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Abstract: Extreme weather events such as floods, hurricanes, and wildfires are increasingly impacting 

the world, thereby driving reforms in the property insurance industry. This paper addresses the 

challenge of making insurance underwriting decisions in the context of extreme weather. To this end, 

the Monte Carlo algorithm was employed to optimize the risk assessment method for individual natural 

disasters, while the Loss-Cost Ratio (LCR) method was integrated to construct a comprehensive risk 

assessment model (ARA). An insurance underwriting strategy tailored to varying risk levels was 

developed by incorporating the break-even model. A representative sample of 722 regions worldwide 

was analyzed. The Monte Carlo algorithm was applied to optimize the risk index for each locality 

under extreme weather conditions. Likewise, using the LCR method and break-even theory, the 

long-term profitability of insurance companies was evaluated. The findings indicate that when the 

number of policies increases or the claim rate decreases, profitability remains favorable, suggesting 

that underwriting remains feasible despite the rising risks posed by extreme weather events. Finally, 

the decision model was applied to Henan Province and New York City for validation, demonstrating 

results that align closely with real-world data. 
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1. Introduction 

Extreme weather refers to rare weather phenomena that have profoundly destructive impacts on 

human societies and ecosystems. In recent years, the intensification of the greenhouse effect has 

significantly increased the frequency and severity of extreme weather events worldwide, leading to 

substantial economic losses for property owners and insurance companies. According to statistics, over 

1,000 extreme weather events globally have caused fiscal losses exceeding $1 trillion [1]. For instance, 

Hurricane Andrew resulted in $20 billion in damages in 1992, while natural disasters in 2004 incurred 

insurance payouts totaling $35 billion. Consequently, establishing a robust risk assessment and 

management strategy has become a critical priority for the insurance industry. 

Reviewing literature shows that many studies have used traditional statistical methods, like extreme 

value theory [2] and ARIMA models, to assess extreme weather risks. These methods, however, require 

strict data distribution and quality, which are often lacking in practice. This limits their effectiveness in 

providing comprehensive risk assessments and developing effective strategies. In contrast, the Monte 

Carlo algorithm provides a novel approach through stochastic simulation, avoiding the rigid data 

requirements of traditional methods. Still, it faces challenges in addressing the complexities of 

underwriting decision-making due to its limited consideration of underlying mechanisms. 

To address problems, this paper integrates the Monte Carlo algorithm and LCR method to construct 

an ARA model. It also incorporates a break-even model to propose insurance underwriting strategies 

based on actual losses, costs, and profit factors for different risk scenarios. The contributions are: First, 
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the innovative application of the Monte Carlo algorithm to insurance underwriting overcomes data 

scarcity issues in traditional methods. Second, the blend of LCR and break-even theory identifies 

high-risk, high-return characteristics under extreme weather, providing new insights into insurers' 

sustainable strategies. 

2. Review of relevant literature 

Currently, extensive research has been conducted on the impact of extreme weather on the 

insurance industry, with a primary focus on premium rate setting, underwriting strategy development, 

and risk assessment. For instance, Han Sinan [3] employed extreme value theory to determine 

agricultural insurance rates; Zhu Jiayi [4]and colleagues proposed an optimization model to balance risk 

and return; Deng Haoqian [5]and collaborators developed a novel insurance model tailored to the needs 

of different hazards; and Hudson [6] and co-authors explored strategies to enhance resilience to extreme 

weather events by incorporating practical experience. 

Nevertheless, research on underwriting decisions by insurance companies in the context of complex 

extreme weather scenarios remains insufficient. Moreover, most existing studies rely heavily on 

statistical methods or mathematical models for risk assessment and decision-making. Among the 

specific techniques, Chen Dihong [7] et al. optimized underwriting strategies using the TVaR method; 

Zhou Yunzhi [8]et al. applied LSTM and random forest models to predict risk indicators; Wang Yukai 

[9]et al. developed a robust risk assessment model based on the ARIMA-KMEANS algorithm; and Guo 

Meijia [10]et al. integrated the PCA-AHP algorithm with the ARIMA model to evaluate underwriting 

risk. While these studies offer valuable theoretical support, several limitations persist. First, the models 

are relatively complex. Although advanced algorithms improve accuracy, they significantly increase 

the difficulty of data processing. Second, the methods lack dynamic adaptability, making it difficult to 

capture changes in disaster frequency and severity over time. Third, the analysis is often narrow, with 

most studies focusing only on specific events such as floods [3] or hurricanes [7], and limited 

consideration of multiple extreme weather events, which restricts their broader applicability. 

This paper presents a risk assessment model (ARA) that merges the Monte Carlo algorithm with the 

loss-cost ratio method and integrates the break-even theory. It improves model flexibility and accuracy 

by including multi-dimensional risk factors, aiding insurers in making scientific underwriting decisions 

amidst complex extreme weather conditions. 

3. Our work 

To visually illustrate the research framework of this paper, an overall flow chart (see Figure 1) is 

provided, enabling readers to systematically and clearly understand the research content. 

 

 Figure 1: Flow Chart of Our Work 

4. Indicator system construction and data description 

4.1 Indicator system construction for extreme weather risk assessment 

This paper constructs a benchmark index system for extreme weather risk assessment by integrating 
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literature with background knowledge of such risks as shown in Figure 2. The system includes two 

indicators that reflect the causes of disasters: probability of occurrence and intensity of events, which 

represent the likelihood and impact of extreme weather, respectively. In assessing environmental 

vulnerability and resilience, the indicators cover the number of regional disaster prevention measures 

and the disaster prevention Capacity index, which reflects the vulnerability and response capacity of 

the region. The vulnerability of carriers is assessed using a vulnerability index, which reflects the 

sensitivity of economic and social systems to disasters. 

  

 Figure 2: Chart of the risk index indicator system 

4.2 Data description for extreme weather risk assessment 

In this paper, to facilitate the empirical study, the data were preconditioned as follows: firstly, the 

missing values of the probability, intensity, and number of occurrences of extreme weather events were 

filled into zero. Second, the data collected for the five indicators were processed with 3𝛿 outliers to 

eliminate invalid data. The data comes from official authoritative websites, as shown in Table 1. 

 Table 1: Main date description and source 

Data description Data source 

Indicators related to area risk assessment 

https://ourworldindata.org/ 

https://www.emdat.be/ 

https://data.worldbank.org.cn/ 

https://www.stats.gov.cn/sj/ndsj/ 

https://www.census.gov/ 

https://clima.cbe.berkeley.edu/ 

Resilience to disasters 
https://www.mohurd.gov.cn/ 

https://www.archdaily.com/ 

Remaining Mentioned Data Various Related Literature 

5. Introduction to the research methodology and modeling 

5.1 Construction of a composite risk index 

In the mid-20th century, as research on natural hazards advanced, scholars began focusing on risk 

assessments for individual types of natural hazards. These methods remain widely applied in disaster 

risk analysis to this day. Based on a review of the literature [11][12], this paper develops a regional 

disaster risk assessment index, with its f-value calculated as follows: 

𝑓 = 𝑌 × 𝑌𝑋 × (1 − 𝑍𝑋) × 𝑃𝑋 × (1 + 𝜎) × 𝐶𝑣                        (1) 

Where 𝑓 is the risk value of different extreme weather conditions, 𝑌 is the number of extreme 

weather occurrences, and 𝑌𝑥 is the intensity of the disaster. 𝑍𝑋 is the degree of disaster preparedness, 

defined as the amount of disaster damage as a proportion of GDP. 𝑃𝑋 is the probability of occurrence of 

the disaster, and 𝜎 is the coefficient of variation. 𝐶𝑣 is the vulnerability index of the disaster-bearing 

body, which is defined according to the literature and consists of the 𝑉𝑎, 𝑉𝑏, 𝑉𝑐. 
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𝑉𝑎𝑖 = 0.1 × 0.9 +
𝑚𝑖𝑛(𝐴𝑖−𝐴1,𝐴2,𝐴3⋯𝐴722)

𝑚𝑎𝑥(𝐴1,𝐴2,𝐴3⋯𝐴722)−𝑚𝑖𝑛(𝐴1,𝐴1,𝐴1⋯𝐴722)
                (2) 

Where 𝑖 represents the 722 regions selected globally,  𝑉𝑎  denotes the potential vulnerability due 

to population density, 𝑉𝑏 signifies the built-up area per unit area, and  𝑉𝑏  can be calculated using 

Equation 2. Additionally, the potential susceptibility of land-per-capita GDP, denoted as 𝑉𝑐 , can be 

determined as follows: 

𝑉𝑐𝑖 = 1 − 0.9 ×
𝑚𝑖𝑛(𝐶𝑖−𝐶1,𝐶2,𝐶3⋯𝐶722)

𝑚𝑎𝑥(𝐶1,𝐶2,𝐶3⋯𝐶722)−𝑚𝑖𝑛(𝐶1,𝐶1,𝐶1⋯𝐶722)
                (3) 

Final 𝐶𝑣 is defined as follows: 

𝐶𝑣 = 0.295𝑉𝑎 + 0.357𝑉𝑏 + 0.348𝑉𝑐                        (4) 

Firstly, this paper examines key factors in extreme weather risk assessment and simplifies 

theoretical models to reduce complexity and uncertainty, enhancing their explanatory power. The 

simplified regional disaster risk index function is given by  𝜎 = 0. 

𝑓 = 𝑌 × 𝐶𝑣 × 𝑌𝑋 × (1 − 𝑍𝑋) × 𝑃𝑋                         (5) 

Finally, this paper considers the diversity of extreme weather occurrences and the global 

characteristics of disaster risks. It assigns weights to and averages the risks of different hazards to 

derive the following composite disaster risk values for the region: 

𝑓 =
𝑓1+𝑓2+𝑓3+⋯𝑓𝑛

𝑛
                                (6) 

5.2 Prediction of composite disaster risk values - Monte Carlo algorithm 

This paper's Monte Carlo algorithm aims to predict disaster risks for the next year by considering 

the randomness of extreme weather and the likelihood of regional disasters. As shown in Figure 3, It 

optimizes the assessment index for regional disaster risk. The specific research ideas and calculation 

steps are as follows. 

The principle of the Monte Carlo algorithm [13] is to use random numbers to solve deterministic 

problems. By sampling a large number of random numbers, we can obtain an approximate solution to 

the problem. The Monte Carlo algorithm usually consists of the following four steps: 

 

 Figure 3: Monte Carlo algorithm flowchart 

First, historical data on regional disasters and climate factors is collected to select the most suitable 

probability model. Then, the Monte Carlo algorithm is used to conduct simulations, refining the 

estimation results to closely match the actual probability of regional disasters P as follows. 

𝑃(𝐷𝑖𝑠𝑎𝑠𝑡𝑒𝑟𝑠 𝑜𝑐𝑐𝑢𝑟) ≈
1

𝑁
∑  𝑁

𝑖=1 𝐼(𝑥𝑖)                        (7) 

Where N is the total number of random samples and 𝐼(𝑥𝑖) is an indicator function to determine 

whether a disaster occurred in the i random sample. By summing and normalizing the results of all 

random samples, if a disaster occurs, then 𝐼(𝑥𝑖) = 1; otherwise 𝐼(𝑥𝑖) = 0. 

Next, the prediction of the number of occurrences is carried out for different extreme weather 
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events. The number of occurrences of extreme weather events in the region is estimated by weighting 

the disaster intensity of each simulation result. Here, N is the number of simulations conducted. And 

𝑓𝑥𝑖 is the result of calculating the extreme weather disaster intensity for the i random sample as 

follows. 

𝑌(𝐼𝑛𝑡𝑒𝑛𝑠𝑖𝑡𝑦 𝑜𝑓 𝑑𝑖𝑠𝑎𝑠𝑡𝑒𝑟) ≈
1

𝑁
∑  𝑁

𝑖=1 𝑓(𝑥𝑖)                        (8) 

Finally, the confidence interval for the number of disasters, designated as (𝐴 − 𝐵), indicates a 

(𝐴 − 𝐵) % probability that future disasters will fall within this range. 

Using the Monte Carlo algorithm to predict the vulnerability index, disaster preparedness, and 

disaster intensities allows for estimating the region's vulnerability to extreme weather in the upcoming 

year. These parameters can then calculate the disaster risk value for the new year, denoted as 𝑓𝑛+1. The 

growth rate of the regional disaster risk index can be expressed as follows: 

𝑞𝑛 =
𝑓𝑛+1−𝑓𝑛

𝑓𝑛
                                  (9) 

5.3 Calculation of pure rates - loss-cost rates 

In light of rising natural disaster risks, this paper examines the conditions under which insurers 

should make underwriting decisions. From an economic standpoint and in line with profitability goals, 

underwriting profit is the key indicator to assess whether an insurer should cover a specific region or 

type of risk. Using the Loss-Cost Ratio (LCR) [14] and extensive business data, the pure premium rate 

for a given area can be calculated as follows: 

𝜋𝑛+1 = 𝐸[
𝐿
~

𝐶
~] =

1

𝑛
∑  𝑛

𝑖=1
𝐿𝑖

𝐶𝑗
                            (10) 

The formula calculates a pure rate without accounting for extreme weather risk. Given the rising 

risk of such events, this traditional method is outdated. This paper updates the pure rate for a region by 

incorporating an extreme weather risk factor using the Monte Carlo algorithm, resulting in a corrected 

pure rate formula. 

\𝜋
𝑛+1 = 𝐸[

𝐿
~

𝐶
~] =

1

𝑛
∑  𝑛

𝑖=1
𝐿𝑖

𝐶𝑗
∗ (1 + 𝑞𝑛)                      (11) 

Where q is the regional risk index growth rate in year n. Meanwhile, the premium growth rate of 

approximately 4.06 percent was calculated using the Swedish Reinsurance Company's premium rate for 

2023 as a proxy for the formula below: 

𝐺 = 𝜋 × (1 + 0.0406) + 𝑏                            (12) 

It follows that the risk index growth rate q indirectly affects total premiums and rate growth by 

affecting pure rates. 

5.4 Construction of the break-even decision-making model 

The break-even point [15] is a key metric in insurance for evaluating underwriting feasibility. It helps 

insurers determine the policy volume needed for profitability, considering factors like coverage, claim 

rates, and premiums to make informed decisions. 

First, the formula for calculating the claim rate for the new year based on the revised net rate is as 

follows: 

𝑒 =
𝐿

𝑀
=

𝐿

𝜋 ×𝐶 
                                  (13) 

Next, the following formula was created by balancing the number of policies against each factor: 

𝐺 = 𝑏 + 𝑀 × 𝑛                                 (14) 

𝐿
~

= 𝑒 × 𝑛 × 𝑢 × 𝑁                                (15) 

𝑟 = 𝐺 − 𝐿
~

                                     (16) 

𝑒 =
𝐿

𝑀
                                      (17) 
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To consider the time value of money, this paper uses the present value formula: 

𝑆 = 𝐸 ×
1

(1+𝑖)𝑛                                 (18) 

 Table 2: Symbol Descriptions 

Symbol Meaning Symbol Meaning 

𝐿
~

 Total Benefit Amount 𝐶
~

 Total Insurance Amount 

G Total Premium 𝜋 Pure Rate 

L Claim Amount e Claims ratio 

M Premium u Average claim amount 

𝐶 Insurance Amount N Single payment 

n Number of Policies r Profit 

S Principal E Principal interest 

i Interest Rate b Fixed cost 

Finally, by fixing the insurance amount, the paper calculates the claim rate for the new year and 

assesses the equilibrium point between policies and the claim rate through break-even analysis (see 

Table 2 for symbol descriptions).  By adjusting the number of policies or claim rates while holding 

other factors constant, the paper predicts profitability.  Specifically, an increase in policies or a 

decrease in claim rates, with other factors constant, indicates that the region can maintain underwriting 

profitability despite rising extreme weather risks. 

6. Analysis of empirical results 

6.1 Case study—based on Henan Province and Los Angeles. 

The United States and China, each prone to frequent extreme weather events, were selected as case 

studies due to their large populations and diverse climates. The paper begins with a macro analysis 

using global data, then focuses on New York City and Henan Province to assess disaster risk through 

the proposed insurance decision-making model. Data collection included local comparisons and 

analysis of regional conditions. For example, the paper uses the Monte Carlo algorithm to predict the 

probability and frequency of diverse extreme weather events for the coming year, followed by analysis 

based on the simulation results. See Table 3 for the results. 

 Table 3: Forecast of risk index of two regions in 2025 

Los Angeles Frequency 

Average 

disaster 

intensity 

Probability 𝒁𝑿𝒊 Exposures 

Droughts 0.490 1 0.389 0.039 0.183 

Cyclones 4.940 2 0.992 0.016 9.644 

Wildfires 7.740 3 0.938 0.110 6.865 

Thundering 15.160 5 1.000 0.521 36.273 

︙      

Floods 5.630 1 0.489 0.010 0.305 

Henan Frequency 

Average 

disaster 

intensity 

Probability 𝒁𝑿𝒊 Exposures 

Heatwaves 10.620 2 0.721 0.017 0.604 

Floods 7.730 3 1.000 0.104 20.766 

Wildfires 0.180 1 0.158 0.140 0.073 

Thundering 8.370 1 1.000 0.017 8.222 

︙      

Cyclones 0.380 1 0.311 0.014 0.116 

Finally, by fixing the amount of insurance, the paper can calculate the claim rate for the new year 

and assess the equilibrium point between the number of policies and the claim rate through a 

break-even analysis. The index results are shown in Table 4. If you set a certain number of policies or 

change in claim rates and hold other factors constant, you can predict profit realization. Specifically, 

when the number of policies increases or the claim rate decreases, all other factors are equal. This 
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implies that the region can sustain underwriting profitability amid increasing extreme weather risks. 

 Table 4: Display the calculation results of each index 

Region Los Angeles Henan 

𝑉𝑎 0.134768 0.017480 

𝑉𝑏 0.100185 0.104099 

𝑉𝑐 0.761570 0.142031 

𝐶𝑣 0.342352 0.017106 

𝑍𝑋 0.696300 0.058500 

f 10.65400 5.956260 

𝑞2023 0.015778 0.014247 

𝜋 0.146261 0.098532 

𝑒 0.264057 0.166202 

6.2 Case evaluation results - based on break-even decision model 

 

 Figure 4: Break-even map of Los Angeles, USA 

The expected claim rate, policy costs, and profit-loss analysis for Los Angeles are presented in 

Figure 4. The average claim amount was $78,320, the interest rate was 4.2%, the average premium per 

policy was $1,544, and the fixed cost per contract was $466. Based on this, the following conclusions 

can be drawn: 

As shown in the left chart, an increase in the expected claim rate significantly raises the number of 

policies required to break even. For example, at a claim rate of 0.2645, an insurer must write 4,912 

policies to break even. If the claim rate remains stable, exceeding the equilibrium point allows the 

insurer to achieve profitability by adjusting premiums. The right chart shows that rising average policy 

costs gradually reduce the number of policies needed to break even. When expenses exceed $4,506, the 

required number of policies approaches zero. While higher costs can yield greater returns, they also 

elevate risks, potentially compromising insurer stability. Therefore, managing costs is critical in pricing 

strategy. 

 

 Figure 5: Break-even map of Henan Province, China 
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When the insurance company developed the Henan insurance plan, the average claim amount was 

6,825 yuan, the interest rate was 3.9%, the average premium per policy was 1,203 yuan, and the fixed 

cost per policy was 646 yuan(see Figure 5). Based on this, the following conclusions can be made: 

As shown in the left chart, the number of policies required to break even increases with the claim 

rate. Higher claim rates demand more policies to achieve profitability. At low claim rates, the 

break-even point rises gradually, but once a threshold is reached, it increases sharply, reflecting an 

accelerated risk accumulation. As seen in the chart on the right, the increase in the average policy cost 

has caused a gradual reduction in the number of policies required to break even. When the cost exceeds 

$4,500, the number of policies needed to break even approaches zero. This implies that while high 

costs may yield higher returns, they also substantially increase the risk of loss. Therefore, insurance 

companies must carefully balance costs and benefits based on specific circumstances to ensure 

sustained profitability. 

7. Sensitivity and robustness analysis  

 

 Figure 6: Sensitivity analysis of Monte Carlo model and break-even theory 

The sensitivity analysis of the ARA model was conducted using the Monte Carlo algorithm to 

calculate the risk index, simulating the extreme weather occurrence process with a Poisson distribution 

to introduce randomness and volatility. To test the model's stability and sensitivity to different factors, 

we replaced the random number distribution with negative binomial and normal distributions. As 

shown in Figure 6, changes in the random number distribution have minimal impact on the overall 

extreme weather probability, with fluctuations staying within an acceptable range, consistent with 

actual conditions. This indicates that the ARA model is stable across different distribution scenarios 

and accurately quantifies extreme weather risks, providing a solid foundation for future risk 

assessments. 

Additionally, sensitivity tests were performed on the break-even model to assess its responsiveness 

to parameter changes. By adjusting the expected claim rate and sensitivity factor, the break-even point 

was recalculated. The results demonstrate that regardless of changes in the expected claim rate or 

sensitivity factor, the trend of the break-even point remains consistent with the original situation, with 

fluctuations staying within acceptable error ranges. This indicates that the break-even model is stable 

and can effectively address the decision-making challenges faced by insurance companies. 

8. Conclusion   

In this paper, the ARA model is used to quantify the risk of extreme weather, and the break-even 

point is analyzed to provide a foundation for pricing and claim rate-setting in insurance. The findings 

are as follows: First, the ARA model quantifies extreme weather risk factors Precisely and produces 

visually distinct results. The evaluation indices are well-supported by literature, ensuring scientific 

rigor and reliability. Second, the model predicts that by 2025, due to precipitation instability caused by 

climate change, Los Angeles will experience a significant increase in wildfires, which may lead to 

severe flooding and landslides, amplifying flood risks. Third, the model can simulate extreme weather 

risks across different regions, and adding indicators can improve its predictive accuracy, showcasing its 

adaptability. Finally, sensitivity analysis shows that the model remains stable despite changes in the 

risk index, claim rate, or sensitivity coefficient, demonstrating strong applicability. 
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Based on these conclusions, the following recommendations are made: First, regarding model 

improvement, the current assumption of zero variation coefficient may introduce bias, so future studies 

should refine this assumption for better accuracy. Additionally, government intervention, which 

significantly affects disaster losses, should be included in the model for more accurate results. Second, 

insurance companies should use the ARA model to quantify extreme weather risks and optimize 

pricing and claim rates. In high-risk regions, underwriting strategies should be dynamically adjusted 

based on the risk index to reduce potential losses. The model index system should be enhanced by 

incorporating multidimensional data, such as government intervention and climate change trends, to 

improve adaptability. These recommendations show that the ARA model is an effective tool for 

analyzing extreme weather risks and supporting decision-making in the insurance industry, enabling 

better management of future risks and contributing to the sustainable development of the industry and 

the broader economy. 
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