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Abstract: BeiDou pseudolites are ground-based BeiDou-like signals transmitters to augment 
positioning accuracy and service availability of the BeiDou satellite navigation system. A significant 
challenge − the “near far problem” arises because sometimes the signals from the nearby BeiDou 
pseudolites are strong enough to block the satellite signals. One of the promising solutions is to pulse 
the pseudolite signals with a low duty cycle to reduce the interference. Some existing pulsing schemes, 
i.e., the RTCM SC-104 and the RTCA SC-159 have been proved effective in many applications. 
However, most of them are unable to provide a close, multiple pseudolite transmissions due to the 
random pulse pattern. In this paper, a pseudo-random pulse pattern based upon the theory of linear 
congruence has been proposed to improve the multi-access performance. The spectral and temporal 
characteristics of the proposed pulse pattern are analyzed and compared with the random pulse 
pattern. From the analysis, it emerges that the proposed scheme features better characteristics to 
facilitate multiple pseudolite transmission. 
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1. Introduction 

Being ground-based navigation signal transmitters, pseudolites (PLs) are set to compliment the 
global navigation satellite system (GNSS) constellations if there are insufficient observable satellites, 
such as in an urban canyon or a deep open mine [1-3]. Implementation of PLs has been endorsed in many 
modernization programs of GNSS, such as the Aeronautical Radio Navigation Service[4] for the GPS 
the "Local Elements" [5] for the Galileo system. The Chinese BeiDou system is currently in the process 
of constellation construction, implementation of the BeiDou pseudolites has also been proposed to 
augment the signal coverage and positioning precision. 
In practical PLs deployment, the "near-far problem" is one of the severe challenges that must be 
overcome. For maximum compatibility, most PLs broadcast in the GNSS bands, introducing additional 
interference to the satellite signal acquisition. Compared with the received satellite signal power which 
is nearly constant, the PL signal power varies greatly in accordance with the distance from the user on 
the ground. At the "near" point, the received PL signal power is strong enough to saturate the receiver 
and in fact disable the satellite signal detection [6].  

There are many solutions have been adopted to reduce the interference, in which signal pulsing the 
most popular one [7]. By transmitting a small portion of the entire period signal with a low duty-cycle 
pulse, the interference can be averaged to an acceptable level. For example, the Radio Technical 
Commission for Maritime Services (RTCM) SC-104 scheme [8] was designed for the GPS PLs where a 
1023 chips code is transmitted in 11 pulses of 93 chips each, so that the average interference time is 10% 
of the code period, which is acceptable for the receiver to track both satellite and PLs signal. However, 
the RTCM SC-104 scheme employs a random pulse position arrangement mechanism, results in a high 
pulse collision probability especially when multiple PLs are applied. Therefore, the RTCM SC-104 
scheme is not the optimal option for the BeiDou PL implementation. 

Pseudo-random sequences have found several applications in the communications field for the 
design of frequency hopping sequences where the signal transmission orders are arranged in the 
pseudo-random way to avoid the interference in the frequency division multi-access (FDMA) system. 
The linear congruence theory is the most widely used pseudo-random sequence generation method 
which has been proved effective in the Radar and Sonar signal design. In this paper, the BPL pulsing 
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scheme based upon the linear congruence theory was designed and analyzed. This paper is organized as 
follows: first an overview of the pulsing scheme models is presented. Pulse pattern construction based 
on both random theory and the linear congruence theory are introduced in section 3. Signal 
characteristics analysis and comparison between the two types of patterns are conducted in section 4. 
Conclusion is made in Section 5. 

2. Pulsing scheme model and parameters 

The signal transmitted by the BeiDou PL is composed of two components:  

SPL[n] = S[n] ∙ P[n]                                 (1)  

where S[n] is the ranging code which can be used to compute the pseudo-range, P[n] is the high 
energy pulses for long haul transmission. Same as the satellite signal, the PL ranging code is comprised 
of Gold code with length 𝑁𝑁𝑐𝑐 = 2046 and quadrature phase shift keying subcarriers. Different phase 
shifts are assigned to the PL ranging code to sustain the orthogonality required by the interoperability 
between BeiDou satellites and PLs. The pulse component can be expressed as: 

𝑃𝑃[𝑛𝑛] = ∑ 𝑃𝑃𝑏𝑏[𝑛𝑛 − 𝑖𝑖𝑁𝑁𝑒𝑒 ∙ 𝑁𝑁𝑐𝑐]+∞
−∞                             (2) 

where 𝑃𝑃[𝑛𝑛] can be seen as the repetition of the basic pulse pattern 𝑃𝑃𝑏𝑏[∙] which is a set of sequence 
that define the transmission time slots,  𝑁𝑁𝑒𝑒 is the number of the code period repetitions within the 
basic pulse pattern. The length of the basic pulse pattern can be obtained by 𝑇𝑇𝑒𝑒 = 𝑁𝑁𝑒𝑒 ∙ 𝑁𝑁𝑐𝑐 ∙ 𝑇𝑇𝑐𝑐ℎ =
𝑁𝑁𝑒𝑒 ∙ 𝑇𝑇𝑐𝑐, where 𝑇𝑇𝑐𝑐ℎ is the duration of one single chip. The model that characterize the pulsing scheme is 
illustrated in Fig.1. 

 
Figure 1: A schematic diagram of parameter relation of pulse modulation scheme 

Pulse duty cycle is the most important parameter, not only it determines the pulse duration but the 
pulsing scheme period. It can be expressed as: 

𝑑𝑑 = 1
𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐

∑ 𝑃𝑃𝑏𝑏[𝑛𝑛]𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐−1
𝑛𝑛=0                              (3) 

where 1
NeNc

 denotes the average pulse duration of the entire pulsing scheme. (3) can be further 
expressed as:   

𝑑𝑑 = 1
𝑁𝑁𝑒𝑒
∑ 𝑑𝑑𝑘𝑘
𝑁𝑁𝑒𝑒−1
𝑛𝑛=0                                 (4) 

where 𝑑𝑑𝑘𝑘 is the duty cycle of one code period: 

   𝑑𝑑𝑘𝑘 = 1
𝑁𝑁𝑐𝑐
∑ 𝑃𝑃𝑏𝑏[𝑛𝑛 + 𝑘𝑘𝑁𝑁𝑐𝑐]𝑁𝑁𝑐𝑐
𝑛𝑛=0                             (5) 

It is desirable to have a uniform pulse scheme that 𝑑𝑑 = 𝑑𝑑𝑘𝑘 to preserve the autocorrelation function 
of the pulsed signal. For example, when 𝑑𝑑𝑘𝑘 = 6.25%, one can transmit 2046 chips in 𝑁𝑁𝑒𝑒 = (1 𝑑𝑑𝑘𝑘)⁄ =
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16 code period, in which the entire duty cycle 𝑑𝑑 = 𝑑𝑑𝑘𝑘 = 6.25%. On the other hand, if 𝑑𝑑𝑘𝑘 = 6%, the 
transmission period is 𝑁𝑁𝑒𝑒 = (1 𝑑𝑑𝑘𝑘) + 1 = 17⁄ , it turns out that 𝑑𝑑 = 5.88. Therefore, a careful duty 
cycle consideration is required. 

Assuming that only one pulse is transmitted in each code period, the basic pulse pattern can be 
expressed as:   

𝑃𝑃𝑏𝑏[𝑛𝑛] = ∑ П𝑑𝑑𝑖𝑖𝑁𝑁𝑐𝑐[𝑛𝑛 − 𝑘𝑘𝑁𝑁𝑐𝑐 − 𝜏𝜏𝑘𝑘]𝑁𝑁𝑒𝑒−1
𝑘𝑘=0                      (6) 

where 𝜏𝜏𝑖𝑖 denotes the time slot assigned to the 𝑖𝑖th pulse, П𝑑𝑑𝑘𝑘𝑁𝑁𝑐𝑐[𝑛𝑛] represents the rectangular 
wave of the pulse with the duration of 𝑑𝑑𝑘𝑘𝑁𝑁𝑐𝑐 the: 

П𝑑𝑑𝑘𝑘𝑁𝑁𝑐𝑐[𝑛𝑛] = �1,     n = 0,1,2 … …𝑑𝑑𝑘𝑘𝑁𝑁𝑐𝑐 − 1;
0,     else                                                        (7) 

if 𝑑𝑑𝑘𝑘 =  𝑑𝑑, (7) can be rewritten as: 

𝑃𝑃𝑏𝑏[𝑛𝑛] = ∑ П𝑑𝑑𝑁𝑁𝑐𝑐[𝑛𝑛 − 𝑘𝑘𝑁𝑁𝑐𝑐 − 𝜏𝜏𝑘𝑘]𝑁𝑁𝑒𝑒−1
𝑘𝑘=0                       (8) 

where𝜏𝜏𝑘𝑘 ∈ {1,2,3, … … ,𝑁𝑁𝑒𝑒}. The basic pulse pattern is characterized by the pulse duration 𝑑𝑑𝑘𝑘𝑁𝑁𝑐𝑐 
and transmission time-slots arrangement. Consequently, design of a pulsing scheme relies on the 
construction of the pulse pattern. 

3. Pulse pattern construction 

3.1 Random permutation pattern 

The first step of pulse pattern construction is to break the code into several blocks with durations 
{𝑑𝑑𝑘𝑘𝑁𝑁𝑐𝑐}𝑘𝑘=0

𝑁𝑁𝑒𝑒−1.For any type of the GNSS ranging code, equal duration is not the best option, because in 
some cases the pulse duration may not be a integer, which may cause some spectrum distortion of the 
ranging code. Thus, it is proposed that the pulse durations be chosen as follows:  

𝑑𝑑𝑛𝑛𝑁𝑁𝑐𝑐 = ⌊𝑑𝑑𝑁𝑁𝑐𝑐⌋ 

𝑑𝑑𝑠𝑠𝑁𝑁𝑐𝑐 = ⌊𝑑𝑑𝑁𝑁𝑐𝑐⌋ + 1                               (9) 

where 𝑑𝑑𝑛𝑛𝑁𝑁𝑐𝑐 is the duration for normal pulses,𝑑𝑑𝑠𝑠𝑁𝑁𝑐𝑐is the duration for special pulses,the symbol ⌊ ∙
 ⌋ denotes the floor operation. The special pulse is one chip larger to contain the fractional part clipped 
by the floor operation, so that the duration variation can be averaged to the minimum. The full code can 
be transmitted in the minimum amount of time, corresponding to 𝑁𝑁𝑒𝑒 = 𝑁𝑁𝑛𝑛 + 𝑁𝑁𝑠𝑠 code periods.  

𝑑𝑑 = 1
𝑁𝑁𝑐𝑐+𝑁𝑁𝑠𝑠

                                   (10) 

Based on the fact that 𝑁𝑁𝑛𝑛𝑑𝑑𝑛𝑛𝑁𝑁𝑐𝑐 + 𝑁𝑁𝑠𝑠𝑑𝑑𝑠𝑠𝑁𝑁𝑐𝑐 = 𝑁𝑁𝑐𝑐, 𝑁𝑁𝑛𝑛 and 𝑁𝑁𝑠𝑠 can be obtained by: 

𝑁𝑁𝑠𝑠 = 𝑁𝑁𝑐𝑐 − 𝑁𝑁𝑒𝑒𝑑𝑑𝑛𝑛𝑁𝑁𝑐𝑐 

𝑁𝑁𝑛𝑛 = 𝑁𝑁𝑒𝑒 − 𝑁𝑁𝑠𝑠                                (11) 

Consequently, the pulse durations {𝑑𝑑𝑘𝑘𝑁𝑁𝑐𝑐}𝑘𝑘=0
𝑁𝑁𝑒𝑒−1 is the set 

𝑁𝑁𝜏𝜏 = {0,𝑑𝑑𝑠𝑠𝑁𝑁𝑐𝑐 , … …𝑁𝑁𝑠𝑠𝑑𝑑𝑠𝑠𝑁𝑁𝑐𝑐 , (𝑁𝑁𝑠𝑠𝑑𝑑𝑠𝑠 + 𝑑𝑑𝑛𝑛)𝑁𝑁𝑐𝑐 , … … ,𝑁𝑁𝑐𝑐[𝑁𝑁𝑠𝑠𝑑𝑑𝑠𝑠 + (𝑁𝑁𝑛𝑛 − 1)𝑑𝑑𝑛𝑛]}     (12) 

In this way, if we select 𝑑𝑑 = 6.25%, one period of the BeiDou ranging code is break down into 14 
special pulses with duration of 128 chips each and 2 normal pulses with duration of 127 chips each, as 
illustrated in Figure 2. 

 
Figure 2: Chip settings of BPL pulsed signal at d=6.25% duty cycle 

The second step is to set the order of the transmission time-slots. It can be done by mapping the 
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pulse index into the cells from a 𝑁𝑁𝑒𝑒 × 𝑁𝑁𝑒𝑒 array where the row represents the code period and the 
column represents the time-slot. In the uniform pulsing scheme, each time-slot occurs once and only 
once, therefore the order can be defined by a permutation sequence over an alphabet 𝐴𝐴 consisting of 
𝑚𝑚 symbols where each symbol exists only once. The permutation sequence can be obtained in either a 
random or a pseudo-random fashion. For the random fashion, there are possible 𝑁𝑁𝑒𝑒! − 2 permutation 
sequences can be made, the two exceptions are (1,2,3, … … ,𝑁𝑁𝑒𝑒 − 2,𝑁𝑁𝑒𝑒 − 1,𝑁𝑁𝑒𝑒)and(𝑁𝑁𝑒𝑒 ,𝑁𝑁𝑒𝑒 − 1,𝑁𝑁𝑒𝑒 −
2, … … 3, 2, 1), because the cyclic shifts are need to be avoided to preserve the spectral properties.  

The random permutation sequence is easy to implement and has good spectral properties. However, 
a significant drawback is that the multi-access performance is relatively low because the signal 
collision probability arises along with the increase of the BPLs applied in the area. Figure 3 illustrates 4 
random pattern arrays for 4 synchronized BPLs at duty cycle 𝑑𝑑 = 6.25%. It can be seen from the figure 
that collision of two signals occurs three times while three signals are collided in the 16th code period. 
In order to provide a better multi-access performance, a pseudo-random pattern is preferred to decrease 
the signal collision probability. 

 
Figure 3: Random pulse pattern with 4 code periods at duty cycle d=6.25% 

3.2 Linear congruence pattern 

The theory of linear congruence is a widely used pseudo-random permutation sequence generation 
method in the field of radar and asynchronous spread spectrum communications where the generated 
sequence possesses most of the desirable properties such as sharp autocorrelation peak and small 
side-lobs. The pulse pattern considering the linear congruence can be expressed as: 

𝑘𝑘𝑖𝑖(𝑚𝑚𝑖𝑖 , 𝜏𝜏𝑖𝑖) ≡ 𝑚𝑚𝑖𝑖𝜏𝜏𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃), 0 ≤ 𝑚𝑚𝑖𝑖 , 𝜏𝜏𝑖𝑖 ≤ 𝑃𝑃 − 1, 𝑖𝑖 = 1,2 … … ,𝑃𝑃 − 1     (13) 

where 𝑚𝑚𝑖𝑖 is the BPL index, 𝑘𝑘𝑖𝑖 is the code period, 𝜏𝜏𝑖𝑖 is the time-slot and 𝑃𝑃 is a prime number. 
As an example consider the pattern array generated for 𝑃𝑃 = 17 and 𝑖𝑖 = 16 shown in Fig. 1. The 
number inside each cell is the BPL index. It is clear seen from the figure that each BPL index has a 
unique pattern and for each pattern, each code period and each time-slot occur once and only once. The 
array contains 16 BPL index, each BPL can possesses 4 different patterns for the 4 synchronized BPLs 
case. 
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Taking P=5 as an example, the remaining classes are {1, 6, -4}, totally {5, 1, 7, -2, 4}, and the 
absolute minimum full residual is {-2, -1, 0, 1, 2}. When using the linear congruential algorithm, the 
pseudo-satellite pulse transmission slot generation formula can be expressed as: 

𝑘𝑘𝑖𝑖(𝑚𝑚𝑖𝑖 , 𝑙𝑙𝑖𝑖) ≡ 𝑚𝑚𝑖𝑖𝑙𝑙𝑖𝑖(𝑚𝑚𝑚𝑚𝑚𝑚 𝑃𝑃), 0 ≤ 𝑚𝑚𝑖𝑖 , 𝑙𝑙𝑖𝑖 ≤ 𝑃𝑃 − 1, 𝑖𝑖 = 1,2 … … ,𝑃𝑃 − 1  (14) 

where,𝑘𝑘𝑖𝑖 is the code period,𝑚𝑚𝑖𝑖 is the pseudo-satellite number,𝑙𝑙𝑖𝑖 is the timeslot index,𝑃𝑃 is an odd 
prime number. Take the duty cycle d=25%, that is, P=5 as an example 

when 𝑙𝑙 = 1,𝑚𝑚 = 1, 𝑘𝑘 = 1;    𝑚𝑚 = 2, 𝑘𝑘 = 2;    𝑚𝑚 = 3, 𝑘𝑘 = 3;    𝑚𝑚 = 4, 𝑘𝑘 = 4; 

when 𝑙𝑙 = 2,𝑚𝑚 = 1, 𝑘𝑘 = 2;    𝑚𝑚 = 2, 𝑘𝑘 = 4;    𝑚𝑚 = 3, 𝑘𝑘 = 1;    𝑚𝑚 = 4, 𝑘𝑘 = 3; 

when 𝑙𝑙 = 3,𝑚𝑚 = 1, 𝑘𝑘 = 3;    𝑚𝑚 = 2, 𝑘𝑘 = 1;    𝑚𝑚 = 3, 𝑘𝑘 = 4;    𝑚𝑚 = 4, 𝑘𝑘 = 2; 

when 𝑙𝑙 = 4,𝑚𝑚 = 1, 𝑘𝑘 = 4;    𝑚𝑚 = 2, 𝑘𝑘 = 3;    𝑚𝑚 = 3, 𝑘𝑘 = 2;    𝑚𝑚 = 4, 𝑘𝑘 = 1; 

Similarly, take the duty cycle 𝑑𝑑 = 6.25%, that is 𝑁𝑁𝑒𝑒 = 16, in this case 𝑃𝑃 = 17, The pulse pattern 
can be obtained as shown in Figure 4. The figure shows all the 16 pulse patterns. When 4 pseudolites 
are positioned at the same time, each star can be assigned 4 patterns, which can be reused after 4 
modulation cycles. 

 
Figure 4: Linear congruence pulse pattern for duty cycle d=6.25% 

4. Properties analysis of proposed pulse pattern 

Auto-correlation functions and power spectral density are two elementary properties of the pulsed 
signal. The auto-correlation functions are important to enable initial acquisition of the pulsed signal in 
the receiver, while the PSD is important to ensure the ranging performance of the pulsed signal is 
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similar to that of the original ranging code. In this section, the characteristics of the proposed pulse 
pattern are determined and compared with the random pulse pattern. 

4.1 Auto-correlation functions 

The autocorrelation function of the pulse pattern can be expressed as:  

𝑅𝑅𝑝𝑝_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙] = 1
𝑑𝑑𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐

∑ 𝑃𝑃𝑏𝑏[𝑛𝑛]𝑃𝑃𝑏𝑏[𝑛𝑛 − 𝑙𝑙]𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐−1
𝑛𝑛=0 𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐           (15) 

where 𝑙𝑙 is the shifting operation with the period of 𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐. 
1

𝑑𝑑𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐
 is introduced to have a unit 

amplitude normalized to one. Using the shifting property of the Kronecker delta 𝛿𝛿[∙]and the 
associative property of convolution, (14) can be rewritten as: 

𝑅𝑅𝑝𝑝_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙] = ⋀𝑑𝑑𝑁𝑁𝑐𝑐[𝑙𝑙] ∗ � 1
𝑁𝑁𝑒𝑒
∑ ∑ ∑ 𝛿𝛿[𝑛𝑛 − 𝑘𝑘𝑁𝑁𝑐𝑐 − 𝜏𝜏𝑘𝑘] ∙ 𝛿𝛿�((𝑛𝑛 − 𝑙𝑙)𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐) − 𝑗𝑗𝑁𝑁𝑐𝑐 − 𝜏𝜏𝑗𝑗�

𝑁𝑁𝑒𝑒−1
𝑘𝑘=0

𝑁𝑁𝑒𝑒−1
𝑗𝑗=0

𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐−1
𝑛𝑛=0 �(16) 

where ⋀𝑑𝑑𝑁𝑁𝑐𝑐[𝑙𝑙] is obtained by the convolution operation of two rectangular waves: 

⋀𝑑𝑑𝑁𝑁𝑐𝑐[𝑙𝑙] = 1
𝑑𝑑𝑁𝑁𝑐𝑐

П𝑑𝑑𝑁𝑁𝑐𝑐[𝑙𝑙] ∗ П𝑑𝑑𝑁𝑁𝑐𝑐[−𝑙𝑙]                         (17) 

By exploiting the fact that 𝛿𝛿[𝑛𝑛 − 𝑘𝑘𝑁𝑁𝑐𝑐 − 𝜏𝜏𝑘𝑘] ≠ 0 when 𝑛𝑛 = 𝑘𝑘𝑁𝑁𝑐𝑐 − 𝜏𝜏𝑘𝑘, (15)  can be written as: 

𝑅𝑅𝑝𝑝_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙] = ⋀𝑑𝑑𝑁𝑁𝑐𝑐[𝑙𝑙] ∗ � 1
𝑁𝑁𝑒𝑒
∑ ∑ 𝛿𝛿�((𝜏𝜏𝑘𝑘 − 𝑘𝑘𝑁𝑁𝑐𝑐 − 𝑙𝑙) ∙ 𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐) − 𝑗𝑗𝑁𝑁𝑐𝑐 − 𝜏𝜏𝑗𝑗�

𝑁𝑁𝑒𝑒−1
𝑘𝑘=0

𝑁𝑁𝑒𝑒−1
𝑗𝑗=0 �    (18) 

Suppose that 𝑁𝑁𝑒𝑒 → ∞, it is possible to obtain the expectation of auto-correlation function of the 
Dirac delta function by means of approximation 

,𝑅𝑅𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙] ≈ 𝑅𝑅�𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙] = E�∑ 𝛿𝛿�((𝜏𝜏𝑘𝑘 − 𝑘𝑘𝑁𝑁𝑐𝑐 − 𝑙𝑙) ∙ 𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐) − 𝑗𝑗𝑁𝑁𝑐𝑐 − 𝜏𝜏𝑗𝑗�
𝑁𝑁𝑒𝑒−1
𝑗𝑗=0 �     (19) 

Using the linearity of the expected value, (18) becomes: 

𝑅𝑅�𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙] = P�∑ 𝛿𝛿�((𝜏𝜏𝑘𝑘 − 𝑘𝑘𝑁𝑁𝑐𝑐 − 𝑙𝑙) ∙ 𝑚𝑚𝑚𝑚𝑚𝑚𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐) = 𝑗𝑗𝑁𝑁𝑐𝑐 − 𝜏𝜏𝑗𝑗�
𝑁𝑁𝑒𝑒−1
𝑗𝑗=0 �           (20) 

where P[∙] denotes the probability that the basic pulse pattern equals to its shifting operations. It is 
noted that the approximation becomes asymptotically exact along with increase of the samples. Then, 
the autocorrelation function 𝑅𝑅�𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙] can be approximated by averaging the probabilities of several 
patterns.  

 
Figure 5: Linear congruence pulse address (P=5) 

 For 𝑃𝑃 = 5, the basic linear congruence patterns for BPL 1~4 are illustrated in Figure 5. According 
to (17), the average auto-correlation function of 4 basic patterns is shown in Figure 6 where the shifting 
operation 𝑙𝑙 = (𝑘𝑘 ∗ 𝜏𝜏𝑘𝑘) − 1 = 15 for each pattern. Compared with the random patterns with the same 
operation, the auto-correlation peaks are nearly identical, and the worst side-slob is −9.0309dB, 
noticeably lower than −6.8131dB of the random pattern. 𝑃𝑃 = 7 shows the similar results that the 
worst side slob is 1.25dB smaller than counterpart of the random pattern. 



Academic Journal of Environment & Earth Science 
ISSN 2616-5872 Vol.6, Issue 5: 12-22, DOI: 10.25236/AJEE.2024.060503 

Published by Francis Academic Press, UK 
-18- 

 
Figure 6: Comparison of autocorrelation function of pulse pattern (P=5) 

By averaging 𝑃𝑃 = 5, 7, 11, 13, 17, 19,23, the expected value of the auto-correlation assumes the 
following form: 

𝑅𝑅�𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑙𝑙) =

⎩
⎪
⎨

⎪
⎧

1,
1

(𝑁𝑁−1)2
,

2
(𝑁𝑁−2)2

,
0

                             (21) 

the corresponding probabilities are: 

𝑃𝑃𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑙𝑙) =

⎩
⎪
⎨

⎪
⎧

1
2𝑁𝑁−3

,
1

2𝑁𝑁−3
,

𝑁𝑁−3
4𝑁𝑁−6

,
3𝑁𝑁−7
4𝑁𝑁−6

    

                             (22) 

Figure 7 shows the results of 𝑁𝑁 = 𝑁𝑁𝑒𝑒 = 16,𝑑𝑑 = 6.25%. 

 
Figure 7: Linear congruence pulse pattern aut0-correlation function (P=17) 

4.2 Power spectral density 

The PSD of the pulsed signal can be obtained from the Fourier Transform of the 
autocorrelation function,  

𝑃𝑃(𝑓𝑓) = ℱ�𝑅𝑅𝑝𝑝[𝑙𝑙]� = ∑ 𝑅𝑅𝑝𝑝_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙]𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑐𝑐ℎ}+∞
𝑙𝑙=−∞                 (23) 

where 𝑇𝑇𝑐𝑐ℎ is the chip duration, ℱ{∙}denotes the Discrete Time Fourier Transform.Note that the 
period of the pulsing scheme is 𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐𝑇𝑇𝑐𝑐ℎ,𝑃𝑃(𝑓𝑓) can be further expressed in the line spectrum form: 

𝑃𝑃(𝑓𝑓) = 𝑃𝑃𝑏𝑏(𝑓𝑓) ∙ 1
𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐𝑇𝑇𝑐𝑐ℎ

∑ 𝛿𝛿 �𝑓𝑓 − 𝑖𝑖
𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐𝑇𝑇𝑐𝑐ℎ

�+∞
𝑖𝑖=−∞ = 1

𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐𝑇𝑇𝑐𝑐ℎ
∑ 𝑃𝑃𝑏𝑏 �

𝑖𝑖
𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐𝑇𝑇𝑐𝑐ℎ

� 𝛿𝛿 �𝑓𝑓 − 𝑖𝑖
𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐𝑇𝑇𝑐𝑐ℎ

�+∞
𝑖𝑖=−∞   (24) 
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where,𝑃𝑃𝑏𝑏(𝑓𝑓) is the Fourier Transform of the basic pattern:  

𝑃𝑃𝑏𝑏(𝑓𝑓) = ∑ 𝑅𝑅𝑝𝑝_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙]𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑐𝑐ℎ}𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐−1
𝑙𝑙=0                    (25) 

Knowing that 𝑅𝑅𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙] ≈ 𝑅𝑅�𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙] when 𝑁𝑁𝑒𝑒 ≫ 𝑁𝑁,(24) can be expressed as: 

𝑃𝑃𝑏𝑏(𝑓𝑓) ≈� 𝑅𝑅�𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙]
𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐−1

l=0
 𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑐𝑐ℎ} 

= ℱ�⋀𝑑𝑑𝑁𝑁𝑐𝑐[𝑙𝑙]� ∙ ∑ 𝑅𝑅�𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙]𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐−1
l=0  𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑐𝑐ℎ}                (26) 

Inserting (20) and (21) into (25), it can be obtained that 

𝑃𝑃𝛿𝛿(𝑓𝑓) = �  𝑅𝑅�𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑙𝑙) ∙ 𝑃𝑃𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎(𝑙𝑙)𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑐𝑐ℎ}
𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐−1

𝑙𝑙=0
 

=
1

2𝑁𝑁 − 3
+

1
(𝑁𝑁 − 1)2(2𝑁𝑁 − 3)

�  𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑐𝑐ℎ}
𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐−1

𝑙𝑙=0

+
𝑁𝑁 − 3

(𝑁𝑁 − 1)2(2𝑁𝑁 − 3)
�  𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝜋𝜋𝜋𝜋𝑇𝑇𝑐𝑐ℎ}

𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐−1

𝑙𝑙=0
 

=
1

2𝑁𝑁 − 3
+

1
(𝑁𝑁 − 1)2(2𝑁𝑁 − 3) ∙

1 − 𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐𝑓𝑓𝑇𝑇𝑐𝑐ℎ}
1 − 𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝜋𝜋𝑁𝑁𝑐𝑐𝑓𝑓𝑇𝑇𝑐𝑐ℎ} +

𝑁𝑁 − 3
(𝑁𝑁 − 1)2(2𝑁𝑁 − 3)

∙
1 − 𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝑁𝑁𝑒𝑒𝑁𝑁𝑐𝑐𝑓𝑓𝑇𝑇𝑐𝑐ℎ}
1 − 𝑒𝑒𝑒𝑒𝑒𝑒{−𝑗𝑗2𝜋𝜋𝜋𝜋𝑁𝑁𝑐𝑐𝑓𝑓𝑇𝑇𝑐𝑐ℎ}  

= 1
2𝑁𝑁−3

+ � 1
(𝑁𝑁−1)2(2𝑁𝑁−3)

+ 𝑁𝑁−3
(𝑁𝑁−1)2(2𝑁𝑁−3)

� ∙ 𝑒𝑒𝑒𝑒𝑒𝑒�−𝑗𝑗2𝜋𝜋𝑑𝑑𝑁𝑁𝑐𝑐
2(𝑁𝑁 − 1)𝑓𝑓𝑇𝑇𝑐𝑐ℎ�      (27) 

Finally, the PSD 𝑃𝑃(𝑓𝑓) can be obtained by: 

𝑃𝑃(𝑓𝑓) = 𝑃𝑃𝑏𝑏(𝑓𝑓) ∙
1
𝑇𝑇
� 𝛿𝛿 �𝑓𝑓 −

𝑖𝑖
𝑇𝑇
�

+∞

𝑖𝑖=−∞

=
1
𝑇𝑇
� 𝑃𝑃𝑏𝑏 �

𝑖𝑖
𝑇𝑇
� 𝛿𝛿 �𝑓𝑓 −

𝑖𝑖
𝑇𝑇
�

+∞

𝑖𝑖=−∞

 

= 𝑑𝑑
(2𝑁𝑁−3)

𝛿𝛿(𝑓𝑓) + (1 − d) � 1
(𝑁𝑁−1)2(2𝑁𝑁−3)

+ 𝑁𝑁−3
(𝑁𝑁−1)2(2𝑁𝑁−3)

� ∙ � 𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋𝜋𝜋/𝑁𝑁)
𝑑𝑑𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋/𝑁𝑁𝑁𝑁𝑐𝑐)

�
2
𝛿𝛿 �𝑓𝑓 − 𝑖𝑖

𝑇𝑇𝑐𝑐ℎ
�       (28) 

where 𝑑𝑑𝑁𝑁𝑐𝑐 �
𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋𝑁𝑁𝑐𝑐𝑓𝑓𝑇𝑇𝑐𝑐ℎ)
𝑑𝑑𝑁𝑁𝑐𝑐𝑠𝑠𝑠𝑠𝑠𝑠 (𝜋𝜋𝜋𝜋𝑇𝑇𝑐𝑐ℎ)

�
2
is the Fourier Transform of the triangular function ⋀𝑑𝑑𝑁𝑁𝑐𝑐[𝑙𝑙]. The PSD 

(single side spectrum) of the two patterns is compared. It can be seen from the Figure 8 that the power 
spectrum side front of the linear congruence pattern is generally smaller than the random pattern, and it 
has a strong regularity, indicating that the interference in the frequency domain is smaller and easier to 
eliminate. 

 
Figure 8: Comparison of power spectral density of pulse patterns 

4.3 Multi-access performance 

Although the linear congruential pattern is used to transmit the pulse signal, the transmission slots 
of pseudo-satellite signal do not overlap. But the delay caused by multi-path transmission also may 



Academic Journal of Environment & Earth Science 
ISSN 2616-5872 Vol.6, Issue 5: 12-22, DOI: 10.25236/AJEE.2024.060503 

Published by Francis Academic Press, UK 
-20- 

generate a certain signal collision and generate cross-correlation interference, so the cross-correlation 
function of the pulse pattern determined its multiple access performance. The solving process of 
cross-correlation function is similar to that of the autocorrelation function. First, taking 
cross-correlation operation from the initial pulse pattern in Figure.9. The resulting cross-correlation 
operation result is shown in Fig.. Then calculating the signal collision probability at 𝑃𝑃 =
7,11,13,17,19in turn and performing statistics, the average cross-correlation function can be calculated 
as: 

𝑅𝑅𝛿𝛿_𝑎𝑎𝑎𝑎𝑎𝑎𝑎𝑎[𝑙𝑙] = 1
𝑚𝑚
∑ 𝐸𝐸(𝑆𝑆𝑖𝑖)𝑚𝑚
𝑖𝑖,𝑗𝑗,𝑖𝑖≠𝑗𝑗 𝐸𝐸�𝑆𝑆𝑗𝑗 − 𝑙𝑙� = (𝑁𝑁−1)2

[2(𝑁𝑁−1)2−1]2
                (29) 

Where 𝑆𝑆𝑘𝑘 is the 𝑚𝑚 pulse code-word index, 𝑆𝑆 = {𝑆𝑆1, 𝑆𝑆2,⋯ , 𝑆𝑆𝑘𝑘,⋯ , 𝑆𝑆𝑙𝑙}, 𝐾𝐾 = 𝑁𝑁! − 1 are all lobes. 
The average value of cross-correlation function about the random pattern in the reference is 1 𝑁𝑁⁄ . 
When 𝑃𝑃 = 17, the cross-correlation value of the linear congruence pattern is −53.8925dB, and the 
cross-correlation value of the random pattern is −27.72dB. 

Assuming there are three interference signals, like the target signal, the power is −90dBm, and the 
duty ratio is 𝑑𝑑 = 6.25%. Comparing the simulation results of the acquisition probability between 
random pattern and linear congruence pattern. It has known that false alarm probability is 𝑃𝑃𝑓𝑓𝑓𝑓 = 0.1%, 
non-coherent integration time is1ms, the number of coherent integrations is 25, Figure 10 shows the 
detection probability curve of𝐶𝐶 𝑁𝑁0⁄  changing from 60dB. Hz to 110dB. Hz. When the signal 𝐶𝐶 𝑁𝑁0⁄ s 
80dB. Hz, the capture probability of the linear congruential pattern is 74.44%, and the capture 
probability of the random pattern is 16.24%. This result can prove that in the case of the same receiver 
setup and interference, the multi-access performance of linear congruent pattern is better. 

 
Figure 9: Linear Congruence Pulse Pattern Cross-Correlation Calculation Results (P=5) 

 
Figure 10: Pulse signal acquisition probability curve under three-way interference 
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4.4 Singal spacing 

The spacing of BPLs is determined by the interval between transmissions of the pulses. Assuming 
that the receiver receives the signals of the pseudolites A and B at the same time, the duty ratio is 𝑑𝑑 =
6.25%. At a certain moment, the transmission slot of the pseudolite A is 5, the transmission slot of the 
pseudolite B is 8, and the phase difference is 3 time slots. At this time, if the receiver distance A is 
18.75 kilometers and the distance B is 90 kilometers, the signals A and B will be simultaneously 
received, that is, the signal will collide. Therefore, the minimum distance should be larger by one time 
difference 𝜏𝜏 than the time interval, so as to avoid the collision of two or more signals. In this paper, 
the random pattern of 10000 pulse modulation periods and the slot spacing of linear congruential 
patterns are counted. The probability density function is shown in Figure 11. The mean time slot 
spacing of the random pattern is 0.35ms, and the linear congruence is 0.3ms. Therefore, the 
minimum distance of linear congruential patterns is 15 km smaller than that of the random pattern, that 
is, the distance between two BPLs can be reduced about 15 kilometers. 

 
Figure 11: Comparison of pulse pattern signal spacing probability density 

According to the analysis and comparison of the above characteristics, the correlation 
characteristics, power spectral density and signal spacing of the linear congruential pulse pattern are 
better than the random pattern, and have better acquisition performance and shorter receiver spacing. 

5. Conclusion  

This paper studies and designs the BPL signal pulse modulation scheme. Firstly, the signal pulse 
modulation model is established, and the design requirements of the two most important parameters in 
the model, the duty cycle and the pulse pattern are analyzed. Then, the partial correlation characteristics 
of BPL signals are analyzed, and a relation model of partial correlation characteristics and signal 
acquisition is established. When the probability of capture is 99.9% and the number of interference 
signals is 6, the minimum value of duty cycle should be 6.25%, so set the duty cycle of the pulse 
modulation scheme to 6.25%. Five BPLs can be deployed with an ordinary receiver.  

Aiming at the shortcomings of random pattern signals with high collision probability, a 
pseudo-random pulse pattern design scheme based on linear congruential algorithm is proposed, and 
the signal correlation function, power spectral density, multiple access performance and signal spacing 
of the scheme are performed. Analyzed and compared. Simulation results show that this scheme 
satisfies the design requirements and the signal characteristics are better than random patterns. The 
scheme has been adopted by the project group of the “Key Technology of BeiDou Ground-Based 
Navigation Signal Network” project of the 863 project and applied to the pseudo-satellite signal design, 
and further testing and analysis has been conducted. 
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