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Abstract: Root crop yield estimate and harvest technology, especially Japanese Yam harvest 
production, has a high demand for intelligent automation systems. This paper develops a Japanese 
Yam quality grading system based on computer vision and deep learning, which can automatically 
detect the shape and quality of Japanese Yam and grade the size of harvested. Specifically, based on 
Shuffle-Net and transfer learning, a lightweight deep learning model (CDD Net) was constructed to 
detect surface and shape defects of Japanese Yam. It’s methods were also proposed based on minimum 
bounding rectangle (MBR) fitting and convex polygon approximation. Experimental results showed 
that the detection accuracy of the proposed CDD Net was 98.94% for binary classification (normal and 
defective) and 92.92% for multi-class classification (normal, curve, fork root, fracture), and 
demonstrated good performance both in time efficiency and detection accuracy. The size accuracy of 
MBR fitting and convex polygon approximation was 92.8% and 95.1% respectively. This study 
provides a practical method for defect detection and size grading, which has great potential for 
application in yield estimation of root crops. 
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1. Introduction 

Japanese Yam, also known as“nagaimo”in Japan, belongs to the Dioscorea genus and the 
Dioscoreaceae family. Dioscorea species are important sources of energy, micronutrients and 
phytochemicals with numerous health benefits, and they are widely cultivated in many parts of the 
world. In Japan Japanese Yam usually be grated and used as an ingredient in tororo udon/soba noodles. 
Quality assessment of Japanese Yam is a necessary process to detecting defects and grading size before 
entering the market. Quality inspection and graded sales can improve the quality and market 
competitiveness of Yam[1]. At present, Yam quality inspection and grading are mainly conducted 
manually and poses some problems such as low efficiency and accuracy, lack of consistency and 
uniformity, which greatly affect the quality and efficiency of Yam grading. Therefore, there is an urgent 
need for reliable and efficient quality processing methods[2]. As an emerging and ongoing technology, 
computer vision has provided an accurate, highly efficient and non-destructive method for grading 
agricultural products and has become one of the most popular methods for external quality inspection 
of Yams[3].Although traditional techniques have been successfully applied in the field of Yam defect 
detection, these traditional methods are complex as they require several different steps and have 
significant limitations in accuracy and flexibility, which greatly limits their application in practical 
situations[4]. To overcome these limitations, deep learning provided practical solutions to some of the 
most challenging problems in recent years. Deep learning can automatically extract features and has 
great advantages over traditional image processing methods[5-7]. It has been successfully used to 
detect defects in apples, cucumbers, and carrots[8]. Deep learning also used in the field of appearance 
quality inspection of root crops[9]. Although the performance of deep learning methods has been 
greatly improved, efficiency issues have also arisen. The detection efficiency of these methods makes 
challenging, to my knowledge, there is currently no deep learning based system for detecting Yam 
defects.In size grading research, previous studies mainly classified agricultural products into normal 
and defective products, without further grading normal products. In the actual processing of yam 
products, some workers first select defective yams, and then other workers further classify normal 
yams into different levels based on their size. Therefore, it is necessary to establish a specialized image 
acquisition system and develop effective methods for detecting and grading Yam defects, so that 
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emerging processing technologies can succeed and benefit the Japanese yam industry[10-12].  

The purpose of this article is to develop an automated online system that can meet the requirements 
of accurate and real-time defect detection and automatic grading of yams. The innovation points of this 
article are as follows: 

Develop a fully automated Japanese Yam defect detection and size grading system in farm field and 
before packing in factory; Develop a lightweight network (CDDNet) for Japanese Yam defect detection 
based on ShuffleNet and transfer learning; Propose a new Japanese Yam grading method based on 
minimum bounding rectangle (MBR) fitting and convex polygon approximation. 

2. Materials and Method 

2.1. Materials 

Underground tuber is the main edible part of Japanese Yam. Two tractors are usually used when 
harvesting Yams. A plow on the first tractor scoops up the Yams, which are loaded into containers on 
the next tractor. Several people entered between the two tractors and manually removed the soil from 
the dug Yams and arranged them in the field. Several workers behind the second tractor conduct 
preliminary manual inspection and grading and manually load them into containers, picking out 
defective Yams, and then ordinary Yams are further divided into different grades according to size. In 
this paper, Yams of different sizes and shapes are selected as experimental samples, covering normal 
Yams and defective Yams (curve, fork roots, fracture, flat), as shown in Fig.1. 

 
Figure 1: Defective Japanese Yams and Normal Japanese Yam. 

2.2. Dataset collection and Image acquisition 

The whole system process mainly included four steps: image acquisition, image preprocessing, 
defect detection and Yam grading, as presented in Fig. 2. 

 
Figure 2: System technical flow chart 
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Figure 3: GoPro and dataset collection scenario 

The dataset used in the experiment is mainly from the Michishita Hironaga Farm in Obihiro City, 
Hokkaido. The camera used is GoPro Hero 7 Black, and pixel count is 2.76 million pixels and shot at 
24fps. The camera is equipped with image stabilization for mounting the tractor on unstable fields. Fix 
the GoPro camera on a tractor running in parallel and at constant speed, taking a bird's-eye view of the 
Japanese Yams placed on the field. During image acquisition, frame-triggered mode was used to 
capture images of Yams moving at a low speed, as in Fig.3. In order to achieve brightness equalization, 
referring to the Ohta color space, we used a new grayscale method calculated by Eq1. 

bgrgray IIII 5.025.2 −−=                           (1) 

where Ir, Ig and Ib represent the red, green and blue components of the source image Igray, 
respectively. The process of image preprocessing is illustrated in Fig.4. 
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Figure 4: Illustration of image preprocessing. (a) Original Japanese Yam image of normal; gray image 

and its binary images; gray image calculated by Eq.1 and its binary images. (b) Original Japanese 
Yam image of fracture; gray image and its binary images; gray image calculated by Eq.1 and its binary 
images. (c) Original Japanese Yam image of fork root; gray image and its binary images; gray image 

calculated by Eq.1 and its binary images. 

2.3. Japanese Yam defect detection model based on deep learning 

Considering that ShuffleNet is a very lightweight network with very low complexity, and transfer 
learning provides a very effective technique for object recognition, especially when training data is 
limited, we constructed Yam defect detection network (CDDNet) based on ShuffleNet and transfer 
learning to realize online defect detection of Japanese Yams, as illustrated in Fig. 5.  

 
Figure 5: Model architecture of the proposed defect detection model. CDDNet model and its ShuffleNet 

unit. 
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2.4. Size grading methods based on MBR fitting and convex polygon approximation 

After defect detection, normal Japanese Yams were further classified into different specifications 
according to their length. Therefore, it is necessary to establish the relationship between the pixel 
length and the actual Japanese Yam length. The pixel length can be measured by calculating the 
minimum bounding rectangle of the Japanese Yam region[13-14]. Therefore, a new regression method 
was proposed to predict the actual length from Yam images based on the minimum bounding rectangle 
approximation and linear fitting, which can be described as follows: 

Step 1: Convert the source image (Fig. 6) into binary image. 

 
Figure 6: Fitting of Yam length: Source image; minimum bounding rectangle computation; calculation 

of Lp; 

Step 2: Compute the minimum bounding rectangle of the Japanese Yam region (Fig. 6) based on 
approximation algorithm, and MBR[15]corner point positions tl (tlx, tly), tr (trx, try), bl (blx, bly), br (brx, 
bry) can be obtained by the formula in Eqs. (2)–(5): 
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In the realm of bounding rectangle, where θ is the angel (radian) of the object orientation. (x1, y1) 
is the top edge point of Japanese Yam region, (x2, y2) is the bottom edge point, (x3, y3) is the left edge 
point, and (x4, y4) is the right edge point. These markers are used to define the four corners of the 
rectangle and thus determine the position and size of the bounding box. Through these coordinates, the 
position and size of the rectangle can be clearly specified for graphics processing and calculations. 

Step 3: Calculate the pixel length Lp of Chinese Yam (Fig. 6). 

Step 4: Establish the relationships between the actual length La (cm) and the pixel length Lp by 
linear fitting (Fig. 7): 

3241.01115.0L −= pa L  

 
Figure 7: Linear fitting of La and Lp. 

After obtaining the actual length L (cm), normal Japanese Yams can be divided into four size grades: 
S, M, L and 2L by: 

Grade=｛ S:La≤30cm; 

M: 30cm<La≤50cm; 

L:50cm<La≤70cm; 

2L: La >70cm; 

According to the grading requirements for Japanese Yam sales, the normal shape of Japanese Yam 
should be natural and uniform. Based on the shape characteristics of Yams, a convex polygon 
approximation method is proposed, dividing each specification into two levels (Level 1 and Level 2) to 
maintain consistency and uniformity in appearance(Fig. 8). An external convex polygon[16] is generated 
to approximate the contour of the Japanese Yams, and shape regularity Rs was defined as:    

p

c
s A

A
=R  

where Ac is the area of Japanese Yam region and Ap is the area of its external convex polygon. Rs is 
used to measure the regularity of Japanese Yam shape, and its value ranges from 0 to 1. The bigger the 
Rs, the more regular the Yam is. In addition, it is not affected by image size and Japanese Yam position, 
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and has good adaptability. 

 
Figure 8: Two specifications divided with convex polygon. 

A threshold T can be set to classify Japanese Yam into two levels (Fig.9): 

 

 
Figure 9: Two specifications divided into two levels 

2.5. Algorithm of defect detection and grading 

The algorithm of defect detection and grading is described as below: 
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Algorithm 1. Defect detection and grading       

Algorithm 1: Defect detection and grading 
Input:Source image I ; 
Output:Decision signal s ; 
 Initialization s= -1 ; 
 for i do 
   Defect detection on image i by CDDNet:   dFlag=CDDNet(i) 
   if(dFlag=’defective’) 

S=0; 
exit for 

   end if 
 end for 
 if(s=-1) 
  Calculate the actual length La of image I by MBR fitting method; 
  If(La≤30)then classify I into two levels(s=1,2)by polygon Approximation method; 
  else if(La≤50)then classify I  into two levels(s=3,4); 
  else if(La≤70)then classify I  into two levels(s=5,6); 
  else classify I  into two levels(s=7,8); 
  end if 
 end if  
 return s; 

2.6. Evaluation standards 

Five statistical parameters were calculated to evaluate the performance of the proposed model: 
Accuracy, Recall, Specificity, Precision and F1-Score, which are specified by equations (6), (7), (8), (9), 
(10): 
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Table 1: Description of four image datasets. 

Dataset Name Categories Training size Validation size Total size 
Dataset 1 Normal 1684 726 2439 
 Defective 3579 1566 5227 
Dataset 2 Normal 700 300 1000 
 Fork roots 212 91 303 
 Curve 409 75 478 
 Fracture 988 422 1396 
Dataset 3 S - 238 238 
 M - 245 245 
 L - 211 211 
 2L - 211 211 
Dataset 4 Level 1 - 649 649 
 Level 2 - 217 217 
where TP, TN, FP and FN represent the number of true positives, true negatives, false positives and 
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false negatives, respectively.Four image datasets were constructed (Table1) for different experimental 
purposes using image acquisition system. 

3. Results and Discussion 

3.1. Effects of model parameters on CDDNet 

3.1.1. Effect of batch size 

Batch size represents the number of samples used in each step of CNN training process. Batch size 
determines the direction of gradient decline. For small datasets, the batch size can choose the size of all 
datasets, but for large datasets, if the batch size is too large, the memory will be insufficient and the 
training will not continue. Therefore, a suitable batch size can speed up the training speed of the model. 
To explore its effect on the detection performance of CDDNet, different batch sizes (10, 20, 40, 80 and 
160) were used to train and validate the proposed model on dataset 1. 

Fig. 10 presents the validation accuracy and training time with different batch sizes for 10 epochs. 
Validation accuracy is the evaluation of model generalization ability. The validation accuracy first 
increases and then decreases with the increase of the batch size. The highest accuracy is achieved when 
the batch size is 40. The training time decreases first and then has no significant change after batch size 
40. For the trade-off between model generalization ability and training time, the value of batch size was 
set to 40. 

3.1.2. Effect of the learning rate 

As an important parameter in deep learning, learning rate determines whether and when the 
objective function converges to the local minimum. In order to select an appropriate value for our 
model, CDDNet was trained and validated on dataset 1 with different learning rates (0.05, 0.01, 0.005, 
0.001, 0.0005, 0.0001, 0.00005, and 0.00001), the validation accuracy for different learning ratesas 
shown in Fig.10, When the learning rate is too small (0.00001) or too large (0.05), the validation 
accuracy becomes relatively low. The best performance is achieved when the learning rate is 0.0005. 

 
Figure 10: Validation accuracy of different learning rate. 

3.2. Performance of CDDNet to detect defective Japanese Yams 

In order to evaluate the performance of CDDNet in Yam defect detection[16], experiments were 
conducted on Dataset 1 (binary classification) and Dataset 2 (multiclass classification), and compared 
our method with manual methods by workers and some popular deep learning methods (including 
AlexNet) were compared with ResNet[17], two lightweight models: MobileNet v2 and ShuffleNet.The 
average values of the statistical parameters defined by Eqs. (10), (11), (12), (13), (14) were used to 
measure the final performance of the model[18-19]. All deep models were trained for 10 epochs using 
cross-entropy loss function and Adam optimizer with a learning rate of 0.0005. Experiments were 

https://www.sciencedirect.com/science/article/pii/S0023643821009853#tbl1
https://www.sciencedirect.com/science/article/pii/S0023643821009853#fig7
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conducted on a computer (CPU: Intel(R) CoreTM i7-6700@3.20GHZ, RAM: 16G; OS: Win11). 

3.2.1. Performance evaluation of CDDNet for binary classification 

Table 1 lists the average values of the statistical parameters (accuracy, precision, specificity, recall 
and F1-Score), training time, processing time and model size for binary classification.The accuracy of 
the manual methods by workers was far lower than that of deep learning methodst[20]. Traditional 
methods included several distinct steps, such as removing background, detecting region of interest and 
designing features for each kind of defect, which were very complex and had poor flexibility. However, 
deep learning can automatically extract features of Japanese Yam defect, despite of little knowledge of 
the defect[21]. The deep learning model works well because it has a nearly perfect understanding of 
normal yams, which helps significantly reduce errors and has greater advantages than traditional 
methods. 

Accuracy, precision, specificity, sensitivity and F1-Score of CDDNet were 98.94%, 99.02%, 
98.93%, 98.76% and 98.87%, respectively, which were only slightly lower than ResNet (98.98%, 
100%, 98.93%, 98.71% and 98.92%). However, CDDNet was superior to ResNet in training time, 
processing time and model size; its training time was only one-eighteenth of ResNet, and the model 
size was only one-thirtieth of ResNet. Compared with the original ShuffleNet, the model size of 
CDDNet was reduced, but it still kept good detection accuracy.  Therefore, It is very necessary to 
select a suitable model and network structure for Japanese Yam defect detection. In general, CDDNet 
achieved excellent performance both in detection accuracy and model complexity. 

Time efficiency is an important aspect to be considered in Japanese Yam grading. As can be seen 
from Table 2, CDDNet could make it possible to meet the requirements of real-time detection of 
Japanese Yam defects. 

Table 2: Experimental results of the defect detection performance of binary classification. 

Methods AlexNet ResNet50 MobileNetv2 ShuffleNet CDDNet 
Accuracy(%) 97.98±0.60 98.98±0.90 98.06±0.19 98.89±0.27 98.94±0.11 
Recall(%) 98.10±0.76 100 100 99.08±0.06 99.02±0.10 
Specificity(%) 97.92±0.97 98.93±0.11 97.56±0.29 98.80±0.32 98.93±0.19 
Precision(%) 96.64±1.98 98.71±0.32 95.88±0.59 98.45±0.57 98.76±0.32 
F1-Score(%) 97.35±0.91 98.92±0.13 97.47±0.30 98.76±0.33 98.87±0.17 
Training 
time(min) 

243.2 2033.2 245.7 114.0 107.5 

Processing 
time(ms) 

54.4 84.7 48.7 26.4 25.0 

Model size(MB) 213.5 85.9 7.8 2.7 2.1 

3.2.2. Performance evaluation of CDDNet for multiclass classification 

Table 3 illustrates the comparison results among our method and some prevalent deep learning 
methods in multi-classification task. In this experiment, ResNet model achieved the highest detection 
accuracy of 94.19%, and the detection accuracy of CDDNet was 92.92%, but the training time of 
ResNet was much longer than CDDNet. In the tradeoff between time and accuracy, its model 
demonstrated an overall advantage over other models in multiclass classification task. 

Table 3: Experimental results of the multiclass detection performance. 

Methods Handcrafted AlexNet ResNet50 MobileNetv2 ShuffleNet CDDNet 
Normal(%) 91.12 95.71±3.62 97.03±2.16 98.09±0.88 97.98±0.96 97.45±0.95 
Curve(%) 93.84 90.31±9.80 95.29±1.76 91.59±2.91 92.08±4.80 96.93±2.36 
Fork 
root(%) 

95.43 93.17±3.41 90.59±8.41 90.81±8.30 95.66±2.88 91.05±7.22 

Fracture(%) 81.09 84.25±11.14 88.43±3.10 80.89±6.91 83.04±7.84 76.87±6.94 
Total(%) 90.92 91.19±4.10 94.19±0.60 91.56±1.80 92.54±1.46 92.92±1.60 
Training 
time(min) 

- 55 446 91 44 43 

Processing 
time(ms) 

- 54.4 84.7 48.7 26.4 25.0 

There are significant differences in the detection accuracy of different types of defects. Generally 
speaking, the accuracy of ordinary Yam and curved Yam is higher; However, the detection accuracy of 
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fork roots and fractures is relatively low, especially for fractures. There may be two reasons: 

(1)Sample imbalance problem 

There are significant differences in sample size among different categories; There are 138 curve 
samples, while there are only 29 fibrous root samples. The imbalanced sample leads to serious bias in 
the classification model. Some strategies can be used to address sample imbalance issues, such as 
expanding the dataset, oversampling and undersampling, and manually generating data samples. In the 
future, I will collect more Yam samples or use data augmentation techniques to amplify image samples 
to further improve the performance of CDDNet. 

(2)Variety of defect appearance 

There are many factors that cause other surface appearance defects, such as mechanical damage, 
decay, bruises, wormholes, etc., resulting in great differences in appearance. Due to the large variance 
of phenotype, it is difficult for CDDNet to extract effective features, and one possible solution is to 
recognize each possible situation as a separate category. 

3.2.3. Comparison with previous studies 

Comparing CDDNet with other studies is challenging due to the lack of public datasets to serve as 
benchmarks in the field. Published studies on defect detection in agricultural products often use their 
own datasets, making it difficult to compare the results of this paper with those of related work. In 
order to make a fair comparison, for all deep learning models, this paper uses the same model 
parameters to train all deep learning models and uses pre-trained AlexNet for experiments instead of 
directly comparing with experimental results. Therefore, in this reserach, we compared the proposed 
method with our previous work and some prevalent deep learning methods: AlexNet, ResNet and 
ShuffleNet on our own dataset. Although there was no comprehensive comparison, considering the 
limited research studies using computer vision for Japanese Yam defect detection, our research had 
some advantages. 

The proposed CDDNet can perform defect detection well without manually defined features or any 
other preprocessing[22], so it can be applied to other agricultural products if sufficient dataset is 
available[23]. Therefore, our model can also be applied to defect detection of other root and tuber 
agricultural products and has good applicability. 

3.3. Evaluation of Japanese Yam grading method 

3.3.1. Evaluation of the MBR fitting method 

 

 
Figure 11: Confusion matrix of (a) manual method by workers and (b) proposed method. 

In this experiment, 419 Japanese Yams of four size grades (S, M, L, 2L) were selected as 
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experimental samples on a farm in Obihiro, Hokkaido. Then, the computer vision system is used to 
obtain Yam images and the MBR fitting method is used for grading. The grading results were verified 
by measuring the actual length of Japanese Yam with a ruler, as shown in Fig.11. 

Due to the strong subjectivity and poor stability of manual methods, the manual experimental 
results are only responsible for this experiment. Even for the same person, the results of repeated 
experiments may be different. Experimental results showed that overall accuracy of our method 
achieved was 92.8%, which was much higher than that of manual method (83.1%).The grading 
accuracy of manual method varied greatly among different specifications. The accuracy of S and M 
were only 78.4% and 69.9%, respectively, however, accuracy of L and 2L were both above 90% (90.7% 
and 95.8%). The accuracy of our method for S, M, L and 2L were 91.7%, 89.4%, 94.4%, and 96.3%, 
respectively, which demonstrated that our method had has higher reliability and accuracy than manual 
method. 

To my knowledge, there is currently no relevant work on the fitting and grading of Japanese Yam 
size, so in this article, I will only compare my method with manual methods. Obviously, manual 
methods have drawbacks such as low accuracy and instability. Our method has advantages in 
classification accuracy and reliability, greatly improving the accuracy and efficiency of Yam 
classification. 

3.4. Practicability of the proposed approach 

A defect detection and image recognition system for Japanese Yam grading was constructed based 
on the actual size and grade specifications of Japanese Yam processing. In this system, CDDNet is first 
used to screen out defective Yams (curve, fork root, fracture, flat) and then a grading method is used to 
classify normal Japanese Yams into different specifications and grades. Compared with previous work, 
this system is more in line with the actual process and is easy to apply in practical situations.The 
proposed CDDNet can detect most of defects that affect the appearance quality of Japanese Yam. 

At present, relevant research mainly focuses on surface defect detection before harvesting of root 
crops, while there are few reports on yam grading based on computer vision. This method is simple and 
feasible, providing an effective method for yam grading. There are some grading standards for the 
grade and specifications of yams, such as shape uniformity, surface smoothness, color uniformity, and 
maturity. But most of these standards are qualitative and difficult to quantify. In the future, we will 
further study the determination of quality grading standards for yams, taking into account more factors 
such as flatness, color uniformity, size, maturity, etc. 

4. Conclusion 

In summary, the combination of deep learning and computer vision for Japanese Yam root defect 
detection and automatic size grading has important research significance and practical application value. 
By overcoming the limitations of worker manual methods and using computer vision deep learning 
technology, accurate detection and automatic grading of Japanese Yam defects can be achieved, 
providing strong support for harvest yield estimation of Japanese Yam and other root crops. This article 
elaborates on the entire process of quality inspection from aspects such as image acquisition system, 
quality inspection methods, and grading standards. Based on ShuffleNet and transfer learning, a 
lightweight network (CDDNet) was developed to detect Yam defects, and Yam size grading method 
based on MBR fitting and convex polygon approximation was proposed. The experimental results 
show that the detection accuracy of the proposed CDDNet for binary and multi class classification is 
98.94% and 92.92%, respectively. The classification accuracy of MBR fitting and convex polygon 
approximation is 92.8% and 95.1%, respectively. This can meet the requirements of this study and 
prove the feasibility of deep learning Japanese Yam defect detection, providing a practical method for 
defect detection and size grading of root crops such as Japanese Yam. 
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