charge and amino acid composition. Deep learning applies to large-scale complex omics data analysis 

scenarios where features are automatically extracted from raw data (e.g., 

genomics/transcriptomics/proteomics). Liu et al. [7] noted that traditional machine learning models for 

antimicrobial peptides often struggle with heterogeneous feature integration and lack specialized 

frameworks for antiviral peptide prediction, leaving a critical gap in efficiently capturing sequence-level 

complexities. 

3. Materials and methods 

3.1 Data collection 

In this project, we collected sequences of antiviral peptides (AVPs) from two distinct sources to 

construct our dataset. Specifically, the negative samples included 248 AVPs obtained from the 

Antimicrobial Peptide Database (APD) at [https://aps.unmc.edu/about](https://aps.unmc.edu/about). 

These were divided into a training set of 205 sequences and a test set of 43 sequences. The positive 

samples consisted of 247 non-antiviral peptides sourced from the UniProt database at 

[https://www.uniprot.org] (https://www.uniprot.org), which were similarly split into a training set of 205 

sequences and a test set of 42 sequences. We carefully ensured that there were no duplicate sequences 

between the positive and negative samples, either within each set or across the training and test sets. 

3.2 Sequence feature extraction 

(1) Accuracy 

Accuracy represents the proportion of correctly predicted samples to the total number of samples in 

the dataset. It reflects the overall effectiveness of a classifier but may not be suitable for datasets with 

significant class imbalance. It is calculated as follows: 

                           𝐴𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 ,                      (1) 

(2) Recall 

Recall, also known as sensitivity or the true positive rate, measures the proportion of actual positive 

samples that are correctly identified by the classifier. It indicates the model's ability to detect positive 

cases, making it especially useful in situations where identifying positives is crucial, such as in medical 

diagnostics. It is computed as: 

                                       𝑅𝑒𝑐𝑎𝑙𝑙 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,                          

(2) 
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(3) Precision 

Precision refers to the proportion of samples predicted as positive that are actually positive. It 

evaluates the reliability of the model's positive predictions and is particularly important when it is 

essential to minimize false positives, such as in spam detection. It is calculated as: 

         𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 ,                   (3) 

(4) F1-score 

The F1-score is the harmonic mean of precision and recall, providing a balanced metric that considers 

both. It is especially useful for imbalanced datasets, as it helps balance the trade-off between precision 

and recall. It is calculated as: 

      𝐹1 − 𝑠𝑐𝑜𝑟𝑒 =
2⋅𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛⋅𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛+𝑅𝑒𝑐𝑎𝑙𝑙
 ,                (4) 

(5) Receiver Operating Characteristic Curve 

The ROC curve is a graphical tool for evaluating the performance of binary classification models. It 

illustrates the classifier's performance by plotting the False Positive Rate (FPR) against the True Positive 

Rate (TPR, also known as Recall). 

Interpreting the ROC Curve: 

(1) Curve Position: The closer the ROC curve is to the top-left corner, the better the model's 

performance. An ideal ROC curve hugs the top-left region, indicating low FPR (few false positives) and 

high TPR (high true positives). 

(2) Random Classifier: The diagonal line (from (0,0) to (1,1)) represents the performance of a random 

classifier (no discriminative power). 

(3) AUC (Area Under the Curve): The area under the ROC curve. AUC ranges between 0.5 (random) 

and 1.0 (perfect), with higher values indicating superior model performance. 

Formulas for FPR and TPR: 

          𝐹𝑃𝑅 =
𝐹𝑃

𝐹𝑃+𝑇𝑁
 ,                          (5) 

   𝑇𝑃𝑅 =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 ,                          (6) 

3.3 Model construction 

The Fig.1 outlines a comprehensive workflow for developing a predictive model. It begins with 

dataset generation, comprising 248 negative and 237 positive samples, followed by data preprocessing 

that splits the data into a training set of 410 peptides and a test set of 95 peptides. The next step involves 

feature extraction based on AC features, physicochemical properties, and dipeptide composition. 

Subsequently, multiple classification models are integrated using RF (Random Forest), SVM (Support 

Vector Machine), and DT (Decision Tree). To address class imbalance, oversampling is performed using 

SMOTE (Synthetic Minority Over-sampling Technique). The predictions from these models are then 

combined through soft voting mechanisms from stacking and bagging strategies. The final steps involve 

calculating ROC curve parameters and computing AUC values, followed by plotting ROC curves to 

visualize the model's performance. 
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Fig.1 The architecture of traditional machine learning fusion models 

3.4 Experimental Setup 

This study used five-fold cross-validation to assess the training set. The dataset was split into five 

equal parts, with four parts used for training and the remaining part for validation. This process was 

repeated five times, and the model with the highest average performance was chosen for testing. 

Hyperparameter optimization was performed on all models, including SVM, Random Forest, and 

Decision Trees, by adjusting their parameters. To address class imbalance, the SMOTE algorithm was 

applied to oversample the data in each training fold. Further improvements in model performance were 

achieved by fine-tuning hyperparameters such as learning rate, regularization, and the number of neurons 

in hidden layers for neural networks. 

Finally, the best-performing model was evaluated using an independent test set, and its ability to make 

predictions on unseen data was assessed, providing insights into its real-world generalization capability. 
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3.5 Computational Setup 

Experiments were conducted on a standard PC configuration equipped with: 

-Processor: Intel i7-10700KF 

-Graphics Card: NVIDIA RTX 3060 Ti 8G AD OC 

-Primary Programming Language: Python (with scientific computing libraries like NumPy and 

machine learning frameworks like Scikit-learn) 

-Operating System: Windows 11 

These tools provided an efficient environment for implementation and analysis. 

3.6 Performance Evaluation of Models 

Model evaluation involves several important metrics, including False Positive Rate (FPR) and True 

Positive Rate (TPR). These metrics are derived from the confusion matrix, which includes True 

Negatives (TN), True Positives (TP), False Negatives (FN), and False Positives (FP). Each of these values 

is used to assess how well the model is performing in classifying samples. 

Accuracy measures the overall proportion of correct predictions made by the model across all samples. 

While this is a useful metric, it may not be ideal for imbalanced datasets, where one class significantly 

outweighs the other. Recall, on the other hand, focuses on the model's ability to correctly identify positive 

instances. It is particularly important in scenarios where it is critical to capture as many positive cases as 

possible, such as in medical diagnoses. Precision evaluates how reliable the model's positive predictions 

are, indicating how many of the predicted positives are actually true positives. The F1 score is a harmonic 

mean of precision and recall, offering a balanced measure that accounts for both metrics, making it 

especially useful when the dataset is imbalanced. 

The ROC curve is a graphical tool that helps in evaluating the performance of binary classification 

models. It plots the True Positive Rate (TPR) against the False Positive Rate (FPR). The closer the ROC 

curve is to the top-left corner, the better the model’s performance, as it indicates a higher TPR and a 

lower FPR. Ideally, the ROC curve should occupy the top-left area of the graph, signifying a well-

performing model. 

AUC, or Area Under the Curve, quantifies the overall performance of the model by calculating the 

area beneath the ROC curve. The AUC value ranges from 0.5 to 1, with values closer to 1 indicating 

superior model performance. A higher AUC means the model is more effective at distinguishing between 

positive and negative classes. 

4. Results  

Figure 2 displays the ROC curve for the training set. This curve shows a tendency to approach the 

upper-left corner, with an AUC value reaching 99.80%. This indicates that the model performed 

exceptionally well on the training set. Compared to the test set, the model achieved a good fit to the data 

during training, enabling it to identify antiviral peptide samples in the training set more accurately with 

lower false positive rates and higher true positive rates. 

  

Fig.2 Training Set ROC Curve of AVP Model      Fig.3 Test Set ROC Curve of AVP Model 
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Figure 3 presents the ROC curve for the test set, demonstrating the model's performance on unseen 

data. The curve is positioned close to the upper-left corner, corresponding to an AUC value of 97.84%. 

As higher AUC values (approaching 1) signify superior model performance, this result indicates that the 

integrated machine learning model maintains excellent overall classification ability across different 

thresholds on the test set. It effectively discriminates between antiviral and non-antiviral peptide samples, 

achieving both low false positive rates (FPR) and high true positive rates (TPR). 

  

Fig.4 Training Set ROC Curve of RF Model   Fig.5 Training Set ROC Curve of SVM Model 

  

Fig.6 Training Set ROC Curve of DT Model     Fig.7 Test Set ROC Curve of RF Model 

Figures 4 to 6 show the ROC curves for the training sets of the RF, SVM, and DT models, while 

Figures 7 to 9 display the ROC curves for the test sets of these models. Below, we present some statistical 

details of these models based on the training and testing sets shown in Figures 4 to 9. 

 

Fig.8 Test Set ROC Curve of SVM Model   Fig.9 Test Set ROC Curve of DT Model 

Tables 1 and 2 present the performance metrics of four classification models—Random Forest (RF), 

Support Vector Machine (SVM), Decision Tree (DT), and Average Voting Predictor (AVP)—on both the 

training and testing datasets. The metrics include accuracy, recall, precision, F1 score, and AUC. In the 

training set (Table 1), the AVP model demonstrated the highest performance across all metrics, with an 

accuracy of 96.97%, recall of 98.06%, precision of 96.05%, F1 score of 96.99%, and an AUC of 99.80%. 

In the testing set (Table 2), the AVP model again showed superior performance, achieving an accuracy 

of 95.35%, recall of 100%, precision of 91.49%, F1 score of 95.56%, and an AUC of 97.78%. These 

results indicate that the AVP model is the most effective among the four for both training and testing 

datasets. 
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Table 1 Training Set 

Model Accuracy Recall Precision F1 Score AUC 

RF 91.91% ± 1.84% 94.13% ± 2.85% 90.19% ± 2.35% 92.09% ± 1.86% 98.05% ± 0.55% 

SVM 91.67% ± 2.04% 96.55% ± 2.27% 88.10% ± 3.04% 92.08% ± 1.84% 98.25% ± 0.69% 

DT 87.27% ± 4.12% 86.79% ± 6.02% 87.60% ± 3.64% 87.11% ± 4.38% 87.26% ± 4.17% 

AVP 96.97% ± 0.12% 98.06% ± 0.38% 96.05% ± 0.34% 96.99% ± 0.12% 99.80% ± 0.02% 

Table 2 Testing Set 

Model Accuracy Recall Precision F1 Score AUC 

RF 91.77% ± 2.89% 90.56% ± 5.37% 93.33% ± 5.37% 91.71% ± 2.54% 97.90% ± 1.79% 

SVM 94.12% ± 5.98% 97.50% ± 4.33% 91.50% ± 8.02% 94.23% ± 5.86% 98.45% ± 1.15% 

DT 88.24% ± 0% 93.06% ± 9.04% 85.864%± 7.60% 88.576%± 0.95% 0.8839 ± 0.56% 

AVP 95.35% ± 0% 100.00% ± 0% 91.49% ± 0% 95.56% ± 0% 97.78% ± 0.12% 

5. Discussion  

This study successfully developed a machine learning fusion model, AVP, for identifying antiviral 

peptides, which outperformed traditional models. The results indicated strong performance in both the 

training and test sets, with AUC values of 99.80% (training) and 97.84% (test), highlighting the model's 

excellent classification and generalization capabilities. 

The selected features for the model included AAC (Amino Acid Composition), DPC (Dipeptide 

Composition), and TPC (Tripeptide Composition), chosen for their ability to capture both local and 

global properties of peptides. To examine the impact of different feature combinations on model 

performance, various configurations were tested, such as AAC alone, DPC alone, TPC alone, and 

combinations like AAC+DPC and AAC+DPC+TPC. The best performance was achieved with the 

AAC+DPC+TPC combination, which resulted in AUC values of 99.80% for training and 97.84% for 

testing, demonstrating that combining these features enhances the model's generalization ability across 

different peptide sequences. 

In terms of model fusion, the use of Stacking and Bagging helped integrate the strengths of traditional 

models like Random Forest (RF), Support Vector Machine (SVM), and Decision Tree (DT), improving 

predictive accuracy and model compatibility. However, this fusion approach comes with increased 

complexity, leading to higher computational resource requirements, which may be challenging in 

resource-constrained environments, such as clinical testing with limited computational power. 

Optimizing the model to balance performance and resource usage is an important area for future research. 

For model evaluation, a variety of metrics such as AUC, ROC curves, F1-score, accuracy, and recall 

were used to provide a comprehensive assessment of performance. While these metrics are effective for 

evaluating performance on existing datasets, they may not fully capture the impact of dynamic changes 

in real-world data, such as viral mutations. New peptide sequences may possess different characteristics 

that the current model may not recognize accurately, suggesting the need for a dynamic evaluation 

framework to address this issue. 

The test set’s AUC value of 97.84% demonstrates a significant improvement over baseline models, 

with a p-value < 0.05 when compared to single-model approaches like RF, SVM, and DT, confirming 

that the AVP model excels in both accuracy and generalization. 

We also considered the potential risks of data bias and overfitting. Despite the strong performance, 

the complexity of the feature combinations and the model’s high accuracy raise concerns about 

overfitting. To mitigate this, we suggest exploring transfer learning techniques to adapt the model to new 

peptide sequences or using active learning to continuously refine the model as new data becomes 

available, helping to enhance its robustness in real-world applications. 

6. Conclusion  

Traditional AVP identification methods lack efficiency and accuracy, prompting the adoption of 

machine learning. Our AVP fusion model outperforms conventional approaches, achieving AUC values 

of 99.80% (training) and 97.84% (test), significantly higher than typical models (AUC 80%–90%). It 
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also maintains high F1-score, accuracy, and recall, enabling precise AVP detection for antiviral drug 

screening. 

Key optimizations included parameter tuning, feature selection, cross-validation, and grid search, 

ensuring computational efficiency, reducing overfitting, and improving generalization. By converting 

amino acid sequences into AAC format and integrating data-driven feature mining, we enhanced 

identification accuracy. 

This model accelerates antiviral drug development, lowers costs, and provides a robust tool against 

viral infections, demonstrating broad applications and societal value. 
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