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Abstract: In the context of the development of artificial intelligence, machine learning is one of the most 
important techniques in the field of artificial intelligence. At the same time, more and more practitioners 
have begun to try to utilize predictive models in machine learning to solve problems in practice. However, 
as water pollution has become a global environmental problem, traditional water quality prediction 
methods are difficult to cope with the complex and dynamically changing water environment. This project 
is dedicated to combining Particle Swarm optimization (PSO) and Back Propagation Neural Network 
(BPNN) by optimizing the weights and thresholds of the BP neural network, as well as dynamically tuning 
the parameters to optimize the PSO, and outputting a coupled PSO-BP model, thus overcoming the 
limitations of traditional water quality assessment methods. It effectively improves the global search 
ability of the model and avoids falling into local optimization. This method can also be widely used in 
the fields of environmental monitoring, financial forecasting, medical diagnosis, etc., demonstrating the 
prospect of wide application of artificial intelligence in solving practical problems. 
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1. Introduction 

The advancement of artificial intelligence (AI) technologies has positioned various intelligent and 
machine learning algorithms at the forefront of numerous domains. Leveraging AI, we gain deeper 
insights and predictive capabilities regarding water quality changes, enabling proactive measures to 
enhance water conditions and safeguard our ecosystems. This project harnesses the synergy between 
PSO and BPNN to refine a water quality prediction model. By utilizing PSO for optimizing the BPNN's 
weight thresholds, we address challenges such as susceptibility to local optima and slow convergence 
rates when tackling complex issues. Furthermore, we explore the impact of PSO parameter adjustments 
on model performance to identify the optimal network parameter configurations. Our goal is to markedly 
boost the accuracy and efficiency of water quality predictions, offering robust solutions for 
environmental monitoring and resource management challenges. 

Most of the swarm intelligence algorithms are generated by simulating the biological behaviors in 
nature, searching for the optimal solution in the solution space through the combination of exploration 
phase as well as development phase, which has been widely used in the field of optimization since its 
emergence and has achieved good results; and PSO, which is one of the earliest swarm intelligence 
algorithms proposed, has played a key role in the development of intelligent algorithms and provided a 
good demonstration for the subsequent research of swarm intelligence algorithms, and based on this, a 
number of swarm intelligence algorithms are proposed. Based on this, many swarm intelligence 
algorithms have been proposed and continuously improved in performance: Ant Colony Algorithm 
(ACO) [1], Artificial Bee Colony Algorithm (ABC) [2], Cuckoo Search Algorithm (CS) [3], Bat Algorithm 
(BA) [4], Whale Algorithm (WOA) [5], Grey Wolf Algorithm (GWO) [6], Grasshopper Algorithm (GOA) 

[7], Harris Hawk Algorithm (HHO) [8] and so on. The essence of the Particle Swarm Optimization (PSO) 
algorithm is to simulate the foraging behavior of birds, consider each bird in the space as a particle that 
is a candidate for a solution, and find the optimal value of an individual and then find the optimal solution 
of the group by tracking the particle flights (movement) [9]. The basic idea of PSO algorithm is to make 
use of the information sharing of each individual in the flock to make the group position evolve from 
disorder to order in the solution space [10], so as to obtain the optimal solution of the problem. 

As one of the most widely used techniques in the 21st century, machine learning is highly favored by 
scholars. Unlike traditional statistical methods, various algorithms of machine learning show excellent 
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performance in problems such as classification and prediction, with advantages such as simplicity and 
ease of use and excellent results. Among many machine learning algorithms, BPNN has become one of 
the important algorithms in the field of artificial intelligence due to its early development. BPNN is a 
widely used network model with excellent nonlinear mapping, generalization, and fault-tolerance 
capabilities [11]. However, the performance of traditional machine learning algorithms is often affected 
by many parameters, for example, BPNNs have challenges in the selection of initial weights and 
thresholds, which can easily fall into local optimal solutions, leading to a decrease in prediction accuracy 
[12]. Therefore, many researchers have optimized and improved the performance of BP neural networks 
with the help of swarm intelligence algorithms and applied them in various fields. For example, Zhang 
et al. used Grey Wolf Algorithm (GWO) [13] to optimize the BP neural network to predict the short-term 
traffic flow; Wang Yudong et al. used the improved Fruit Fly Algorithm (FOA) [14] to optimize the BP 
neural network to construct a financial crisis early warning model to verify the superiority of the 
improved algorithm; Ebrahimi et al. used ABCBPNN optimization algorithm to rock blast crushing 
prediction [15]; and Ghosh et al. used GABPNN algorithm to test materials [16]. It can be seen that how to 
optimize the key parameters of BP neural network to improve its prediction and classification 
performance is also one of the hot topics in current research. 

In essence, water quality prediction is a critical area closely linked to environmental conservation and 
public health, attracting substantial research interest. By proposing a PSO-BP algorithm for optimizing 
weight and threshold parameters more efficiently, this project aims to develop a highly accurate water 
quality prediction model, contributing to environmental protection efforts. 

2. Method 

2.1 BP neural network 

BP neural network is a widely used supervised learning algorithm for multilayer feedforward neural 
networks [17]. Since it was proposed by Rumelhart, Hinton, and Williams in 1986, it has become a 
powerful tool for solving complex nonlinear problems, and has especially excelled in the fields of pattern 
recognition, speech recognition, and image processing. BP neural network learns iteratively and 
continuously adjusts the weights and biases in the network in order to minimize the difference between 
the network outputs and the actual labels. 

 
Figure 1: Neural network structure 

Figure 1 illustrates the fundamental architecture of a neural network, comprising three distinct layers: 
the input layer, the hidden layer, and the output layer. The dimensions of the input and output layers are 
directly determined by the nature of the problem being addressed and the desired outcome, respectively. 
However, the optimal size of the hidden layer is not straightforwardly defined by any specific criteria 
and thus requires manual tuning to ascertain the most effective node count. The BP neural network 
operates through two principal phases: forward propagation and backward propagation. This dual-phase 
approach renders the BP neural network capable of adaptively modifying weights and biases, thereby 
enhancing the model's accuracy beyond the capabilities of a standard neural network setup. Through this 
structured learning process, divided into forward and backward propagation stages, the BP neural 
network adeptly fine-tunes its parameters to optimize performance. 
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2.1.1 Basic step 

Step 1. For the initialization of weights and biases within the network, it's common practice to start 
with small, randomly selected values. 

Step 2. Forward propagation: input samples are passed forward through the network to compute the 
output of each layer.  

αjl = σ�∑ wij
l

i ail−1 + bjl�                             (1) 

Where 𝑎𝑎𝑗𝑗𝑙𝑙 is the activation value of the 𝑗𝑗th node in the 𝑙𝑙th layer, 𝑤𝑤𝑖𝑖𝑗𝑗
𝑙𝑙  denotes the weight from the 

𝑖𝑖th node in the 𝑙𝑙 − 1th layer to the 𝑗𝑗th node in the lth layer, 𝑏𝑏𝑗𝑗𝑙𝑙 denotes the queue value of the𝑗𝑗th node 
in the 𝑙𝑙th layer, and 𝜎𝜎 denotes the activation function.  

Step 3. Calculation error: the error between the predicted value and the true value is calculated at the 
output layer. 

𝛿𝛿𝑗𝑗𝐿𝐿 = 𝜕𝜕𝜕𝜕
𝜕𝜕𝑎𝑎𝑗𝑗

𝐿𝐿 𝜎𝜎′�𝑧𝑧𝑗𝑗𝐿𝐿�                                  (2) 

where 𝛿𝛿𝑗𝑗𝐿𝐿 is the error of the 𝑗𝑗th node of the output layer, 𝐶𝐶 is the loss function, 𝑎𝑎𝑗𝑗𝐿𝐿 is the activation 
value of the 𝑗𝑗 th node of the output layer, and 𝜎𝜎′(𝑍𝑍𝑗𝑗𝐿𝐿) is the derivative of the activation function 
corresponding to the weighted input 𝑧𝑧𝑗𝑗𝐿𝐿 of the 𝑗𝑗th node of the output layer. 

𝛿𝛿𝑗𝑗𝑙𝑙 = �∑ 𝑤𝑤𝑘𝑘𝑗𝑗𝑙𝑙+1𝛿𝛿𝑘𝑘𝑙𝑙+1𝑘𝑘 �𝜎𝜎′�𝑧𝑧𝑗𝑗𝑙𝑙�                            (3) 

where δ𝑗𝑗𝑙𝑙 is the error of the𝑗𝑗th node of the 𝑙𝑙th layer and 𝑧𝑧𝑗𝑗𝑙𝑙 is the weighted input of the 𝑗𝑗th node of 
the 𝑙𝑙th layer. 

Step 4. Backpropagating the error: the partial derivatives of the error with respect to each weight are 
computed using the chain rule, and the error is backpropagated layer by layer from the output layer to 
the input layer, updating the weights and biases. 

𝜕𝜕∁
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

𝑙𝑙 = 𝛿𝛿𝑗𝑗𝑙𝑙𝑎𝑎𝑖𝑖𝑙𝑙−1                                 (4) 
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𝜕𝜕𝑏𝑏𝑗𝑗

𝑖𝑖 = 𝛿𝛿𝑗𝑗𝑙𝑙                                   (5) 

Update the weights and bias using gradient descent: 

𝑤𝑤𝑖𝑖𝑗𝑗𝑙𝑙 = 𝑤𝑤𝑖𝑖𝑗𝑗𝑙𝑙 − 𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝑤𝑤𝑖𝑖𝑗𝑗

𝑙𝑙                                  (6) 

𝑏𝑏𝑗𝑗𝑙𝑙 = 𝑏𝑏𝑗𝑗𝑙𝑙 − 𝜂𝜂 𝜕𝜕𝜕𝜕
𝜕𝜕𝑏𝑏𝑗𝑗

𝑙𝑙                                  (7) 

Where η is the learning rate, which controls the step size of each parameter update. 

Step 5. Update cyclically: Continue repeating steps 2 to 4 until the predefined stopping criteria are 
fulfilled, such as achieving a specific number of iterations or minimizing the error to a satisfactory 
threshold. 

2.2 Particle Swarm Optimization (PSO) 

The Particle Swarm Optimization (PSO)[9] technique models the collective behavior observed in 
natural flocks or swarms, such as birds searching for food, to tackle optimization challenges. Introduced 
by Eberhart and Kennedy in 1995, PSO draws upon the concept of swarm intelligence. Its simplicity, 
ease of implementation, and effective global search capabilities make it a popular choice for a broad 
range of optimization tasks. These include function optimization, neural network optimization, machine 
learning applications, and various engineering problems. At its heart, PSO views the optimization issue 
as a search operation within a multidimensional space, where each potential solution is termed a 
"particle." By iteratively adjusting their positions and velocities, these particles collaborate and share 
information to navigate towards the globally optimal solution. 

2.2.1 Basic step 

Step 1. Initialization: Generate a swarm of particles, each representing a point in the search space. 
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Each particle has a randomly initialized position and velocity. 

Step 2. Evaluation: calculates the fitness value for each particle, i.e., evaluates the performance of 
each particle or the quality of the solution. 

Step 3. Update Individual Optimum: for each particle, if the current position is better than the 
previously recorded Individual Optimum, update the Individual Optimum position for that particle. 

Step 4. Update global optimum: find the optimal one from the individual optimal positions of all 
particles and update it to the global optimal position. 

Step 5. Update speed and location: 

Speed update formula： 

𝑣𝑣𝑖𝑖(𝑡𝑡 + 1) = 𝑤𝑤 ⋅ 𝑣𝑣𝑖𝑖(𝑡𝑡) + 𝑐𝑐1 ⋅ 𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑1( ) ⋅ �𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖 − 𝑥𝑥𝑖𝑖(𝑡𝑡)� + 𝑐𝑐2 ⋅ 𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑2( ) ⋅ �𝑔𝑔𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡 − 𝑥𝑥𝑖𝑖(𝑡𝑡)� (8) 

Position update formula: 

𝑥𝑥𝑖𝑖(𝑡𝑡 + 1) = 𝑥𝑥𝑖𝑖(𝑡𝑡) + 𝑣𝑣𝑖𝑖(𝑡𝑡 + 1)                          (9) 

Where,𝑣𝑣𝑖𝑖(𝑡𝑡) is the velocity of the particle at time 𝑡𝑡and 𝑥𝑥𝑖𝑖(𝑡𝑡)is the position of the particle at time 
t.𝑤𝑤is the inertia weight, which controls the continuity of the particle's velocity and helps to balance the 
global and local search. c1 and c2 are the individual learning factor and the social learning factor, which 
indicate the degree to which the particles are affected by the individual's historical optimal solution and 
the group's historical optimal solution, respectively. 𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑1()and 𝑟𝑟𝑎𝑎𝑟𝑟𝑑𝑑2()are the random numbers in 
the range of [0,1] for the algorithm to introduce randomness and increase diversity.𝑝𝑝𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡𝑖𝑖is the particle's 
historical optimal position.𝑔𝑔𝑏𝑏𝑝𝑝𝑝𝑝𝑡𝑡is the global optimal position. 

Step 6. Termination conditions: repeat steps 2 through 5 until the termination conditions are met (e.g., 
the maximum number of iterations is reached or the quality of the solution meets specific criteria). 

2.2.2 Algorithmic improvements 

The success of Particle Swarm Optimization (PSO) hinges on the precise tuning of its parameters: 
inertia weight (w), personal learning coefficient (c1), and social learning coefficient (c2). These settings 
influence the exploration-exploitation balance, with the inertia weight affecting the exploration scope 
and the learning coefficients adjusting the search towards personal bests and the global optimum. 
Improper configurations can lead to inefficient search strategies, either converging prematurely on local 
optima or wandering aimlessly in the solution space. 

This study proposes an adaptive dynamic tuning strategy for PSO parameters to enhance algorithm 
performance. It employs a threshold-based mechanism (improvement_threshold) to dynamically 
modulate w, c1, and c2 in response to the observed progress towards the global optimum. When significant 
improvements occur, the strategy decreases w and c1 to foster global exploration while increasing c2 to 
encourage information sharing and collective movement towards the global best. If improvements are 
lacking, it shifts focus towards local search by increasing w and c1 and reducing c2. 

This adaptive approach mitigates the need for manual parameter setting in PSO, overcoming 
challenges of static parameterization that can lead to premature convergence or excessive exploration. 
By adjusting search strategies in real-time based on performance feedback, it significantly enhances the 
algorithm's efficiency and broadens its effectiveness across diverse problem landscapes. 

2.3 PSO-BP coupled model 

The coupling idea of PSO-BP in this project is to combine the particle swarm algorithm (PSO) with 
the back propagation neural network (BPNN) in order to optimize the BPNN weights and threshold 
determination. Meanwhile, the introduction of adaptive dynamic parameter tuning to optimize the PSO 
improves its ability to jump out of the local optimal solution, which further improves the accuracy of the 
coupled model. In training BPNN, the gradient descent method is used for weight and bias updating, and 
although it is a commonly adopted method, it has a significant limitation: the method is prone to trap the 
network in local minima. This problem stems from the mechanism by which the gradient descent method 
relies on the gradient of the loss function to guide the parameter updates. In this project, the PSO 
algorithm is used to determine the weights and biases of the network to optimize the parameter selection 
with its global search capability. The PSO algorithm can effectively avoid the local minimum problem 
and enhance the global search capability of parameter optimization. Combining the PSO algorithm in the 
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parameter optimization process of BPNN, it can explore in a wider parameter space in order to find better 
weights and bias configurations, which can improve the efficiency of network training and the 
performance of the model. This method not only solves the local minimum problem faced by the gradient 
descent method, but also provides a more effective and flexible strategy for solving complex nonlinear 
problems. 

2.3.1 Model construction 

Water quality grade data were 
imported and normalized

Divide the training set and test 
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Determine the BPNN structure
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Figure 2: Flowchart of PSO-BP coupling model 

As shown in Figure. 2, the steps of the PSO-BP coupled model are: 

Step 1. The collected preprocessed data is divided into 25% as a test set to check the prediction 
accuracy of the model, and the rest is used as a training set to train the network. 

Step 2. According to the empirical formula to determine the optimal number of nodes in the hidden 
layer, and accordingly construct the standard BP neural network to process the data, and get the results 
of the evaluation system of the standard BP neural network. 

Step 3. The PSO algorithm is introduced to obtain the optimal weights and bias setting values for the 
BP neural network after dynamic tuning optimization. 

Step 4. BP neural network construction with optimal weights and bias setting values, output coupled 
BP neural network evaluation system results. 
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3. Results 

3.1 Data sources 

The experimental data for the water quality prediction model came from the national real-time data 
dissemination system for automatic surface water quality monitoring, collected by Qingyue Data 
(https://data.epmap.org/page/index), and the monitoring data of the corresponding state-controlled 
surface water sections in the Yangtze River Basin of Wuhan City, Hubei Province, were specifically 
selected for the period from January 1, 2023 to January 1, 2024 The final data involve cross sections of 
Pouring Water, Axe Lake, Hanjiang River, Jinshui, Lianshui, Liangzi Lake, Name Water, Tongshun 
River, input water, and Yangtze River cross sections, and the initial cross section name, data volume, 
and the amount of data in the normal state of the site are shown in the chart, which is in the state of 
maintenance of the site record data are missing in the subsequent data processing process needs to be 
excluded. 

Table 1: Description of data 

Name of 
section 

data 
volume 

Number of site normal 
data 

Name of 
section 

data 
volume 

Number of 
site normal 

data 
Daoshui 3429 3354 Liangzi Lake 9056 8796 

Axe Lake 2276 2178 Sheshui 2007 1768 

Hanjiang 2273 2143 Tongshun 
River 3749 3288 

Jinshui 1629 1590 Yunshui 3401 3225 
Jushui 3011 2861 Yangtze River 4448 4088 

aggregate 35279 33291    

3.2 Data preprocessing 

The water quality modelling indicator system is given in Table 1 and Table 2: 

Table 2: Model Indicator System  

Indicator 
dimension 

Indicator name Content of the 
indicators 

Indicator name Content of the 
indicators 

Water 
Quality 

Prediction 
Modeling 
Indicator 
System 

x1 
Water Quality 

Category 
x7 Total Phosphorus 

x2 
Water 

Temperature 
x8 Total Nitrogen 

x3 PH x9 Conductivity 
x4 Dissolved Oxygen x10 Turbidity 
x5 HDI x11 Chlorophyll 
x6 Ammoniacal x12 Algae Density 

Table 3: Data pre-processed forms 

x1 x2 x3 x4 x5 x6 x7 x8 x9 x10 x11 x12 
3 7.53 8.083 9.835 4.484 0.0307 0.0267 0.829 314.401 4.782 0.00335 946082.2 
2 6.96 7.69 10.283 2.533 0.025 0.0225 0.7 197.669 6.505 0.00354 585104.8 
3 7.26 7.64 11.136 2.704 0.025 0.0268 1.118 185.02 31.882 0.00347 3531876 
3 7.55 7.22 10.788 3.207 0.025 0.0305 0.932 192.69 28.601 0.00282 2041310 

...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... ...... 
In accordance with regulatory guidelines, surface water quality is classified into five levels. Any 

quality falling below the fifth level is referred to as below-V quality. Specific benchmarks are set for 
each quality parameter, exemplified by the potassium permanganate values for the five levels: 2, 4, 6, 10, 
and 15, respectively. A value exceeding 15 signifies a below-V quality rating. To ensure data integrity, 
entries recorded during maintenance of monitoring stations and certain instances of incomplete data were 
eliminated. Additionally, a statistical method, the three-standard deviation rule, was utilized to identify 
and remove anomalies. Due to variations in the scale of data and for ease of analysis, normalization 
techniques were applied. Consequently, water quality ratings were represented numerically, with below-
V quality specifically marked as "6". The original and processed datasets are compiled in Table 3. 
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3.3 Comparison of model parameter settings and prediction results 

3.3.1 Model Parameter Setting 

Guided by the established water quality monitoring criteria, eleven specific indicators were 
meticulously selected to serve as inputs for the BP neural network, thereby determining the number of 
nodes in the input layer (m = 11). These indicators collectively inform the network about the water quality 
level, culminating in a singular output node (n = 1) that represents the assessed water quality grade. The 
configuration of nodes within the hidden layer adheres to a refined empirical formula, encapsulated as 
(10), where a ranges from 0 to 10: 

      ℎ = √𝑚𝑚 + 𝑟𝑟 + 𝑎𝑎                                        (10) 

By fine-tuning the value of parameter a to ascertain the optimal number of nodes in the hidden layer, 
rigorous testing on the training set revealed that a configuration of 7 nodes in the hidden layer achieves 
the lowest mean square error (MSE) of 0.017211 on the test set, marking the most effective setup. This 
optimal arrangement requires a total of 84 (𝑚𝑚 × ℎ + ℎ × 𝑟𝑟) weights and 8 (h + n) biases, paving the way 
for optimization of the network's parameters. We divided our dataset, reserving 25% for testing and the 
remainder for training, employing cross-validation to ensure the robustness of our findings. 

In setting up the BP neural network, we established initial parameters, including the number of hidden 
layers and a target for convergence error, among others. Specifically, we configured the BP neural 
network training to run 1000 iterations, with a learning rate of 0.01 and a training goal error of 0.00001. 
We updated the display frequency to every 25 iterations, implemented a momentum factor of 0.01, and 
set a minimum performance gradient of 1e-6. The system was designed to tolerate up to 6 consecutive 
training failures before termination. 

For the PSO algorithm, aimed at further refining the neural network's parameter optimization, we 
initiated with a population size of 10 and a maximum of 50 evolutionary generations. The dimensionality 
of the problem was established at 92, accounting for the total number of network parameters to be 
optimized, allowing each to vary within a range of [-3, 3]. The PSO was configured with an individual 
learning factor (c1) of 1.0, a social learning factor (c2) of 2.0, and an inertia weight (w) of 0.9. Moreover, 
we set an improvement threshold of 0.01 to assess the optimization process's effectiveness. 

This comprehensive methodology underscores our dedication to enhancing the predictive accuracy 
of our neural network model. Through a blend of conventional and evolutionary optimization strategies, 
we ensure the model's suitability for addressing the intricacies of water quality prediction. 

3.3.2 Comparison of forecast results 

Table 4: Experimental results 

Algorithmic 
model 

Average absolute 
error(MAE) 

Mean square 
error(MSE) 

Rms 
error(RMSE) 

Mean absolute 
percentage 

error(MAPE) 
BPNN 0.19234 0.077035 0.27755 7.5301% 

PSO-BP 0.10088 0.047083 0.21699 3.8648% 
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Figure 3: Visualization of results 

 
Figure 4: Convergence curve 

The results of the evaluation system of BPNN and coupled PSO-BP models are shown in Table 4, 
which show that MAE, MSE, RMSE, and MAPE are significantly improved, in which the average 
absolute percentage error is optimized from 7.5301% to 3.8648%. Figure 3 shows the comparison 
between the predicted and true values of the BP neural network before and after PSO optimization (left) 
and the error comparison between the predicted and true values of the BP neural network before and after 
PSO optimization (right), respectively, and it can be seen that the optimized BP neural network of the 
PSO is closer to the true value, and the error is also more converged to 0.Tosum up, the coupled PSO-
BP model improves the prediction accuracy for water quality.  

 The convergence curve of PSO algorithm is shown in Figure 4. According to the above experimental 
results, the PSO algorithm after dynamic parametric optimization converges completely around 40 
generations, and the overall trend of global search followed by local search is presented, and the 
parameters can be adjusted in time to make it jump out of the local optimum in the face of the local 
optimum solution, which avoids converging to the local optimum solution too early. 

4. Conclusion  

In this research, we innovated within the domain of water quality forecasting by integrating a PSO-
BP hybrid model. This model synergizes the strengths of PSO and BPNN to tackle the inherent 
challenges of neural network-based predictions, particularly those related to optimization of network 
parameters such as weights and biases. The primary innovation lies in applying PSO to dynamically 
refine these parameters, thereby circumventing the limitations of traditional gradient descent methods, 
which are prone to premature convergence and trapping in local optima. 

To further enhance the model's efficacy, we introduced an adaptive mechanism for tuning the PSO's 
intrinsic parameters (w, c1, c2), tailored to improve its search capabilities. This adaptive tuning is 
predicated on threshold values, facilitating a more nuanced and effective search process. This 
methodological enhancement not only elevates the precision of our water quality forecasts but also 
endows the PSO with a robustness against common pitfalls like premature convergence. 

The experimental validation of our PSO-BP hybrid model demonstrates a marked improvement in 
predictive accuracy over standard BPNN. This is quantitatively reflected in significant reductions across 
a suite of error metrics, including mean absolute error, mean squared error, root mean square error, and 
mean absolute percentage error. Such improvements underscore the utility of our proposed optimizations 
in refining the model's predictive performance. 

Moreover, the adaptive parameter tuning not only bolsters the PSO algorithm's efficiency but also 
enriches our understanding of its operational dynamics, particularly in how it navigates the optimization 
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landscape to avoid common obstacles like local optima. 

This study, while focused on the specific application of water quality prediction, unveils a broader 
potential for the PSO-BP hybrid model across various scientific and engineering disciplines. The 
challenges and shortcomings inherent in traditional neural network applications can potentially be 
mitigated through this hybrid approach, opening new avenues for research and application. The 
versatility and improved performance of the PSO-BP model herald promising opportunities for its 
adoption in diverse fields, ranging from environmental science to engineering and beyond, where 
predictive modeling plays a critical role. This cross-disciplinary potential invites further exploration and 
development, aimed at harnessing the full capabilities of hybrid neural network models in complex 
problem-solving scenarios. 
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