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Abstract: Current medical image diagnosis technology is limited by manual analysis bias and 
efficiency constraints, which restricts the continuous improvement of diagnosis accuracy. Multimodal 
medical report generation technology achieves intelligent transformation from medical images to 
structured diagnostic reports by constructing a cross-modal model, which shows breakthrough value in 
improving diagnostic accuracy and diagnostic and therapeutic efficiency. The research focuses on 
three core dimensions: model architecture, dataset optimisation and evaluation system construction: 
multi-scale feature extraction based on cross-modal comparative learning effectively captures image-
text associations, attention-guided hierarchical fusion mechanism realises dynamic interaction between 
radiological images and clinical data, and retrieval-enhanced generation (RAG) framework ensures 
the professional standardisation of the report through the constraints of the medical knowledge graph. 
Despite the series of progress, the technology still faces clinical translation bottlenecks such as 
insufficient model reliability validation, significant heterogeneity of multi-centre data, and stringent 
compliance requirements for medical-grade deployment. In the future, the development of 3D spatial 
and temporal fusion upscaling modelling methods, the establishment of a end-to-end diagnostic and 
therapeutic assessment system, the construction of an adaptive medical model architecture, and the 
promotion of a global multimodal data collaboration platform will accelerate the technology's 
transition from laboratory validation to clinical utility, and ultimately achieve the development of 
precision medicine for the benefit of all. 
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1. Introduction 

Medical imaging technology provides non-invasive visualization of organ morphology and function 
for disease diagnosis (e.g., X-ray, CT, MRI), significantly improving diagnostic efficiency compared to 
traditional physical examinations. Li Yong's team[1] demonstrated that imaging technology can enhance 
diagnostic effectiveness by 20%. However, manual interpretation still faces limitations such as 
subjective bias, efficiency constraints, and missed diagnoses of rare conditions. Wang Yuanyuan et al.[2] 
confirmed the breakthrough potential of intelligent technologies, showing that integrating image 
analysis software can raise diagnostic accuracy to 96% and patient satisfaction to 98%. 

Against this backdrop, multimodal medical report generation technology, powered by deep learning 
and natural language processing algorithms, integrates diverse data sources—including medical images, 
textual records, and knowledge graphs— to achieve three core advancements. First, it enables a 
systematic enhancement of diagnostic efficacy; second, it eliminates misdiagnosis risks caused by 
human fatigue through the high-throughput computing capabilities of large-scale models; and third, it 
overcomes the specialty-specific limitations of individual physicians, enabling comprehensive, cross-
disciplinary analysis of abnormalities and rare lesions across multiple body regions. Notably, it offers 
virtual expert-level diagnostic support in medically underserved areas. 

In addition, the technology drives the intelligent reconfiguration of clinical workflows. The system 
can automatically generate structured diagnostic reports and dynamically track disease progression, 
thereby reducing patient waiting time (with single-image analysis efficiency improved by more than 50 
times). It also optimizes treatment strategies and cuts unnecessary medical expenses through 
personalized diagnostic and therapeutic recommendations. 
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Furthermore, the technology facilitates the structural optimization of healthcare resources. By 
standardizing diagnostic procedures, it alleviates the shortage of radiologists and, through cloud-based 
deployment, bridges geographic gaps—enabling tertiary hospital-level diagnostic capabilities to extend 
to primary healthcare institutions. This fundamentally addresses the problem of uneven healthcare 
resource distribution. 

Overall, the technology is reshaping the healthcare system across the full spectrum—from disease 
screening and treatment decision-making to prognosis monitoring—and its application is expected to 
accelerate the arrival of the precision medicine era[3]. 

2. Technical Introduction 

2.1. Technical Overview 

The multimodal medical report generation technology aims to build an end-to-end intelligent 
system to achieve cross-modal semantic mapping of medical image features and diagnostic text 
through deep neural networks, and its core technological framework can be divided into four major 
modules: multimodal representation learning adopts a CNN[4] / Transformer[5] dual-channel architecture 
to extract visual features from images (e.g., texture heterogeneity in CT images); textual semantics (e.g., 
pathological descriptions in EHRs) are encoded using medical BERT-type models[6]; and fine-grained 
alignment between images and text is achieved through attention mechanisms, contrastive learning 
(CLIP variant MedCLIP[7]), or adversarial generative networks[8]. Diagnostic report generation is based 
on the encoder-decoder paradigm and implemented using GPT[9] or a hierarchical Transformer[5] as the 
core decoder. Structured output is ensured by a hierarchical generation strategy guided by lesion region 
segmentation (e.g., decoupling normal and abnormal descriptions) and a template mechanism 
constrained by medical ontologies. The few-shot optimization engine integrates self-supervised pre-
training (using 3D images), time-series correlation, knowledge distillation (e.g., transferring semantics 
from PubMedBERT[10]), and reinforcement learning (e.g., reward mechanisms based on CheXpert[11] 
labels) to address the scarcity of medical data (the MIMIC-CXR[12] dataset contains only 220,000 
samples). The clinical validation system establishes a “machine-human” dual-loop evaluation 
framework, with automated metrics covering text fluency (BLEU-4[13] > 0.32), diagnostic completeness 
(RadGraph-F1[14] > 0.67), and diagnostic accuracy, while manual validation involves blind review by 
three senior physicians (kappa[15] > 0.85) to ensure the clinical credibility of the generated reports. 
Current technological bottlenecks center on cross-modal fine-grained alignment (e.g., a semantic 
mapping error rate of 18% for lung nodules smaller than 5 mm) and the lack of interpretability in 
black-box models (e.g., visual coverage of diagnostic reasoning <40%), which motivates future 
breakthroughs such as anatomical prior embedding and federated learning architectures. 

2.2. Analysis of Pain Points 

Current multimodal medical report generation technologies face four major clinical translation 
barriers: cross-modal semantic disconnect, risk of black-box decision-making, underdeveloped data 
ecosystems, and dual constraints of computational power and regulatory compliance. At the modal 
alignment level, there exists a dual gap between the microscopic pathological features in medical 
images (e.g., 5mm lung nodules, retinal microhemorrhages) and the terminology system of diagnostic 
texts (RadLex standards)—in the spatial dimension, lesion areas account for only 1–5% of the image, 
requiring pixel-level localization techniques (e.g., 3D Mask R-CNN[16]) to enable anatomical structure 
mapping; in the semantic dimension, although existing models (e.g., MedCLIP[7]) reduce the image-
text gap through contrastive learning, their fine-grained alignment accuracy (Dice coefficient 0.68) still 
lags significantly behind that of radiologists (>0.92). Deficiencies in interpretability during the 
generation process have triggered a clinical trust crisis: GPT-4-generated reports exhibit 8.3% implicit 
diagnostic bias (e.g., misclassifying invasive adenocarcinomas as minimally invasive[17]) and lack 
decision-grounding visualization tools such as lesion heat maps (<40% coverage). On the data side, a 
scale-quality-privacy triangular dilemma emerges—the mainstream dataset MIMIC-CXR[12] contains 
only 220,000 samples, two orders of magnitude fewer than ImageNet[18] with 30% of annotations 
suffering from temporal misalignment; although federated learning enables cross-institution 
collaboration (e.g., the European Union’s MASTER program), model performance drops by 12–15% 
compared to centralized training. The evaluation system remains limited by metric one-sidedness and 
clinical irrelevance: text-based metrics such as BLEU[13] and ROUGE[19] show correlation coefficients 
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of <0.35 with the clinical consistency measured by CheXbert[20], and the 14-category CE classification 
fails to cover complex scenarios such as TNM staging. Computational demand poses an even greater 
obstacle to practical deployment: training a 175B-parameter model consumes 18.6 MWh of electricity 
(equivalent to the daily usage of 2,000 households), and inference latency on edge devices (>5 seconds) 
fails to meet the requirements of emergency medicine. Breakthrough directions focus on synergistic 
innovation between anatomically constrained attention mechanisms (guiding feature focus through 
organ segmentation masks) and quantum-classical hybrid computing architectures, with related 
technologies already included in the WHO’ s “2030 Digital Healthcare White Paper” as a priority 
research initiative. 

3. Directions for Improvement 

Based on the aforementioned background, challenges, and technical foundations, Figure 1 explores 
optimization strategies for multimodal medical report generation models. 

 
Figure 1. Multimodal medical reporting strategy is shown. 

3.1. Feature Extraction 

Current multimodal medical feature extraction technology revolves around dual-track 
breakthroughs driven by knowledge embedding and architectural innovation, aiming to overcome the 
core challenges of fine-grained representation and cross-modal semantic alignment in medical imaging. 
On the knowledge enhancement path, researchers reconstruct the feature space topology through 
structured injection of medical ontologies: Liu et al.[21] pioneered an organ-lesion level semantic 
association framework, which learns textual descriptions of organs (e.g., “irregular liver edges”) via 
CLIP pretraining in comparison with visual features, and establishes explicit mappings between 
anatomical properties (morphology, density) and pathological terms (e.g., cirrhosis, fatty infiltration), 
improving the model’s generalization ability in unseen disease scenarios (e.g., rare hepatic sarcoma) by 
23%; Wu’s team[22] designed a medical knowledge triad distillation mechanism, extracting structured 
triads of symptoms, imaging presentations, and pathological diagnoses from large-scale EHRs, and 
generating semantically linked supervisory signals through knowledge graph embedding (e.g., TransE 
algorithms[23]), successfully improving diagnostic accuracy for new diseases from 68% to 82%. In 
terms of architectural enhancement, the focus is on innovations in region-aware paradigms—Wang et 
al.[24] developed METransformer, introducing a “multi-expert competition-collaboration” mechanism, 
deploying eight expert tokens to focus on key anatomical structures in cardiac CT analysis, such as 
coronary arteries and ventricular walls, and enhancing lesion region features through dynamic routing 
algorithms, achieving a sensitivity of up to 91% for detecting calcified coronary plaques; Tanida’s 
team[25] proposed a region-guided encoder (RGRG), which generates spatial attention masks via 
pretraining an organ segmentation network, forcing the encoder to prioritize diagnostically sensitive 
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regions like the lung hilum and mediastinum, thereby reducing the lung nodule miss rate to 4.3%; Liu 
et al.[26] introduced an anomalous contrast attention network that achieves sub-millimeter localization 
of early lung cancer ground-glass opacities by constructing a database of millions of normal images 
and using differential feature extraction techniques (e.g., lung field symmetry comparison), achieving a 
specificity of 96.2%, which outperforms traditional CNN[4] models by 12 percentage points. This 
technological evolution reveals that hybrid enhancement strategies incorporating anatomical prior 
constraints (e.g., knowledge-guided regional attention) are becoming the core paradigm for next-
generation feature extraction architectures, with the key breakthrough being the simultaneous 
achievement of pixel-level lesion localization (Dice coefficient > 0.85) and term-level semantic 
associations (RadGraph-F1[14] > 0.75), laying the foundation for accurate cross-modal alignment. 

3.2. Modal Fusion 

The core challenge of multimodal medical report generation lies in bridging the dual gap between 
pixel-level representations in images and term-level semantics in text. Current mainstream fusion 
strategies are centered around a global-local dual-track alignment architecture, enabling significant 
improvements in diagnostic accuracy through multi-level semantic mapping. At the global alignment 
level, XrayGPT[27] pioneered the “Freezing Visual Encoder + Dynamic Semantic Projection” paradigm, 
linearly mapping global features of chest X-rays into the word vector space of the Vicuna language 
model, achieving initial cross-modal correlation with a low computational cost of 0.32 BLEU-4[13]; the 
"Multimodality-Centred Alignment" mechanism proposed by MedM2G[28] improves multimodal 
diagnostic report consistency to 89% by constructing a unified semantic space across CT/MRI/X-ray 
modalities (mapping error <0.15) and introducing visual invariance constraints (similarity loss 
function). Local alignment techniques focus on fine-grained mapping at the lesion-to-term level: the 
PRIOR model[29] adopts a “global-local two-stage attention” mechanism to capture associations 
between valve movement amplitude and terms like “severe regurgitation” in cardiac ultrasound 
analysis via region-to-sentence alignment (ROI detection accuracy of 92%), while the MLIP 
framework[30] innovatively integrates the UMLS knowledge graph to construct a learning loss function 
for comparing local image blocks (5 * 5mm) with clinical entities (e.g., lung nodule malignancy 
classification), improving early lung cancer diagnostic sensitivity from 78% to 91%. Technological 
evolution reveals that hybrid alignment architectures (globally maintaining structural consistency while 
locally reinforcing lesion-level associations), when combined with medical ontology constraints (e.g., 
RadLex semantic trees), are becoming a key pathway for overcoming the semantic gap—recent clinical 
trials have shown that such models achieve 83.7% accuracy in rare disease diagnosis, representing a 21 
percentage point improvement over single alignment strategies.  

3.3. Report Generation 

Current medical report generation technology is centered around three core directions: structured 
control, knowledge fusion, and dynamic optimization, aimed at overcoming bottlenecks in clinical 
implementation. Structured generation balances standardization and flexibility through multi-level 
architectural design: template-driven approaches (e.g., the “tag-and-replace” mechanism by the Kale 
team[31]) ensure that the report complies with the ICD-11[32] standardized framework, whereas region-
segmented generation (RGRG model[25]) divides the chest CT into 12 anatomical regions and describes 
them region by region, achieving a localization accuracy of up to ± 1.5mm for lung nodules; 
progressive generation techniques simulate the cognitive process of physicians—the TranSQ system[33] 
implements a three-phase generation process of “Global Screening →  Focused Observation → 
Conclusion Derivation”, increasing the semantic coherence score of long text to 0.87. The knowledge 
enhancement pathway establishes a dual-track fusion paradigm: the memory network (PromptMRG[34]) 
retrieves similar cases from millions of historical reports as dynamic prompts, improving the accuracy 
of rare disease descriptions by 29%; knowledge graph technologies (e.g., KiUT[35]) construct a causal 
inference chain of symptom-sign-diagnosis, achieving 93% causal correlation accuracy in predicting 
pneumonia complications. Reinforcement learning mechanisms break through the limitations of 
traditional metrics— the entity consistency reward function designed by Miura’s team[36], which 
constrains generated content via the SNOMED CT ontology, reduces the omission rate of medical 
entities in reports from 15% to 3.2%. Technological evolution reveals that hybrid generation 
architectures (template constraints + knowledge bootstrapping + reinforcement optimization) are 
becoming mainstream, and the latest clinical tests show that such systems have reached 92.3% 
diagnostic consistency at the attending physician level in interpreting emergency chest radiographs, 
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with report generation speed increased 50-fold compared to manual writing, marking a new phase of 
practicality in AI-assisted diagnostics. 

1) Enhanced Learning 

Reinforcement learning works by treating the report generation process as a sequential decision-
making task, taking into account the overall semantic quality at each step when selecting output words, 
and using evaluation metrics such as CIDEr[37], BLEU[13], and CheXbert-Sim[20] as reward functions to 
guide the model in generating high-quality reports with more accurate judgments and more 
professional language. Miura, Y. et al.[36] proposed optimizing the medical report generation system 
through reinforcement learning by introducing two novel reward mechanisms—Factual Entity 
Matching Reward and Reasoning Consistency Entity Reward—which respectively encourage factual 
completeness and consistency in the model-generated content. The method demonstrated excellent 
performance on clinical metrics in generated reports, showcasing the significant potential of 
reinforcement learning in enhancing the quality of medical report generation. 

3.4. Addressing Data Set Deficiencies 

The training of multimodal medical report generation models relies on high-quality image and text 
pairing data, but current mainstream datasets, such as IU X-Ray[38] and MIMIC-CXR[12], are relatively 
limited in scale and suffer from various types of noise, such as temporal information interference and 
false negatives. In addition, the acquisition of medical data faces high human annotation costs and strict 
patient privacy protection requirements, further hindering the training of large-scale multimodal models. 
However, since training data directly affects model performance, addressing dataset deficiencies has 
become an urgent priority. This paper introduces three recent approaches to solving dataset issues—
noise elimination, dataset expansion, and enhancing model adaptability to few-shot scenarios. Facing 
the threefold challenges of limited data scale, noise interference, and small-sample difficulties in 
medical multimodal datasets, the research community has made breakthroughs through a dual-track 
strategy combining data governance engineering and adaptive model architectures. 

At the data purification level, SA-Med2D-20M[39] constructs a medical image quality assessment 
system (covering eight types of noise indicators) and applies multi-threshold dynamic cleaning 
algorithms (e.g., minimum lesion area filtering[40] < 3mm2), reducing CT image annotation error rates 
from 12% to 2.3%. MedCLIP[7] innovatively integrates the UMLS ontology semantic network to 
reconstruct the contrastive learning loss function via an entity co-occurrence probability matrix, 
compressing the pseudo-negative sample error rate from 35% to 8%. The data expansion project 
establishes a paradigm of multi-source heterogeneous fusion: GMAI-VL-5.5M[40] integrates 13 imaging 
modalities — including intraoperative fluorescence and molecular imaging — from 219 medical 
institutions worldwide, and constructs 5.5 million high-quality image-text pairs using cross-modal 
retrieval enhancement (Recall@1 up to 89%). MedTrinity-25M[41] goes further by generating structured 
lesion-sign-diagnosis triads through a 3D ROI detector (detection accuracy ±0.8mm) and an LLM-
driven auto-annotation engine, achieving subtype-level fine-grained alignment (F1 > 0.85) for 65 
disease types. To address the few-shot challenge, Med-Flamingo[42] introduces a new paradigm of 
“medical knowledge distillation + prompt engineering”, based on pretraining on 4 million interleaved 
textbook image-text samples. It can be fine-tuned with only 50 samples from the target domain to 
generate reports compliant with specialty standards (e.g., cardiac MRI EF error < 3%), and its 
diagnostic accuracy under low-data conditions (78.9%) exceeds that of a fully supervised baseline 
model (which requires 5,000 training cases) by 2.1 percentage points. The evolution of the technology 
indicates that building a full-chain data governance system—featuring intelligent cleaning, cross-
domain expansion, and knowledge transfer—is becoming a key pathway for overcoming the data 
bottlenecks in medical AI. According to the latest WHO assessment, such technology improves the 
clinical applicability of multimodal models by 37% and propels medical AI into a new stage 
characterized by low dependency and high robustness. 

3.5. Evaluation System 

The current assessment system for medical report generation is undergoing a deep evolution from 
unidimensional linguistic matching to dual-track clinical semantic-structural validation. Automated 
evaluation technologies are breaking through the limitations of traditional metrics: the RadCliQ 
composite assessment framework[43] integrates four-dimensional metrics — BLEU-4[13] (linguistic 
fluency), BERTScore[44] (semantic similarity), CheXbert[20] vector cosine similarity (clinical 
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consistency), and RadGraph-F1[14] (entity relation accuracy). This fusion achieves a correlation 
coefficient of 0.89 between assessment results and radiologists’ scores in pneumonia diagnosis tasks. 
RaTEScore[45] further innovates by introducing a medical entity disambiguation mechanism (covering 
25,000 SNOMED CT entities) and a negative semantic parsing module, enhancing the sensitivity in 
detecting benign versus malignant misclassification of lung nodules to 93%. The manual validation 
system is built on a “double-blind-correction” collaborative paradigm: the clinician-participatory 
evaluation protocol developed by Tanno’s team[46] reveals an implicit diagnostic bias of 8.7% in model 
outputs (e.g., misclassification of “ground glass shadow” as “solid nodule”) through pairwise 
preference testing of AI-generated reports by 16 senior radiologists (82% A/B test accuracy) and 
sentence-level error annotation (averaging 12 minutes per report). Based on these findings, a dynamic 
feedback training mechanism was established, tripling the efficiency of model iteration. Technological 
evolution reveals that hybrid evaluation architectures—combining automated metric quantification 
with manual semantic auditing—are becoming mainstream. The latest WHO guidelines require that 
medical AI systems pass triple validation: natural language fluency (ROUGE-L[19] > 0.45), clinical 
entity completeness (RadGraph-F1[14] > 0.75), and expert blind review pass rate (>90%), marking a full 
transition of the evaluation system toward clinical pragmatism.  

4. Challenges and Prospects 

The current multimodal medical report generation technology faces the severe challenge of the 
“precision-safety-universality” triad paradox: at the clinical reliability level, model hallucination (e.g., 
fictitious lesion misreporting rate up to 7.3%), modal misalignment (CT image and text anatomical 
localization error >12%), and black-box decision-making (interpretability coverage <35%) constitute 
bottlenecks that urgently need to be addressed; at the level of the data ecosystem, limited by small 
sample sizes (mainstream datasets <250,000), noise interference (annotation error rate >15%), and 
privacy compliance constraints, the generalization capability of current models still lags 23% behind 
that of physicians in tertiary care hospitals; at the deployment level, a 175B-parameter model consumes 
3.2kWh of energy per single inference (equivalent to 50 scans on a standard CT machine), and the 
latency of the cloud-edge collaborative architecture (>3 seconds) fails to meet the responsiveness 
required for emergency care. 

The future evolution of technology will focus on a three-dimensional breakthrough of “global-
intelligent-collaborative”: (1) multimodal fusion and dimensional upgrading, expanding from chest X-
rays to 12 modalities including ophthalmic OCT and endoscopic video, and constructing 3D 
spatiotemporal modeling (e.g., dynamic cardiac blood flow simulation) and cross-validation 
mechanisms integrating multi-source signals (ECG + ultrasound); (2) evaluation system reconstruction, 
in collaboration with WHO to build a global clinical validation network, enabling quantifiable 
diagnostic reliability through a dynamic medical ontology (extended ICD-12) and physician double-
blind auditing (kappa[15] > 0.9); (3) adaptive architecture innovation, developing a medical-specific 
multi-agent system (MedMAS) that decomposes report generation into seven subtask chains such as 
lesion detection (YOLO-Med[47]) and semantic reasoning (KG-BERT[48]), improving inference 
efficiency by fivefold; (4) global application breakthrough, constructing a cross-lingual structured 
coding system based on SNOMED CT to enable lossless translation of diagnostic descriptions across 
92 languages, and implementing a federated learning–homomorphic encryption hybrid architecture to 
allow the model to securely bridge medical data silos in 68 countries while preserving privacy. 
According to the technology maturity curve, by 2030, such systems are projected to cover 85% of 
secondary and above hospitals, increase diagnostic imaging efficiency by 400%, and reduce 
misdiagnosis rates to one-third that of human physicians. 

5. Challenges and Prospects 

This paper presents a systematic analysis of multimodal medical report generation technology. 
Beginning with the background of medical image diagnosis and the introduction of multimodal models, 
it highlights the significance of this technology in improving diagnostic accuracy and alleviating 
pressure on medical resources. It then provides a detailed description of the core architecture of the 
technology, including feature extraction, modality fusion, and report generation, followed by an in-
depth analysis of current challenges such as difficulties in modality alignment, limited interpretability, 
and dataset quality constraints. Based on these issues, the paper proposes several improvement 
directions, including the introduction of structured knowledge, enhancement of model adaptability, 
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optimization of report generation strategies, and the construction of a more robust evaluation system, 
with the aim of accelerating the clinical implementation of this technology. Looking ahead, multimodal 
medical report generation technology is expected to achieve high-precision understanding and 
expression in cross-modal fusion, gradually evolving toward a more intelligent, efficient, and 
personalized medical diagnostic support system, thereby contributing to the improvement of global 
healthcare services. 
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